Difference between revisions of "Team:Tokyo Tech/Modeling Details"

Line 112: Line 112:
 
<div id="main_contents">
 
<div id="main_contents">
 
<div id="page_header" class="container container_top">
 
<div id="page_header" class="container container_top">
<h1 align="center">Detai description</h1>
+
<h1 align="center">Detail description</h1>
 
</div><!-- page_header -->
 
</div><!-- page_header -->
 
<div id="modeling_development" class="container">
 
<div id="modeling_development" class="container">
Line 425: Line 425:
 
<td>$$ 0.0123 $$</td>
 
<td>$$ 0.0123 $$</td>
 
<td>Growth rate of each cells</td>
 
<td>Growth rate of each cells</td>
<td><a href="https://2016.igem.org/Team:Tokyo_Tech/Model#population">Fitted to experimental data</td>
+
<td><a href="https://2016.igem.org/Team:Tokyo_Tech/Model#population">Fitted to experimental data</a></td>
 
</tr>
 
</tr>
 
<tr>
 
<tr>
Line 431: Line 431:
 
<td>$$3.3 $$</td>
 
<td>$$3.3 $$</td>
 
<td>Carrying capacity</td>
 
<td>Carrying capacity</td>
<td>Fitted to experimental data</td>
+
<td><a href="https://2016.igem.org/Team:Tokyo_Tech/Model#population">Fitted to experimental data</a></td>
 
</tr>
 
</tr>
 
<tr>
 
<tr>
Line 437: Line 437:
 
<td>$$ 0.462234 nM^{-1} min^{-1} $$ </td>
 
<td>$$ 0.462234 nM^{-1} min^{-1} $$ </td>
 
<td>Effect of MazF dimer on growth rate of each cells</td>
 
<td>Effect of MazF dimer on growth rate of each cells</td>
<td>Fitted to experimental data</td>
+
<td><a href="https://2016.igem.org/Team:Tokyo_Tech/Model#population">Fitted to experimental data</a></td>
 
</tr>
 
</tr>
 
<tr>
 
<tr>
Line 449: Line 449:
 
<td>$$ 2.26 min^{-1} $$</td>
 
<td>$$ 2.26 min^{-1} $$</td>
 
<td>Leakage of Plux</td>
 
<td>Leakage of Plux</td>
<td> Fitted to experimental data </td>
+
<td> <a href="https://2016.igem.org/Team:Tokyo_Tech/Model #more">Fitted to experimental data</a> </td>
 
</tr>
 
</tr>
 
<tr>
 
<tr>
Line 455: Line 455:
 
<td>$$ 4.654 min^{-1} $$</td>
 
<td>$$ 4.654 min^{-1} $$</td>
 
<td>Leakage of Prhl</td>
 
<td>Leakage of Prhl</td>
<td> Fitted to experimental data </td>
+
<td> <a href="https://2016.igem.org/Team:Tokyo_Tech/Model #more">Fitted to experimental data</a> </td>
 
</tr>
 
</tr>
 
<tr>
 
<tr>
Line 461: Line 461:
 
<td>$$ 6.984 nM^{-1} min^{-1} $$ </td>
 
<td>$$ 6.984 nM^{-1} min^{-1} $$ </td>
 
<td>Maximum transcription rate of under streams of Plux</td>
 
<td>Maximum transcription rate of under streams of Plux</td>
<td> Fitted to experimental data </td>
+
<td><a href="https://2016.igem.org/Team:Tokyo_Tech/Model #more">Fitted to experimental data</a> </td>
 
</tr>
 
</tr>
 
<tr>
 
<tr>
Line 467: Line 467:
 
<td>$$ 14.95 nM^{-1} min^{-1} $$ </td>
 
<td>$$ 14.95 nM^{-1} min^{-1} $$ </td>
 
<td>Maximum transcription rate of understreams of Prhl</td>
 
<td>Maximum transcription rate of understreams of Prhl</td>
<td> Fitted to experimental data </td>
+
<td> <a href="https://2016.igem.org/Team:Tokyo_Tech/Model #more">Fitted to experimental data</a> </td>
 
</tr>
 
</tr>
 
<tr>
 
<tr>
Line 473: Line 473:
 
<td>$$ 0.76 $$</td>
 
<td>$$ 0.76 $$</td>
 
<td>Hill coefficient for Plux</td>
 
<td>Hill coefficient for Plux</td>
<td> Fitted to experimental data </td>
+
<td> <a href="https://2016.igem.org/Team:Tokyo_Tech/Model #more">Fitted to experimental data</a> </td>
 
</tr>
 
</tr>
 
<tr>
 
<tr>
Line 479: Line 479:
 
<td>$$ 5 $$</td>
 
<td>$$ 5 $$</td>
 
<td>Hill cofficient for Prhl</td>
 
<td>Hill cofficient for Prhl</td>
<td> Fitted to experimental data </td>
+
<td> <a href="https://2016.igem.org/Team:Tokyo_Tech/Model #more">Fitted to experimental data</a> </td>
 
</tr>
 
</tr>
 
<tr>
 
<tr>
Line 485: Line 485:
 
