Difference between revisions of "Team:OUC-China/Model"

Line 9: Line 9:
 
   <script type="text/javascript" src="https://2016.igem.org/Team:OUC-China/js/jquery?action=raw&amp;ctype=text/javascript"></script>
 
   <script type="text/javascript" src="https://2016.igem.org/Team:OUC-China/js/jquery?action=raw&amp;ctype=text/javascript"></script>
 
   <script type="text/javascript" src="https://2016.igem.org/Team:OUC-China/js/bootstrap?action=raw&amp;ctype=text/javascript"></script>
 
   <script type="text/javascript" src="https://2016.igem.org/Team:OUC-China/js/bootstrap?action=raw&amp;ctype=text/javascript"></script>
 +
  <script type="text/x-mathjax-config">
 +
MathJax.Hub.Config({
 +
  tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]}
 +
});
 +
  </script>
 +
  <script type="text/javascript" src="https://2015.igem.org/common/MathJax-2.5-latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
 
   <title>Model</title>
 
   <title>Model</title>
 
<style type="text/css">
 
<style type="text/css">
Line 107: Line 113:
 
<div class="clearfix"></div>
 
<div class="clearfix"></div>
 
         <div class="img_banner"><img src="https://static.igem.org/mediawiki/2016/c/c9/T--OUC-China--modeling-banner.jpg" class="img-responsive" alt="modeling-banner"></div>
 
         <div class="img_banner"><img src="https://static.igem.org/mediawiki/2016/c/c9/T--OUC-China--modeling-banner.jpg" class="img-responsive" alt="modeling-banner"></div>
<div style="background:#EFF2F6;">
+
<div id="" class="">
<br>
+
  When $a \ne 0$, there are two solutions to \(ax^2 + bx + c = 0\) and they are
<br>
+
$$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$
<br>
+
  $$ \phi \xrightarrow{{K}_{r}} [mRNA] $$
<br>
+
  $$ [mRNA] \xrightarrow{{K}_{p_1}} [mRNA] + [{Protein}_{1}] + [{Protein}_{2}] $$
<p>If you want to know more about our modeling, please click <a href="https://static.igem.org/mediawiki/2016/e/e0/T--OUC-China--model.pdf">here</a></p><br><br><br><br>
+
  $$ [mRNA] \xrightarrow{{K}_{d_1}} [{mRNA}_{1}] + [{mRNA}_{2}] $$
 +
  $$ [{mRNA}_{1}] \xrightarrow{{K}_{{p}_{11}}} [{mRNA}_{1}] + [{Protein}_{1}] $$
 +
  $$ [{mRNA}_{2}] \xrightarrow{{K}_{{p}_{12}}} [{mRNA}_{2}] + [{Protein}_{2}] $$
 +
  $$ [mRNA] \xrightarrow{{K}_{d_0}} \phi $$
 +
  $$ [{mRNA}_{1}] \xrightarrow{{K}_{{d}_{11}}} \phi $$
 +
  $$ [{mRNA}_{2}] \xrightarrow{{K}_{{d}_{12}}} \phi $$
 +
  $$ [{Protein}_{1}] \xrightarrow{{K}_{{d}_{p_1}}} \phi $$
 +
  $$ [{Protein}_{2}] \xrightarrow{{K}_{{d}_{p_2}}} \phi $$
 +
<h4>两行三列的表格</h4>
 +
<div class="table-responsive">
 +
<table class="table table-bordered">
 +
<tr>
 +
<th>Symbol</th>
 +
<th>Definition</th>
 +
<th>Units</th>
 +
</tr>
 +
<tr>
 +
<td>[mRNA]</td>
 +
<td></td>
 +
<td></td>
 +
</tr>
 +
<tr>
 +
<td>$[{mRNA}_{1}]$</td>
 +
<td></td>
 +
<td></td>
 +
</tr>
 +
<tr>
 +
<td>$[{mRNA}_{2}]$</td>
 +
<td></td>
 +
<td></td>
 +
</tr>
 +
<tr>
 +
<td>$[{Protein}_{1}]$</td>
 +
<td></td>
 +
<td></td>
 +
</tr>
 +
<tr>
 +
<td>$[{Protein}_{2}]$</td>
 +
<td></td>
 +
<td></td>
 +
</tr>
 +
<tr>
 +
<td>$K_r$</td>
 +
<td></td>
 +
<td></td>
 +
</tr>
 +
<tr>
 +
<td>${K}_{p_1}$</td>
 +
<td></td>
 +
<td></td>
 +
</tr>
 +
<tr>
 +
<td>${K}_{d_1}$</td>
 +
<td></td>
 +
<td></td>
 +
</tr>
 +
<tr>
 +
<td>${K}_{{p}_{11}}$</td>
 +
<td></td>
 +
<td></td>
 +
</tr>
 +
<tr>
 +
<td>${K}_{{p}_{12}}$</td>
 +
<td></td>
 +
<td></td>
 +
</tr>
 +
<tr>
 +
<td>${K}_{{d}_{0}}$</td>
 +
<td></td>
 +
<td></td>
 +
</tr>
 +
<tr>
 +
<td>${K}_{{d}_{11}}$</td>
 +
<td></td>
 +
<td></td>
 +
</tr>
 +
<tr>
 +
<td>${K}_{{d}_{12}}$</td>
 +
<td></td>
 +
<td></td>
 +
</tr>
 +
<tr>
 +
<td>${K}_{{d}_{p_1}}$</td>
 +
<td></td>
 +
<td></td>
 +
</tr>
 +
<tr>
 +
<td>${K}_{{d}_{p_2}}$</td>
 +
<td></td>
 +
<td></td>
 +
</tr>
 +
</table>
 +
<table class="table table-bordered">
 +
<tr>
 +
<th>Symbol</th>
 +
<th>Definition</th>
 +
<th>Units</th>
 +
</tr>
 +
<tr>
 +
<td>[AraC]</td>
 +
<td>The concentration of dissociative repressor protein - AraC </td>
 +
<td></td>
 +
</tr>
 +
<tr>
 +
<td>[Arab]</td>
 +
<td>The concentration of arabinose</td>
 +
<td></td>
 +
</tr>
 +
<tr>
 +
<td>[AraC·Arab]</td>
 +
<td>The concentration of complex - [AraC·Arab]</td>
 +
<td></td>
 +
</tr>
 +
<tr>
 +
<td>${[Arac]_T}$</td>
 +
<td>The sum of the concentration of both dissociative repressor protein - Arac and complex - AraC·Arab</td>
 +
<td></td>
 +
</tr>
 +
<tr>
 +
<td>$K_i$,i = 1, 2, 3</td>
 +
<td>reaction rate constant</td>
 +
<td></td>
 +
</tr>
 +
<tr>
 +
<td>$K_m$</td>
 +
<td>Michaelis constant</td>
 +
<td></td>
 +
</tr>
 +
<tr>
 +
<td>v</td>
 +
<td>transcription rate</td>
 +
<td></td>
 +
</tr>
 +
</table>
 +
 
