Line 389: | Line 389: | ||
<div style="position:absolute;width:100%;height:700px;top:3700px;"> | <div style="position:absolute;width:100%;height:700px;top:3700px;"> | ||
<h2 style="font-size:23px;color:#FF8800;text-decoration:none;position:absolute;left:220px;top:20px;margin:20px;"i>Prediction</h2> | <h2 style="font-size:23px;color:#FF8800;text-decoration:none;position:absolute;left:220px;top:20px;margin:20px;"i>Prediction</h2> | ||
− | <hr style="width:800px;position:absolute;left: | + | <hr style="width:800px;position:absolute;left:360px;top:57px;"></hr> |
<h3 style="font-size:20px;color:#FF8800;text-decoration:none;position:absolute;left:330px;top:45px;margin:20px;">-Dendritic cell MHC peptide presentation</h3> | <h3 style="font-size:20px;color:#FF8800;text-decoration:none;position:absolute;left:330px;top:45px;margin:20px;">-Dendritic cell MHC peptide presentation</h3> | ||
<ul style="list-style-type: circle;color:#FF8800;font-size:18px;position:absolute;left:240px;top:85px;"> | <ul style="list-style-type: circle;color:#FF8800;font-size:18px;position:absolute;left:240px;top:85px;"> | ||
Line 404: | Line 404: | ||
</div> | </div> | ||
<a name='anchor3.2'></a> | <a name='anchor3.2'></a> | ||
− | <div style="position:absolute;width:100%;height:700px;top: | + | <div style="position:absolute;width:100%;height:700px;top:800px;"> |
<h2 style="font-size:23px;color:#FF8800;text-decoration:none;position:absolute;left:260px;top:20px;margin:20px;">Design</h2> | <h2 style="font-size:23px;color:#FF8800;text-decoration:none;position:absolute;left:260px;top:20px;margin:20px;">Design</h2> | ||
<hr style="width:800px;position:absolute;left:380px;top:57px;"></hr> | <hr style="width:800px;position:absolute;left:380px;top:57px;"></hr> | ||
Line 418: | Line 418: | ||
<div style="position:absolute;width:100%;height:700px;top:1400px;"> | <div style="position:absolute;width:100%;height:700px;top:1400px;"> | ||
<h2 style="font-size:23px;color:#FF8800;text-decoration:none;position:absolute;left:260px;top:20px;margin:20px;">Discussion</h2> | <h2 style="font-size:23px;color:#FF8800;text-decoration:none;position:absolute;left:260px;top:20px;margin:20px;">Discussion</h2> | ||
− | <hr style="width: | + | <hr style="width:760px;position:absolute;left:420px;top:57px;"></hr> |
<p style="color:black;text-decoration:none;font-size:18px;position:absolute;left:280px;top:70px;margin-right:200px;margin-left:50px;margin-top:30px;text-align:justify;">In order to use photo-inactivated Leishmania as a safe carrier to deliver specific antigens to the APCs for T and B cell stimulation, we designed an E. coli-Leishmania shuttle vector for antigen expression in Leishmania.<br><br>A shuttle vector is a vector constructed so that it can reproduce in two different host species. The main purpose of these vectors is that they can be quickly amplified in E. coli and then manipulated in another organism, such as Leishmania. Here we designed an E.coli-Leishmania shuttle vector constructed under biobrick standards to provide a standardized shuttle vector for our own experiment and for others' future application.</p> | <p style="color:black;text-decoration:none;font-size:18px;position:absolute;left:280px;top:70px;margin-right:200px;margin-left:50px;margin-top:30px;text-align:justify;">In order to use photo-inactivated Leishmania as a safe carrier to deliver specific antigens to the APCs for T and B cell stimulation, we designed an E. coli-Leishmania shuttle vector for antigen expression in Leishmania.<br><br>A shuttle vector is a vector constructed so that it can reproduce in two different host species. The main purpose of these vectors is that they can be quickly amplified in E. coli and then manipulated in another organism, such as Leishmania. Here we designed an E.coli-Leishmania shuttle vector constructed under biobrick standards to provide a standardized shuttle vector for our own experiment and for others' future application.</p> | ||
</div> | </div> |
Revision as of 15:53, 16 October 2016
Leijuvant
Results
- Shuttle vector-Leishmania antigen expression system
- Leijuvant-the immune response of photo-inactivated leishmania as adjuvant in mice
- Prediction-Dendritic cell MHC peptide presentation
Shuttle vector
-Leishmania antigen expression system
Introduction
In order to use photo-inactivated Leishmania as a safe carrier to deliver specific antigens to the APCs for T and B cell stimulation, we designed an E. coli-Leishmania shuttle vector for antigen expression in Leishmania.