<td>$$ 116.24nM $$</td>
 
<td>$$ 116.24nM $$</td>
 
<td>Lumped parameter for the Lux system</td>
 
<td>Lumped parameter for the Lux system</td>
<td> Fitted to experimental data </td>
+
<td> <a href="https://2016.igem.org/Team:Tokyo_Tech/Model #more">Fitted to experimental data</a> </td>
 
</tr>
 
</tr>
 
<tr>
 
<tr>
Line 491: Line 491:
 
<td>$$ 1000 nM $$</td>
 
<td>$$ 1000 nM $$</td>
 
<td>Lumped parameter for the Rhl system</td>
 
<td>Lumped parameter for the Rhl system</td>
<td> Fitted to experimental data </td>
+
<td><a href="https://2016.igem.org/Team:Tokyo_Tech/Model #more">Fitted to experimental data</a> </td>
 
</tr>
 
</tr>
 
<tr>
 
<tr>
Line 503: Line 503:
 
<td>$$ 0.299 $$</td>
 
<td>$$ 0.299 $$</td>
 
<td>The probability of distinction of ACA sequences on each mRNA</td>
 
<td>The probability of distinction of ACA sequences on each mRNA</td>
<td> Fitted to experimental data </td>
+
<td><a href="https://2016.igem.org/Team:Tokyo_Tech/Model #toxin">Fitted to experimental data</a></td>
 
</tr>
 
</tr>
 
<tr>
 
<tr>
Line 551: Line 551:
 
<td> $$ 6.82 nM_{-1} min_{-1} $$ </td>
 
<td> $$ 6.82 nM_{-1} min_{-1} $$ </td>
 
<td>Formation rate of MazF dimer </td>
 
<td>Formation rate of MazF dimer </td>
<td> Fitted to experimental data </td>
+
<td><a href="https://2016.igem.org/Team:Tokyo_Tech/Model #toxin">Fitted to experimental data</a> </td>
 
</tr>
 
</tr>
 
<tr>
 
<tr>
Line 557: Line 557:
 
<td> $$ 6.24 nM^{-1} min^{-1} $$ </td>
 
<td> $$ 6.24 nM^{-1} min^{-1} $$ </td>
 
<td>Formation rate of MazF dimer </td>
 
<td>Formation rate of MazF dimer </td>
<td> Fitted to experimental data </td>
+
<td> <a href="https://2016.igem.org/Team:Tokyo_Tech/Model #toxin">Fitted to experimental data</a></td>
 
</tr>
 
</tr>
 
<tr>
 
<tr>
Line 563: Line 563:
 
<td> $$ 3.46 nM^{-1} min^{-1} $$ </td>
 
<td> $$ 3.46 nM^{-1} min^{-1} $$ </td>
 
<td>Formation rate of MazF dimer </td>
 
<td>Formation rate of MazF dimer </td>
<td> Fitted to experimental data </td>
+
<td><a href="https://2016.igem.org/Team:Tokyo_Tech/Model #toxin">Fitted to experimental data</a></td>
 
</tr>
 
</tr>
 
<tr>
 
<tr>
Line 569: Line 569:
 
<td> $$ 7.25 min^{-1} $$ </td>
 
<td> $$ 7.25 min^{-1} $$ </td>
 
<td>Dissociation rate of MazF dimer </td>
 
<td>Dissociation rate of MazF dimer </td>
<td> Fitted to experimental data </td>
+
<td><a href="https://2016.igem.org/Team:Tokyo_Tech/Model #toxin">Fitted to experimental data</a></td>
 
</tr>
 
</tr>
 
<tr>
 
<tr>
Line 575: Line 575:
 
<td> $$ 4.51 nM^{-1} min^{-1} $$ </td>
 
<td> $$ 4.51 nM^{-1} min^{-1} $$ </td>
 
<td>Formation rate of Maz hexamer </td>
 
<td>Formation rate of Maz hexamer </td>
<td> Fitted to experimental data </td>
+
<td><a href="https://2016.igem.org/Team:Tokyo_Tech/Model #toxin">Fitted to experimental data</a></td>
 
</tr>
 
</tr>
 
<tr>
 
<tr>
Line 581: Line 581:
 
<td> $$ 4.05 min^{-1} $$ </td>
 
<td> $$ 4.05 min^{-1} $$ </td>
 
<td>Dissociation rate of Maz hexamer </td>
 
<td>Dissociation rate of Maz hexamer </td>
<td> Fitted to experimental data </td>
+
<td><a href="https://2016.igem.org/Team:Tokyo_Tech/Model #toxin">Fitted to experimental data</a></td>
 
</tr>
 
</tr>
 
<tr>
 
<tr>
Line 635: Line 635:
 
    <td>$$ 0.7 min^{-1} $$ </td>
 
    <td>$$ 0.7 min^{-1} $$ </td>
 
    <td> Degradation rate of MazF </td>
 
    <td> Degradation rate of MazF </td>
    <td> Fitted to experimental data </td>
+
    <td><a href="https://2016.igem.org/Team:Tokyo_Tech/Model #toxin">Fitted to experimental data</a></td>
 
</td>
 
</td>
 
<tr>
 
<tr>
Line 641: Line 641:
 