 +
$$Arac + Arab \overset{k_1}{\underset{k_2}{\rightleftharpoons}} AraC·Arab \xrightarrow{{K}_{3}} mRNA + Arac$$
 +
$$ { {d[Arac·Arab]} \over {dt} } = {{k_1}·{({{[AraC]}_T}-{[AraC·Arab]})} - {k_2}·{[AraC·Arab]} - {k_3}·{[AraC·Arab]} }$$
 +
$$ { {d[Arac·Arab]} \over {dt} } = 0 $$
 +
$$ { { {k_2} + {k_3}} \over {k1} } = { { {({{[AraC]}_T}-{[AraC·Arab]})}·[Arab] } \over {[AraC·Arab]} } $$
 +
$$ {k_m} = { { {k_2} + {k_3}} \over {k1} } $$
 +
$$ { [AraC·Arab] } = { { { { [AraC] }_T } · [Arab] } \over { {k_m} + [Arab] } } $$
 +
$$ {v} = {k_3}·{ [AraC·Arab] } = {k_3} · { {{[AraC]}_T} } · { {[Arab]} \over { {k_m} + [Arab] } } $$
 +
$$ {K_r} = { v \over { [AraC·Arab] } }$$
 +
<table class="table table-bordered">
 +
<tr>
 +
<th>Symbol</th>
 +
<th>Definition</th>
 +
<th>Units</th>
 +
</tr>
 +
<tr>
 +
<td>$P_{bound}$</td>
 +
<td>Probability of ribosome binding to RBS</td>
 +
<td>/</td>
 +
</tr>
 +
<tr>
 +
<td>$P$</td>
 +
<td>Effective number of  ribosome available for  binding to RBS</td>
 +
<td></td>
 +
</tr>
 +
<tr>
 +
<td>$N_{NS}$</td>
 +
<td>The number of nonspecific site of mRNA</td>
 +
<td></td>
 +
</tr>
 +
<tr>
 +
<td>$K^{S}_{pd}$</td>
 +
<td>Dissociation constants for specific binding</td>
 +
<td>nM</td>
 +
</tr>
 +
<tr>
 +
<td>$K^{NS}_{pd}$</td>
 +
<td>Dissociation constants for non-specific binding</td>
 +
<td>nM</td>
 +
</tr>
 +
<tr>
 +
<td>${\epsilon }^{S}_{pd}$</td>
 +
<td>Binding energy for  ribosome on the RBS</td>
 +
<td>J</td>
 +
</tr>
 +
<tr>
 +
<td>${\epsilon }^{NS}_{pd}$</td>
 +
<td>Average binding energy of ribosome to the genomic background</td>
 +
<td>J</td>
 +
</tr>
 +
<tr>
 +
<td>$k_B$</td>
 +
<td>Boltzmann constants</td>
 +
<td>/</td>
 +
</tr>
 +
<tr>
 +
<td>T</td>
 +
<td>Temperature</td>
 +
<td>K</td>
 +
</tr>
 +
<tr>
 +
<td>Rate</td>
 +
<td>Rate of reaction</td>
 +
<td></td>
 +
</tr>
 +
<tr>
 +
<td>Volume</td>
 +
<td>Volume</td>
 +
<td>L</td>
 +
</tr>
 +
<tr>
 +
<td>Avogadro</td>
 +
<td>Avogadro constants</td>
 +
<td>/</td>
 +
</tr>
 +
<tr>
 +
<td>${[mRNA]}_0$</td>
 +
<td>Initial concentration of mRNA</td>
 +
<td></td>
 +
</tr>
 +
</table>
 +
 