A shuttle vector is a vector constructed so that it can reproduce in two different host species. The main purpose of these vectors is that they can be quickly amplified in E. coli and then manipulated in another organism, such as Leishmania. Here we designed an E.coli-Leishmania shuttle vector constructed under biobrick standards to provide a standardized shuttle vector for our own experiment and for others' future application.
Design
In order to use photo-inactivated Leishmania as a safe carrier to deliver specific antigens to the APCs for T and B cell stimulation, we designed an E. coli-Leishmania shuttle vector for antigen expression in Leishmania.
A shuttle vector is a vector constructed so that it can reproduce in two different host species. The main purpose of these vectors is that they can be quickly amplified in E. coli and then manipulated in another organism, such as Leishmania. Here we designed an E.coli-Leishmania shuttle vector constructed under biobrick standards to provide a standardized shuttle vector for our own experiment and for others' future application.
Results
In order to use photo-inactivated Leishmania as a safe carrier to deliver specific antigens to the APCs for T and B cell stimulation, we designed an E. coli-Leishmania shuttle vector for antigen expression in Leishmania.
A shuttle vector is a vector constructed so that it can reproduce in two different host species. The main purpose of these vectors is that they can be quickly amplified in E. coli and then manipulated in another organism, such as Leishmania. Here we designed an E.coli-Leishmania shuttle vector constructed under biobrick standards to provide a standardized shuttle vector for our own experiment and for others' future application.
Leijuvant
-the immune response of photo-inactivated leishmania as adjuvant in mice
Introduction
To prove our concept, we tested the efficiency of the antibody immune response and T cell immune response of the photo-inactivated Leishmania as a vaccine adjuvant. Ovalbumin (OVA) has been commonly used as the antigen for testing the efficiency of antibody response and T cell activation in previous immunology experiments. Also, OVA is the only foreign antigen carried by Leishmania that has been shown to load the major histocompatibility complex class I molecules (MHC I) after phagocytosis by APCs, since the transgenic mutants of Leishmania is a new way to deliver antigens into antigen-presenting cells (APC). Thus, we want to use OVA in our in vivo test to validate our hypothesis of photo-inactivated Leishmania as an adjuvant. We co-injected OVA recombinant protein and photo-inactivated Leishmania that is genetically modified to present OVA protein into mouse.
Serum is collected every 5 days after the second injection to test the antibody immune response with Anti-OVA ELISA and further tested the T cell response with dissected splenic cell. The outcome will be compare to the of Alum adjuvant.
Design
We subcutaneously co-injected leish-OVA (Leishmania expressing OVA) and OVA protein into mice and compare the outcome to the of Alum adjuvant with OVA protein as a positive control. We immunized the mice twice, the second boost will be injected on the 15th day after the first shot and after the second shot we will collect serum from the mice on the 5th 10th 13th day after. The serum will be tested for anti-OVA IgG1 and IgG2a as the antibody response and the cell-mediated immune response, respectively. We will dissect the spleen on the 10th day after the second boost and culture the splenic cells for 6 days. Culture supernatant will be tested for cytokines specific for T cell response.