    <td>$$ 0.17 min^{-1} $$ </td>
 
    <td>$$ 0.17 min^{-1} $$ </td>
 
    <td> Degradation rate of MazF dimer </td>
 
    <td> Degradation rate of MazF dimer </td>
    <td> Fitted to experimental data </td>
+
    <td><a href="https://2016.igem.org/Team:Tokyo_Tech/Model #toxin">Fitted to experimental data</a> </td>
 
</td>
 
</td>
 
<tr>
 
<tr>
Line 647: Line 647:
 
    <td>$$ 0.55 min^{-1} $$ </td>
 
    <td>$$ 0.55 min^{-1} $$ </td>
 
    <td> Degradation rate of MazE </td>
 
    <td> Degradation rate of MazE </td>
    <td> Fitted to experimental data </td>
+
    <td> <a href="https://2016.igem.org/Team:Tokyo_Tech/Model #toxin">Fitted to experimental data</a> </td>
 
</td>
 
</td>
 
<tr>
 
<tr>
Line 653: Line 653:
 
    <td>$$ 0.416 min^{-1} $$ </td>
 
    <td>$$ 0.416 min^{-1} $$ </td>
 
    <td> Degradation rate of MazE dimer </td>
 
    <td> Degradation rate of MazE dimer </td>
    <td> Fitted to experimental data </td>
+
    <td> <a href="https://2016.igem.org/Team:Tokyo_Tech/Model #toxin">Fitted to experimental data</a> </td>
 
</td>
 
</td>
 
<tr>
 
<tr>
Line 659: Line 659:
 
    <td>$$ 0.511 min^{-1} $$ </td>
 
    <td>$$ 0.511 min^{-1} $$ </td>
 
    <td> Degradation rate of Maz hexameter </td>
 
    <td> Degradation rate of Maz hexameter </td>
    <td> Fitted to experimental data </td>
+
    <td><a href="https://2016.igem.org/Team:Tokyo_Tech/Model #toxin">Fitted to experimental data</a></td>
 
</td>
 
</td>
 
<tr>
 
<tr>

Revision as of 14:25, 19 October 2016

Model development

To simulate the cell-cell communication system, we developed an ordinary differential equation model. The following sentences describe how the equations were developed with the Maz system.

Fig.5-5-1. The Maz system gene circuit

Differencial equations

Snow White

\begin{equation} \frac{d[mRNA_{RFP}]}{dt} = k - d[mRNA_{RFP}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{RFP}}})[mRNA_{RFP}][DiMazF] \end{equation} \begin{equation} \frac{d[mRNA_{RhlI}]}{dt} = leak_{Plux} + \frac{\kappa_{Lux}[C12]^{n_{Lux}}}{K_{mLux}^{n_{Lux}} + [C12]^{n_{Lux}}} - d[mRNA_{RhlI}] - F_{DiMazF}f[mRNA_{RhlI}][DiMazF] \end{equation} \begin{equation} \frac{d[RFP]}{dt} = \alpha [mRNA_{RFP}] - d_{RFP}[RFP] \end{equation} \begin{equation} \frac{d[RhlI]}{dt} = \alpha [mRNA_{RhlI}] - d_{RhlI}[RhlI] \end{equation} \begin{equation} \frac{d[C4]}{dt} = p_{C4}[RhlI]P_{Snow White} - d_{C4}[C4] \end{equation} \begin{equation} \frac{d[mRNA_{MazF}]}{dt} = leak_{Plux} + \frac{\kappa_{Lux}[C12]^{n_{Lux}}}{K_{mLux}^{n_{Lux}}+ [C12]^{n_{Lux}}} \\        - d[mRNA_{MazF}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazF}}})[mRNA_{MazF}][DiMazF] \end{equation} \begin{equation} \frac{d[mRNA_{MazE}]}{dt} = k - d[mRNA_{MazE}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazE}}})[mRNA_{MazE}][DiMazF] \end{equation} \begin{equation} \frac{d[MazF]}{dt} = \alpha [mRNA_{MazF}] - 2k_{DiMazF}[MazF] + 2k_{-DiMazF}[DiMazF] - d_{MazF}[MazF] \end{equation} \begin{equation} \frac{d[DiMazF]}{dt} = k_{DiMazF}[MazF] - k_{-DiMazF}[DiMazF] - 2k_{Hexa}[DiMazE][DiMazF]^2 \\        + 2k_{-Hexa}[MazHexamer] - d_{DiMazF}[DiMazF] \end{equation} \begin{equation} \frac{d[MazE]}{dt} = \alpha [mRNA_{MazE}] - 2k_{DiMazE}[MazE] + 2k_{-DiMazE}[DiMazE] - d_{MazE}[MazE] \end{equation} \begin{equation} \frac{d[DiMazE]}{dt} = k_{DiMazE}[MazE] - k_{-DiMazE}[DiMazE] - k_{Hexa}[DiMazE][DiMazF]^2 \\        + k_{-Hexa}[MazHexamer] - d_{DiMazE}[DiMazE] \end{equation} \begin{equation} \frac{d[MazHexa]}{dt} = k_{Hexa}[DiMazE][DiMazF]^2 - k_{-Hexa}[MazHexa] - d_{Hexa}[MazHexa] \end{equation} \begin{equation} \frac{dP_{Snow White}}{dt} = g \frac{E_{DiMazF}}{E_{DiMazF}+[DiMazF]}\left(1- \frac{P_{Snow White}+P_{Queen}+P_{Prince}}{P_{max}} \right) P_{Snow White} \end{equation}