 +
$$ { P_{bound} } = { 1 \over { 1 + { { N_{NS} } \over P }exp({ {{{\epsilon }^{S}_{pd}}-{{\epsilon }^{NS}_{pd}}} \over {{k_B}T} }) } } $$
 +
$$ { {{\epsilon }^{S}_{pd}} - {{\epsilon }^{NS}_{pd}} } \approx { {{k_B}T}ln({ {K^{S}_{pd}} \over {K^{NS}_{pd}} }) } $$
 +
$$ { P_{bound} } = { 1 \over { 1 + { { {N_{NS}} \over {P} } · { {{K^{S}_{pd}}} \over {{K^{NS}_{pd}}} } } } } $$
 +
$$ Rate = {1000*{ P_{bound} }} \over {Volume*Avogadro} $$
 +
$$ k = { {1000*{ P_{bound} }} \over {Volume*Avogadro*{{[mRNA]}_0}} } $$
 +
$$ {K_{d_1}} = { {{[H^+]}{K_{E1}}{k_0}} \over { {{K_{E1}}·{K_{E2}}} + { {[H^+]}{K_{E1}} } + {{[H^+]}^2} } } $$
 +
$$ {lg{1 \over C}} = { {lgA} - {0.434{ {\Delta G} \over {RT} }} } $$
 +
 
 +
<table class="table table-bordered">
 +
<tr>
 +
<th>Symbol</th>
 +
<th>Definition</th>
 +
</tr>
 +
<tr>
 +
<td>C</td>
 +
<td></td>
 +
</tr>
 +
<tr>
 +
<td>A</td>
 +
<td></td>
 +
</tr>
 +
<tr>
 +
<td>$\Delta G$</td>
 +
<td></td>
 +
</tr>
 +
<tr>
 +
<td>R</td>
 +
<td></td>
 +
</tr>
 +
<tr>
 +
<td>T</td>
 +
<td></td>
 +
</tr>
 +
</table>
 +
$$ {lg{1 \over C}} = { {-a{\pi}^2} + {b \pi} + {\rho \pi} + {\delta E_S} + c} $$
 +
$$ lgP = { {lgP_H} + {\Sigma (\pi x_i)} } $$
 +
$$ lg{ {k_X} \over {k_H} } = \rho {\sigma}_X $$
 +
$$ MR = { {({n^2}-1){M_W}} \over {({n^2}+2)d} } $$
 +
$$ r = \sqrt{ 1 - { { \Sigma {( {Y_{cal}} - {Y_{exp}} )}^2 } \over { \Sigma {( {Y_{exp}} - {{\tilde{Y}}_{exp}} )}^2 } } } $$
 +
$$ s = \sqrt{ { \Sigma {( {Y_{cal}} - {Y_{exp}} )}^2 } \over {n-k-1} } $$
 +
$$ F = \sqrt{ {{r^2}(n-k-1)} \over {k{(1-r)}^2} } $$
 +
</div>
 
</div>
 
</div>
 
<div class="oucBanner">
 
<div class="oucBanner">
Line 120: Line 383:
 