Results
In order to use photo-inactivated Leishmania as a safe carrier to deliver specific antigens to the APCs for T and B cell stimulation, we designed an E. coli-Leishmania shuttle vector for antigen expression in Leishmania.
A shuttle vector is a vector constructed so that it can reproduce in two different host species. The main purpose of these vectors is that they can be quickly amplified in E. coli and then manipulated in another organism, such as Leishmania. Here we designed an E.coli-Leishmania shuttle vector constructed under biobrick standards to provide a standardized shuttle vector for our own experiment and for others' future application.
Discussion
In order to use photo-inactivated Leishmania as a safe carrier to deliver specific antigens to the APCs for T and B cell stimulation, we designed an E. coli-Leishmania shuttle vector for antigen expression in Leishmania.
A shuttle vector is a vector constructed so that it can reproduce in two different host species. The main purpose of these vectors is that they can be quickly amplified in E. coli and then manipulated in another organism, such as Leishmania. Here we designed an E.coli-Leishmania shuttle vector constructed under biobrick standards to provide a standardized shuttle vector for our own experiment and for others' future application.
Prediction
-Dendritic cell MHC peptide presentation
Introduction
The biobrick construct of E.coli-Leishmania shuttle vector is meant to express the targeting antigen protein in Leishmania through amplification in E.coli and transfection into Leishmania. Therefore, total size of the shuttle vector can significantly affect the efficiency of transformation and transfection during the procedure. To enhance the efficiency, we've tried to focus on shortening the targeting antigen sequence which will then be sub-cloned into the shuttle vector. In order to identify antigen sequence with the highest MHC binding affinity, researchers have to utilize several bioinformatics tools to figure out or predict the protein properties. In our project, we have generated an integrated protein information website, McHug, to help users in searching for peptide sequences that can optimally activate immune response. Other than providing users with all basic protein information, McHug features the visualized interface which can transform loads of numerical data into legible charts. The ultimate goal of McHug website is to mark all the protein annotations on the given protein sequence and display the relative immune properties such as MHC binding affinity in every position of the protein. Selection of the most suitable sequence for MHC presentation can be easily accomplished with McHug. The apllicability of McHug website was further tested in vitro using OVA-loaded dendritic cells. MHC molecules were immunoprecipitated and the associated peptide sequences were then analyzed by mass spectrometry. You can learn faster and more about your targeting antigen while experiencing McHug.
Design
In order to use photo-inactivated Leishmania as a safe carrier to deliver specific antigens to the APCs for T and B cell stimulation, we designed an E. coli-Leishmania shuttle vector for antigen expression in Leishmania.
A shuttle vector is a vector constructed so that it can reproduce in two different host species. The main purpose of these vectors is that they can be quickly amplified in E. coli and then manipulated in another organism, such as Leishmania. Here we designed an E.coli-Leishmania shuttle vector constructed under biobrick standards to provide a standardized shuttle vector for our own experiment and for others' future application.
Results
In order to use photo-inactivated Leishmania as a safe carrier to deliver specific antigens to the APCs for T and B cell stimulation, we designed an E. coli-Leishmania shuttle vector for antigen expression in Leishmania.
A shuttle vector is a vector constructed so that it can reproduce in two different host species. The main purpose of these vectors is that they can be quickly amplified in E. coli and then manipulated in another organism, such as Leishmania. Here we designed an E.coli-Leishmania shuttle vector constructed under biobrick standards to provide a standardized shuttle vector for our own experiment and for others' future application.
Discussion
In order to use photo-inactivated Leishmania as a safe carrier to deliver specific antigens to the APCs for T and B cell stimulation, we designed an E. coli-Leishmania shuttle vector for antigen expression in Leishmania.
A shuttle vector is a vector constructed so that it can reproduce in two different host species. The main purpose of these vectors is that they can be quickly amplified in E. coli and then manipulated in another organism, such as Leishmania. Here we designed an E.coli-Leishmania shuttle vector constructed under biobrick standards to provide a standardized shuttle vector for our own experiment and for others' future application.