Queen

\begin{equation} \frac{d[mRNA_{GFP}]}{dt} = k - d[mRNA_{GFP}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{GFP}}})[mRNA_{GFP}][DiMazF] \end{equation} \begin{equation} \frac{d[mRNA_{LasI}]}{dt} = leak_{Prhl} + \frac{\kappa_{Rhl}[C4]^{n_{Rhl}}}{K_{mRhl}^{n_{Rhl}} + [C4]^{n_{Rhl}}} \\        - d[mRNA_{LasI}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{LasI}}})[mRNA_{LasI}][DiMazF] \end{equation} \begin{equation} \frac{d[GFP]}{dt} = \alpha [mRNA_{GFP}] - d_{GFP}[GFP] \end{equation} \begin{equation} \frac{d[LasI]}{dt} = \alpha [mRNA_{LasI}] - d_{LasI}[LasI] \end{equation} \begin{equation} \frac{d[C12]}{dt} = p_{C12}[LasI]P_{Queen} - d_{C12}[C12] - D[C12][AmiE] \end{equation} \begin{equation} \frac{d[mRNA_{MazF}]}{dt} = leak_{Plux} + \frac{\kappa_{Rhl}[C4]^{n_{Rhl}}}{K_{mRhl}^{n_{Rhl}} + [C4]^{n_{Rhl}}} \\        - d[mRNA_{MazF}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazF}}})[mRNA_{MazF}][DiMazF] \end{equation} \begin{equation} \frac{d[mRNA_{MazE}]}{dt} = k - d[mRNA_{MazE}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazE}}})[mRNA_{MazE}][DiMazF] \end{equation} \begin{equation} \frac{d[MazF]}{dt} = \alpha [mRNA_{MazF}] - 2k_{DiMazF}[MazF] + 2k_{-DiMazF}[DiMazF] - d_{MazF}[MazF] \end{equation} \begin{equation} \frac{d[DiMazF]}{dt} = k_{DiMazF}[MazF] - k_{-DiMazF}[DiMazF] - 2k_{Hexa}[DiMazE][DiMazF]^2 \\        + 2k_{-Hexa}[MazHexamer] - d_{DiMazF}[DiMazF] \end{equation} \begin{equation} \frac{d[MazE]}{dt} = \alpha [mRNA_{MazE}] - 2k_{DiMazE}[MazE] + 2k_{-DiMazE}[DiMazE] - d_{MazE}[MazE] \end{equation} \begin{equation} \frac{d[DiMazE]}{dt} = k_{DiMazE}[MazE] - k_{-DiMazE}[DiMazE] - k_{Hexa}[DiMazE][DiMazF]^2 \\        + k_{-Hexa}[MazHexamer] - d_{DiMazE}[DiMazE] \end{equation} \begin{equation} \frac{d[MazHexa]}{dt} = k_{Hexa}[DiMazE][DiMazF]^2 - k_{-Hexa}[MazHexa] - d_{Hexa}[MazHexa] \end{equation} \begin{equation} \frac{dP_{Queen}}{dt} = g \frac{E_{DiMazF}}{E_{DiMazF}+[DiMazF]}\left(1- \frac{P_{Snow White}+P_{Queen}+P_{Prince}}{P_{max}}\right) P_{Queen}\\ \end{equation}

Prince

\begin{equation} \frac{d[mRNA_{AmiE}]}{dt} = leak_{Plux} + \frac{\kappa_{Lux}[C12]^{n_{Lux}}}{K_{mLux}^{n_{Lux}} + [C12]^{n_{Lux}}} - d[mRNA_{AmiE}] \end{equation} \begin{equation} \frac{d[AmiE]}{dt} = \alpha [mRNA_{AmiE}]P_{Prince} - d_{AmiE}[AmiE] \end{equation} \begin{equation} \frac{dP_{Prince}}{dt} = g\left(1- \frac{P_{Snow White}+P_{Queen}+P_{Prince}}{P_{max}}\right) P_{Prince} \end{equation}