<div class="col-md-1"></div>
 
<div class="col-md-1"></div>
 
<div class="col-md-5">
 
<div class="col-md-5">
<h3>Thanks</h3>
+
<h3>About:</h3>
 
<br>
 
<br>
<p><b>1.</b>Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences</p>
+
<p>Thanks to:<img src="https://static.igem.org/mediawiki/2016/5/57/T--OUC-China--foot1.jpg"alt="Qingdao Institute of Bioenergy and Bioprocess Technology,Chinese Academy of Sciences"><img src="https://static.igem.org/mediawiki/2016/f/f0/T--OUC-China--foot2.jpg"alt="Biolabs"></p>
<p><b>2.</b>NEW ENGLAND Biolabs</p>
+
<p>Designed and built by @ Jasmine Chen and @ Zexin Jiao</p>
 +
<p>Code licensed under Apache License v4.0</p>
 
</div>
 
</div>
<div class="col-md-5 Contact">
+
<div class="col-md-1"></div>
 +
<div class="col-md-5">
 
<h3>Contact us:</h3>
 
<h3>Contact us:</h3>
 
<br>
 
<br>
<p><b>E-mail</b>: oucigem@163.com</p>
+
<p>E-mail: oucigem@163.com</p>
<p><b>Designed and built</b> by @ Jasmine Chen and @ Zexin Jiao</p>
+
<p>Follow us on Facebook@ iGEM OUC<img src="https://static.igem.org/mediawiki/2016/9/94/T--OUC-China--foot3.png" alt="Facebook"></p>
<p>We are OUC-iGEM
+
<p>Find us on Google Map</p>
<img src="https://static.igem.org/mediawiki/2016/5/58/T--OUC-China--foot4.png" width="70" height="70" alt="logo-one">
+
<p>We are OUC-iGEM<img src="https://static.igem.org/mediawiki/2016/5/58/T--OUC-China--foot4.png" alt="logo-one"><img src="https://static.igem.org/mediawiki/2016/9/9b/T--OUC-China--foot5.png" alt="logo-two"></p>
<img src="https://static.igem.org/mediawiki/2016/9/9b/T--OUC-China--foot5.png" width="70" height="70" alt="logo-two">
+
</p>
+
 
</div>
 
</div>
 
</div>
 
</div>
<div class="oucBottom">
+
<div id="" class="oucBottom">
 
</div>
 
</div>
 
</div>
 
</div>

Revision as of 13:54, 17 October 2016

Model

modeling-banner
When $a \ne 0$, there are two solutions to \(ax^2 + bx + c = 0\) and they are $$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$ $$ \phi \xrightarrow{{K}_{r}} [mRNA] $$ $$ [mRNA] \xrightarrow{{K}_{p_1}} [mRNA] + [{Protein}_{1}] + [{Protein}_{2}] $$ $$ [mRNA] \xrightarrow{{K}_{d_1}} [{mRNA}_{1}] + [{mRNA}_{2}] $$ $$ [{mRNA}_{1}] \xrightarrow{{K}_{{p}_{11}}} [{mRNA}_{1}] + [{Protein}_{1}] $$ $$ [{mRNA}_{2}] \xrightarrow{{K}_{{p}_{12}}} [{mRNA}_{2}] + [{Protein}_{2}] $$ $$ [mRNA] \xrightarrow{{K}_{d_0}} \phi $$ $$ [{mRNA}_{1}] \xrightarrow{{K}_{{d}_{11}}} \phi $$ $$ [{mRNA}_{2}] \xrightarrow{{K}_{{d}_{12}}} \phi $$ $$ [{Protein}_{1}] \xrightarrow{{K}_{{d}_{p_1}}} \phi $$ $$ [{Protein}_{2}] \xrightarrow{{K}_{{d}_{p_2}}} \phi $$