Explanation about parameters

Parameter Description
$$g$$ Growth rate of each cells
$$P_{max}$$ Carrying capacity
$$E_{DiMazF}$$ Effect of MazF dimer on growth rate
$$k$$ Transcription rate of downstream of Pcon
$$leak_{Plux}$$ Leakage of Plux
$$leak_{Prhl}$$ Leakage of Prhl
$$\kappa_{Lux}$$ Maximum transcription rate of mRNA under Plux
$$\kappa_{Rhl}$$ Maximum transcription rate of downstream of Prhl
$$n_{Lux}$$ Hill coefficient for Plux
$$n_{Rhl}$$ Hill coefficient for Prhl
$$K_{mLux}$$ Lumped paremeter for the Lux System
$$K_{mRhl}$$ Lumped paremeter for the Rhl System
$$F_{DiMazF}$$ Cutting rate at ACA sequences on mRNA by MazF dimer
$$f$$ The probability of distinction of ACA sequencess in each mRNA
$$f_{mRNA_{RFP}}$$ The number of ACA sequences in \(mRNA_{RFP}\)
$$f_{mRNA_{GFP}}$$ The number of ACA sequences in \(mRNA_{GFP}\)
$$f_{mRNA_{RhlI}}$$ The number of ACA sequences in \(mRNA_{RhlI}\) 
$$f_{mRNA_{LasI}}$$ The number of ACA sequences in \(mRNA_{LasI}\)
$$f_{mRNA_{MazF}}$$ The number of ACA sequences in \(mRNA_{MazF}\) 
$$f_{mRNA_{MazE}}$$ The number of ACA sequences in \(mRNA_{MazE}\) 
$$\alpha$$ Translation rate of Protein
$$k_{DiMazF}$$ Formation rate of MazF dimer
$$k_{-DiMazF}$$ Dissociation rate of MazF dimer
$$k_{DiMazE}$$ Formation rate of MazE dimer
$$k_{-DiMazE}$$ Dissociation rate of MazE dimer
$$k_{Hexa}$$ Formation rate of Maz hexamer
$$k_{-Hexa}$$ Dissociation rate of Maz hexamer
$$p_{C4}$$ Production rate of C4HSL by RhlI
$$p_{C12}$$ Production rate of 3OC12HSL by LuxI
$$D$$ Decomposition rate of 3OC12HSL by AmiE
$$d$$ Degradation rate of mRNA
$$d_{RFP}$$ Degradation rate of RFP
$$d_{GFP}$$ Degradation rate of GFP
$$d_{RhlI}$$ Degradation rate of RhlI
$$d_{LasI}$$ Degradation rate of LasI
$$d_{MazF}$$ Degradation rate of MazF
$$d_{DiMazF}$$ Degradation rate of MazF dimer
$$d_{MazE}$$ Degradation rate of MazE
$$d_{DiMazE}$$ Degradation rate of MazE dimer
$$d_{Hexa}$$ Degradation rate of Maz Hexamer
$$d_{C4}$$ Degradation rate of C4HSL
$$d_{C12}$$ Degradation rate of 3OC12HSL
$$d_{AmiE}$$ Degradation rate of AmiE

Expressions

  • 1. Cell population

    $$ \frac{dP_{Snow White}}{dt} = g \frac{E_{DiMazF}}{E_{DiMazF}+[DiMazF]}\left(1- \frac{P_{Snow White}+P_{Queen}+P_{Prince}}{P_{max}} \right) P_{Snow White} $$
    $$ \tag{1-1} $$

    $$ \frac{dP_{Queen}}{dt} = g \frac{E_{DiMazF}}{E_{DiMazF}+[DiMazF]}\left(1- \frac{P_{Snow White}+P_{Queen}+P_{Prince}}{P_{max}}\right) P_{Queen}$$
    $$ \tag{1-2} $$

    $$ \frac{dP_{Prince}}{dt} = g\left(1- \frac{P_{Snow White}+P_{Queen}+P_{Prince}}{P_{max}}\right) P_{Prince} \tag{1-3} $$

    Eq.1. Differential equation of cell population

    The equations above describe how cells grow in the culture. Equations (1-1), (1-2) and (1-3) describe the population of Snow White coli, the Queen coli and the Prince coli. (1-3) is described by the logistic growth equation, but (1-1) and (1-2) are represented by the growth inhibition by MazF dimers. This factor is designed so that its value is small when the concentration of MazF dimers is high, and its value converges to 1 when the concentration of MazF dimers is low.

  • 2. The Maz system

    • 2.1. Expression of the Maz system

      After translation, MazE and MazF each form a dimer which can be activated to exert their function.


      Two MazE dimers sandwich the MazF dimer, forming MazF2-MazE2-MazF2 heterohexamers and suppressing the toxicity of the MazF dimers.

      Fig.5-5-2. Reaction of the Maz system

      The mRNAs of Snow White coli and the Queen coli decrease because of their original degradation and the cleavage at ACA sequences by MazF dimers.
      Applying mass action kinetic laws, we obtain the following set of differential equations.

      Snow White

      $$\frac{d[mRNA_{MazF}]}{dt} = leak_{Plux} + \frac{\kappa_{Lux}[C12]^{n_{Lux}}}{K_{mLux}^{n_{Lux}}+ [C12]^{n_{Lux}}} \\        - d[mRNA_{MazF}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazF}}})[mRNA_{MazF}][DiMazF] $$
      $$ \tag{2-1} $$

      $$ \frac{d[MazF]}{dt} = \alpha [mRNA_{MazF}] - 2k_{DiMazF}[MazF] + 2k_{-DiMazF}[DiMazF] - d_{MazF}[MazF] $$
      $$\tag{2-2}$$

      $$ \frac{d[DiMazF]}{dt} = k_{DiMazF}[MazF] - k_{-DiMazF}[DiMazF] - 2k_{Hexa}[DiMazE][DiMazF]^2 \\        + 2k_{-Hexa}[MazHexamer] - d_{DiMazF}[DiMazF] $$
      $$ \tag{2-3} $$

      $$ \frac{d[mRNA_{MazE}]}{dt} = k - d[mRNA_{MazE}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazE}}})[mRNA_{MazE}][DiMazF] $$
      $$ \tag{2-4} $$

      $$\frac{d[MazE]}{dt} = \alpha [mRNA_{MazE}] - 2k_{DiMazE}[MazE] + 2k_{-DiMazE}[DiMazE] - d_{MazE}[MazE]$$
      $$\tag{2-5}$$

      $$ \frac{d[DiMazE]}{dt} = k_{DiMazE}[MazE] - k_{-DiMazE}[DiMazE] - k_{Hexa}[DiMazE][DiMazF]^2 \\        + k_{-Hexa}[MazHexamer] - d_{DiMazE}[DiMazE]$$
      $$\tag{2-6} $$

      $$\frac{d[MazHexa]}{dt} = k_{Hexa}[DiMazE][DiMazF]^2 - k_{-Hexa}[MazHexa] - d_{Hexa}[MazHexa]$$
      $$ \tag{2-7}$$

      Queen

      $$ \frac{d[mRNA_{MazF}]}{dt} = leak_{Plux} + \frac{\kappa_{Lux}[C12]^{n_{Lux}}}{K_{mLux}^{n_{Lux}}+ [C12]^{n_{Lux}}} \\        - d[mRNA_{MazF}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazF}}})[mRNA_{MazF}][DiMazF] $$
      $$ \tag{2-8} $$

      $$ \frac{d[MazF]}{dt} = \alpha [mRNA_{MazF}] - 2k_{DiMazF}[MazF] + 2k_{-DiMazF}[DiMazF] - d_{MazF}[MazF] $$
      $$\tag{2-9}$$

      $$ \frac{d[DiMazF]}{dt} = k_{DiMazF}[MazF] - k_{-DiMazF}[DiMazF] - 2k_{Hexa}[DiMazE][DiMazF]^2 \\        + 2k_{-Hexa}[MazHexamer] - d_{DiMazF}[DiMazF] $$
      $$ \tag{2-10} $$

      $$ \frac{d[mRNA_{MazE}]}{dt} = k - d[mRNA_{MazE}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazE}}})[mRNA_{MazE}][DiMazF] $$
      $$ \tag{2-11} $$

      $$\frac{d[MazE]}{dt} = \alpha [mRNA_{MazE}] - 2k_{DiMazE}[MazE] + 2k_{-DiMazE}[DiMazE] - d_{MazE}[MazE]$$
      $$\tag{2-12}$$

      $$ \frac{d[DiMazE]}{dt} = k_{DiMazE}[MazE] - k_{-DiMazE}[DiMazE] - k_{Hexa}[DiMazE][DiMazF]^2 \\        + k_{-Hexa}[MazHexamer] - d_{DiMazE}[DiMazE]$$
      $$\tag{2-13} $$

      $$\frac{d[MazHexa]}{dt} = k_{Hexa}[DiMazE][DiMazF]^2 - k_{-Hexa}[MazHexa] - d_{Hexa}[MazHexa]$$
      $$ \tag{2-14}$$

      Eq. 2. Differential equations of the Maz system

      Equations (2-1) and (2-8) describe the concentration of mRNAs under the AHL-inducible promoters.Thus, they comprise terms of production by leaky expressions of promoters, terms of production by Hill function depending on the concentration of C4 and C12, terms of original degradation and terms of degradation from cleavage at ACA sequences by MazF dimers.
      Since equations (2-2), (2-3), (2-5), (2-6), (2-7), (2-9), (2-10), (2-12), (2-13) and (2-14) describe the concentrations of complexes, mainly they comprise terms of production and terms of binding and dissociation.

    • 2.2. Cleavage by MazF dimers

      MazF dimers recognize and cleave ACA sequences in mRNAs, thus acting as toxin.We estimated the rate of recognitions of ACA sequences by MazF dimers at $$ 1-(1-f)^n $$, where n is the number of ACA sequences in mRNA and f is the probability of distinction of ACA sequences on each mRNA.Then, we expressed the rate of degradation by MazF dimers in $$ F(1-(1-f)^{f_{mRNA}}) $$ and obtain the following set of differential equations.

      Snow White

      $$\frac{d[mRNA_{RFP}]}{dt} = k - d[mRNA_{RFP}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{RFP}}})[mRNA_{RFP}][DiMazF] $$
      $$ \tag{3-1} $$

      $$\frac{d[mRNA_{RhlI}]}{dt} = leak_{Plux} + \frac{\kappa_{Lux}[C12]^{n_{Lux}}}{K_{mLux}^{n_{Lux}} + [C12]^{n_{Lux}}} - d[mRNA_{RhlI}] - F_{DiMazF}$$
      $$ \tag{3-2} $$

      $$\frac{d[mRNA_{MazF}]}{dt} = leak_{Plux} + \frac{\kappa_{Lux}[C12]^{n_{Lux}}}{K_{mLux}^{n_{Lux}}+ [C12]^{n_{Lux}}} \\        - d[mRNA_{MazF}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazF}}})[mRNA_{MazF}][DiMazF] $$
      $$\tag{3-3}$$

      $$\frac{d[mRNA_{MazE}]}{dt} = k - d[mRNA_{MazE}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazE}}})[mRNA_{MazE}][DiMazF]$$
      $$ \tag{3-4} $$