两行三列的表格

Symbol Definition Units
[mRNA]
$[{mRNA}_{1}]$
$[{mRNA}_{2}]$
$[{Protein}_{1}]$
$[{Protein}_{2}]$
$K_r$
${K}_{p_1}$
${K}_{d_1}$
${K}_{{p}_{11}}$
${K}_{{p}_{12}}$
${K}_{{d}_{0}}$
${K}_{{d}_{11}}$
${K}_{{d}_{12}}$
${K}_{{d}_{p_1}}$
${K}_{{d}_{p_2}}$
Symbol Definition Units
[AraC] The concentration of dissociative repressor protein - AraC
[Arab] The concentration of arabinose
[AraC·Arab] The concentration of complex - [AraC·Arab]
${[Arac]_T}$ The sum of the concentration of both dissociative repressor protein - Arac and complex - AraC·Arab
$K_i$,i = 1, 2, 3 reaction rate constant
$K_m$ Michaelis constant
v transcription rate
$$Arac + Arab \overset{k_1}{\underset{k_2}{\rightleftharpoons}} AraC·Arab \xrightarrow{{K}_{3}} mRNA + Arac$$ $$ { {d[Arac·Arab]} \over {dt} } = {{k_1}·{({{[AraC]}_T}-{[AraC·Arab]})} - {k_2}·{[AraC·Arab]} - {k_3}·{[AraC·Arab]} }$$ $$ { {d[Arac·Arab]} \over {dt} } = 0 $$ $$ { { {k_2} + {k_3}} \over {k1} } = { { {({{[AraC]}_T}-{[AraC·Arab]})}·[Arab] } \over {[AraC·Arab]} } $$ $$ {k_m} = { { {k_2} + {k_3}} \over {k1} } $$ $$ { [AraC·Arab] } = { { { { [AraC] }_T } · [Arab] } \over { {k_m} + [Arab] } } $$ $$ {v} = {k_3}·{ [AraC·Arab] } = {k_3} · { {{[AraC]}_T} } · { {[Arab]} \over { {k_m} + [Arab] } } $$ $$ {K_r} = { v \over { [AraC·Arab] } }$$
Symbol Definition Units
$P_{bound}$ Probability of ribosome binding to RBS /
$P$ Effective number of ribosome available for binding to RBS
$N_{NS}$ The number of nonspecific site of mRNA
$K^{S}_{pd}$ Dissociation constants for specific binding nM
$K^{NS}_{pd}$ Dissociation constants for non-specific binding nM
${\epsilon }^{S}_{pd}$ Binding energy for ribosome on the RBS J
${\epsilon }^{NS}_{pd}$ Average binding energy of ribosome to the genomic background J
$k_B$ Boltzmann constants /
T Temperature K
Rate Rate of reaction
Volume Volume L
Avogadro Avogadro constants /
${[mRNA]}_0$ Initial concentration of mRNA
$$ { P_{bound} } = { 1 \over { 1 + { { N_{NS} } \over P }exp({ {{{\epsilon }^{S}_{pd}}-{{\epsilon }^{NS}_{pd}}} \over {{k_B}T} }) } } $$ $$ { {{\epsilon }^{S}_{pd}} - {{\epsilon }^{NS}_{pd}} } \approx { {{k_B}T}ln({ {K^{S}_{pd}} \over {K^{NS}_{pd}} }) } $$ $$ { P_{bound} } = { 1 \over { 1 + { { {N_{NS}} \over {P} } · { {{K^{S}_{pd}}} \over {{K^{NS}_{pd}}} } } } } $$ $$ Rate = {1000*{ P_{bound} }} \over {Volume*Avogadro} $$ $$ k = { {1000*{ P_{bound} }} \over {Volume*Avogadro*{{[mRNA]}_0}} } $$ $$ {K_{d_1}} = { {{[H^+]}{K_{E1}}{k_0}} \over { {{K_{E1}}·{K_{E2}}} + { {[H^+]}{K_{E1}} } + {{[H^+]}^2} } } $$ $$ {lg{1 \over C}} = { {lgA} - {0.434{ {\Delta G} \over {RT} }} } $$
Symbol Definition
C
A
$\Delta G$
R
T
$$ {lg{1 \over C}} = { {-a{\pi}^2} + {b \pi} + {\rho \pi} + {\delta E_S} + c} $$ $$ lgP = { {lgP_H} + {\Sigma (\pi x_i)} } $$ $$ lg{ {k_X} \over {k_H} } = \rho {\sigma}_X $$ $$ MR = { {({n^2}-1){M_W}} \over {({n^2}+2)d} } $$ $$ r = \sqrt{ 1 - { { \Sigma {( {Y_{cal}} - {Y_{exp}} )}^2 } \over { \Sigma {( {Y_{exp}} - {{\tilde{Y}}_{exp}} )}^2 } } } $$ $$ s = \sqrt{ { \Sigma {( {Y_{cal}} - {Y_{exp}} )}^2 } \over {n-k-1} } $$ $$ F = \sqrt{ {{r^2}(n-k-1)} \over {k{(1-r)}^2} } $$

Cistrons Concerto

About:


Thanks to:Qingdao Institute of Bioenergy and Bioprocess Technology,Chinese Academy of SciencesBiolabs

Designed and built by @ Jasmine Chen and @ Zexin Jiao

Code licensed under Apache License v4.0

Contact us:


E-mail: oucigem@163.com

Follow us on Facebook@ iGEM OUCFacebook

Find us on Google Map

We are OUC-iGEMlogo-onelogo-two