      Queen

      $$\frac{d[mRNA_{GFP}]}{dt} = k - d[mRNA_{GFP}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{GFP}}})[mRNA_{GFP}][DiMazF] $$
      $$ \tag{3-5} $$

      $$ \frac{d[mRNA_{LasI}]}{dt} = leak_{Prhl} + \frac{\kappa_{Rhl}[C4]^{n_{Rhl}}}{K_{mRhl}^{n_{Rhl}} + [C4]^{n_{Rhl}}} \\        - d[mRNA_{LasI}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{LasI}}})[mRNA_{LasI}][DiMazF] $$
      $$ \tag{3-6} $$

      $$\frac{d[mRNA_{MazF}]}{dt} = leak_{Plux} + \frac{\kappa_{Lux}[C12]^{n_{Lux}}}{K_{mLux}^{n_{Lux}}+ [C12]^{n_{Lux}}} \\        - d[mRNA_{MazF}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazF}}})[mRNA_{MazF}][DiMazF] $$
      $$\tag{3-7}$$

      $$\frac{d[mRNA_{MazE}]}{dt} = k - d[mRNA_{MazE}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{MazE}}})[mRNA_{MazE}][DiMazF]$$
      $$ \tag{3-8} $$

      Eq. 3. Differential equations of mRNAs

      The equations above comprise terms of production, terms of only original degradation and terms of degradation from cleavage at ACA sequences by MazF dimers.

  • 3. Signal molecules

    Fig.5-5-3. Reaction of signal molecules

    Snow White coli expresses RhlI under Plux induced by C12, the Queen coli expresses LasI under Prhl induced by C4 and the Prince coli expresses AmiE under Plux induced by C12.
    The mRNAs of Snow White coli and the Queen coli decrease from original degradation and the cleavage at ACA sequences by MazF dimers.On the other hand, those of the Prince coli don’t have any MazF gene so they decrease from only original degradation.
    After translation, C4 and C12 are enzymatically synthesized by LasI and RhlI from some substrates respectively.
    For simplicity, we assumed that the amount of substrates is sufficient so that the C4 and C12 synthesis rate per cell is estimated to be proportional to the LasI and RhlI concentrations.C4 decreases from original degradation meanwhile C12 decreases from both original degradation and degradation by AmiE, which the Prince coli produces.
    Applying mass action kinetic laws, we obtain the following set of differential equations.

    $$ \frac{d[mRNA_{RhlI}]}{dt} = leak_{Plux} + \frac{\kappa_{Lux}[C12]^{n_{Lux}}}{K_{mLux}^{n_{Lux}} + [C12]^{n_{Lux}}} - d[mRNA_{RhlI}] - F_{DiMazF}f[mRNA_{RhlI}][DiMazF] $$
    $$\tag{4-1}$$

    $$\frac{d[RhlI]}{dt} = \alpha [mRNA_{RhlI}] - d_{RhlI}[RhlI] \tag{4-2}$$

    $$ \frac{d[C4]}{dt} = p_{Rhl}[RhlI]P_{Snowwhite} - d_{C4}[C4] \tag{4-3} $$

    $$ \frac{d[mRNA_{LasI}]}{dt} = leak_{Prhl} + \frac{\kappa_{Rhl}[C4]^{n_{Rhl}}}{K_{mRhl}^{n_{Rhl}} + [C4]^{n_{Rhl}}} - d[mRNA_{LasI}] - F_{DiMazF}(1-(1-f)^{f_{mRNA_{LasI}}})[mRNA_{LasI}][DiMazF] $$
    $$\tag{4-4}$$

    $$\frac{d[LasI]}{dt} = \alpha [mRNA_{LasI}] - d_{LasI}[LasI] \tag{4-5}$$

    $$\frac{d[C12]}{dt} = p_{C12}[LasI]P_{Stepmother} - d_{C12}[C12] - D[C12][AmiE]$$
    $$\tag{4-6}$$

    $$\frac{d[mRNA_{AmiE}]}{dt} = leak_{Plux} + \frac{\kappa_{Lux}[C12]^{n_{Lux}}}{K_{mLux}^{n_{Lux}} + [C12]^{n_{Lux}}} - d[mRNA_{AmiE}]$$
    $$\tag{4-7}$$

    $$\frac{d[AmiE]}{dt} = \alpha [mRNA_{AmiE}]P_{Prince} - d_{AmiE}[AmiE] \tag{4-8} $$

    Eq. 4. Differential equations of signaling molecules

    Equations (4-1), (4-4) and (4-7) describe the concentrations of mRNAs under the AHL-inducible promoters.Thus, they comprise terms of production by leaky expressions of promoters, terms of production by Hill function depending on the concentration of C4 and C12, terms of original degradation and terms of degradation from cleavage at ACA sequences by MazF dimers.
    The other ODEs describe how the concentrations of materials change in individuals, on the other hand (4-3), (4-6) describe the concentrations of C4 and C12 in the whole culture medium.

Parameters

Parameter Value Description Reference
$$ g $$ $$ 0.0123 $$ Growth rate of each cells Fitted to experimental data
$$ P_{max} $$ $$3.3 $$ Carrying capacity Fitted to experimental data
$$ E_{DiMazF} $$ $$ 0.462234 nM^{-1} min^{-1} $$ Effect of MazF dimer on growth rate of each cells Fitted to experimental data
$$ k $$ $$5 min^{-1}$$ Transcription rate of downstream of Ptet Reference[1]
$$ leak_{Plux} $$ $$ 2.26 min^{-1} $$ Leakage of Plux Fitted to experimental data
$$ leak_{Prhl} $$ $$ 4.654 min^{-1} $$ Leakage of Prhl Fitted to experimental data
$$ κ_{Lux} $$ $$ 6.984 nM^{-1} min^{-1} $$ Maximum transcription rate of under streams of Plux Fitted to experimental data
$$ κ_{Rhl} $$ $$ 14.95 nM^{-1} min^{-1} $$ Maximum transcription rate of understreams of Prhl Fitted to experimental data
$$ n_{Lux} $$ $$ 0.76 $$ Hill coefficient for Plux Fitted to experimental data
$$ n_{Rhl} $$ $$ 5 $$ Hill cofficient for Prhl Fitted to experimental data
$$ K_{mLux} $$ $$ 116.24nM $$ Lumped parameter for the Lux system Fitted to experimental data
$$ K_{mRhl} $$ $$ 1000 nM $$ Lumped parameter for the Rhl system Fitted to experimental data
$$ F_{DiMazF} $$ $$ 5 nM^{-1} min^{-1} $$ Cutting rate at ACA sequences on mRNA by MazF dimers Assumption
$$ f $$ $$ 0.299 $$ The probability of distinction of ACA sequences on each mRNA Fitted to experimental data
$$ f_{mRNA_{RFP}} $$ $$ 10 $$ $$ The number of ACA sequences on mRNA_{RFP} $$ Extraction of data
$$ f_{mRNA_{GFP}} $$ $$ 23 $$ $$ The number of ACA sequences on mRNA_{GFP} $$ Extraction of data
$$ f_{mRNA_{RhlI}} $$ $$ 1 $$ $$ The number of ACA sequences on mRNA_{RhlI} $$ Extraction of data
$$ f_{mRNA_{LasI}} $$ $$ 10 $$ $$ The number of ACA sequences on mRNA_{LasI} $$ Extraction of data
$$ f_{mRNA_{MazF}} $$ $$2$$ $$ The number of ACA sequences on mRNA_{MazF} $$ Extraction of data
$$ f_{mRNA_{MazE}} $$ $$2$$ $$ The number of ACA sequences on mRNA_{MazE} $$ Extraction of data
$$ α $$ $$ 0.04 min_{-1} $$ Translation rate of Assumption
$$ k_{DiMazF}$$ $$ 6.82 nM_{-1} min_{-1} $$ Formation rate of MazF dimer Fitted to experimental data
$$ k_{-Di_{MazF}}$$ $$ 6.24 nM^{-1} min^{-1} $$ Formation rate of MazF dimer Fitted to experimental data
$$ k_{Di_{MazE}}$$ $$ 3.46 nM^{-1} min^{-1} $$ Formation rate of MazF dimer Fitted to experimental data
$$ k_{-Di_{MazE}}$$ $$ 7.25 min^{-1} $$ Dissociation rate of MazF dimer Fitted to experimental data
$$ k_{Hexa}$$ $$ 4.51 nM^{-1} min^{-1} $$ Formation rate of Maz hexamer Fitted to experimental data
$$ k_{-Hexa}$$ $$ 4.05 min^{-1} $$ Dissociation rate of Maz hexamer Fitted to experimental data
$$ p_{C4}$$ $$ 0.07 min^{-1} $$ Production rate of C4HSL by RhlI Assumption
$$ p_{C12}$$ $$ 0.07 min^{-1} $$ Production rate of 3OC12HSL by LasI Assumption
$$ D $$ $$ 0.1 nM^{-1} min^{-1} $$ Decomposition rate of 3OC12HSL by AmiE Assumption
$$ d $$ $$ 0.2773 min^{-1} $$ Degradation rate of mRNA Leference[2]
$$ d_{RFP} $$ $$ 0.005 min^{-1} $$ Degradation rate of RFP Assumption
$$ d_{GFP} $$ $$ 0.005 min^{-1} $$ Degradation rate of GFP Assumption
$$ d_{RhlI} $$ $$ 0.0167 min^{-1} $$ Degradation rate of RhlI Leference[1]
$$ d_{LasI} $$ $$ 0.0167 min^{-1} $$ Degradation rate of LasI Leference[1]
$$ d_{MazF} $$ $$ 0.7 min^{-1} $$ Degradation rate of MazF Fitted to experimental data
$$ d_{DiMazF} $$ $$ 0.17 min^{-1} $$ Degradation rate of MazF dimer Fitted to experimental data
$$ d_{MazE} $$ $$ 0.55 min^{-1} $$ Degradation rate of MazE Fitted to experimental data
$$ d_{DiMazE} $$ $$ 0.416 min^{-1} $$ Degradation rate of MazE dimer Fitted to experimental data
$$ d_{Hexa} $$ $$ 0.511 min^{-1} $$ Degradation rate of Maz hexameter Fitted to experimental data
$$ d_{C4} $$ $$ 0.000222 min^{-1} $$ Degradation rate of C4HSL Literature[3]
$$ d_{C12} $$ $$ 0.004 min^{-1} $$ Degradation rate of 3OC12HSL Literature[4]
$$ d_{AmiE} $$ $$ 0.001 min^{-1} $$ Degradation rate of AmiE Assumption