Difference between revisions of "Team:USP UNIFESP-Brazil/Experiments"

Line 143: Line 143:
 
  <p class=black> We were able to purify a <i>Pfu</i>X7 polymerase and standardize a working PCR protocol </p>  
 
  <p class=black> We were able to purify a <i>Pfu</i>X7 polymerase and standardize a working PCR protocol </p>  
  
<p class=black style="font-size:20px" >We were able to design and clone in pSB1C3 a protein domain part (<a href= http://parts.igem.org/Part:BBa_K2136002>BBa_K2136002</a>) and a working gene expression cassete for microalgae (<a href=http://parts.igem.org/Part:BBa_K2136010>BBa_K2136010</a>) ! </p>
+
<p class=black>We were able to design and clone in pSB1C3 a protein domain part (<a href= http://parts.igem.org/Part:BBa_K2136002>BBa_K2136002</a>) and a working gene expression cassete for microalgae (<a href=http://parts.igem.org/Part:BBa_K2136010>BBa_K2136010</a>) ! </p>
  
<p><strong>General sequences assembly</strong></p>
+
<p class=black><strong>General sequences assembly</strong></p>
<p><strong><strong>&nbsp;</strong></strong></p>
+
<p class=black><span style="font-weight: 400;">iGEM requests all teams submit their sequences using pSB1C3 as plasmid backbone. Then, we have tried to bind our project&rsquo;s sequences to it.</span></p>
<p><span style="font-weight: 400;">iGEM requests all teams submit their sequences using pSB1C3 as plasmid backbone. Then, we have tried to bind our project&rsquo;s sequences to it.</span></p>
+
<p class=black><span style="font-weight: 400;">Initially, all our sequences were designed taking into account the codon usage of </span><em><span style="font-weight: 400;">C. reinhardtii</span></em><span style="font-weight: 400;">. Afterwards, we submitted these to IDT offer of gene synthesis (Table 1).</span></p>
<p><strong><strong>&nbsp;</strong></strong></p>
+
<p class=black><strong>Table 1. </strong><span style="font-weight: 400;">Synthetic constructs designed by our team</span></p>
<p><span style="font-weight: 400;">Initially, all our sequences were designed taking into account the codon usage of </span><em><span style="font-weight: 400;">C. reinhardtii</span></em><span style="font-weight: 400;">. Afterwards, we submitted these to IDT offer of gene synthesis (Table 1).</span></p>
+
<p><strong><strong>&nbsp;</strong></strong></p>
+
<p><strong>Table 1. </strong><span style="font-weight: 400;">Synthetic constructs designed by our team</span></p>
+
 
<table>
 
<table>
 
<tbody>
 
<tbody>
 
<tr>
 
<tr>
 
<td>
 
<td>
<p><span style="font-weight: 400;">On registry</span></p>
+
<p class=black><span style="font-weight: 400;">On registry</span></p>
 
</td>
 
</td>
 
<td>
 
<td>
<p><span style="font-weight: 400;">Description</span></p>
+
<p class=black><span style="font-weight: 400;">Description</span></p>
 
</td>
 
</td>
 
<td>
 
<td>
<p><span style="font-weight: 400;">Length</span></p>
+
<p class=black><span style="font-weight: 400;">Length</span></p>
 
</td>
 
</td>
 
<td>
 
<td>
<p><span style="font-weight: 400;">Function</span></p>
+
<p class=black><span style="font-weight: 400;">Function</span></p>
 
</td>
 
</td>
 
</tr>
 
</tr>
Line 171: Line 168:
 
<td>&nbsp;</td>
 
<td>&nbsp;</td>
 
<td>
 
<td>
<p><span style="font-weight: 400;">LysK</span></p>
+
<p class=black><span style="font-weight: 400;">LysK</span></p>
 
</td>
 
</td>
 
<td>
 
<td>
<p><span style="font-weight: 400;">1550</span></p>
+
<p class=black><span style="font-weight: 400;">1550</span></p>
 
</td>
 
</td>
 
<td>
 
<td>
<p><span style="font-weight: 400;">Enzybiotic</span></p>
+
<p class=black><span style="font-weight: 400;">Enzybiotic</span></p>
 
</td>
 
</td>
 
</tr>
 
</tr>
Line 183: Line 180:
 
<td>&nbsp;</td>
 
<td>&nbsp;</td>
 
<td>
 
<td>
<p><span style="font-weight: 400;">MV-L</span></p>
+
<p class=black><span style="font-weight: 400;">MV-L</span></p>
 
</td>
 
</td>
 
<td>
 
<td>
<p><span style="font-weight: 400;">1508</span></p>
+
<p class=black><span style="font-weight: 400;">1508</span></p>
 
</td>
 
</td>
 
<td>
 
<td>
<p><span style="font-weight: 400;">Enzybiotic</span></p>
+
<p class=black><span style="font-weight: 400;">Enzybiotic</span></p>
 
</td>
 
</td>
 
</tr>
 
</tr>
 
<tr>
 
<tr>
 
<td>
 
<td>
<p><span style="font-weight: 400;">BBa_K2136002</span></p>
+
<p class=black><span style="font-weight: 400;">BBa_K2136002</span></p>
 
</td>
 
</td>
 
<td>
 
<td>
<p><span style="font-weight: 400;">Lysostaphin</span></p>
+
<p class=black><span style="font-weight: 400;">Lysostaphin</span></p>
 
</td>
 
</td>
 
<td>
 
<td>
<p><span style="font-weight: 400;">803</span></p>
+
<p class=black><span style="font-weight: 400;">803</span></p>
 
</td>
 
</td>
 
<td>
 
<td>
<p><span style="font-weight: 400;">Enzybiotic</span></p>
+
<p class=black><span style="font-weight: 400;">Enzybiotic</span></p>
 
</td>
 
</td>
 
</tr>
 
</tr>
Line 209: Line 206:
 
<td>&nbsp;</td>
 
<td>&nbsp;</td>
 
<td>
 
<td>
<p><span style="font-weight: 400;">b-galacto</span></p>
+
<p class=black><span style="font-weight: 400;">b-galacto</span></p>
 
</td>
 
</td>
 
<td>
 
<td>
<p><span style="font-weight: 400;">1547</span></p>
+
<p class=black><span style="font-weight: 400;">1547</span></p>
 
</td>
 
</td>
 
<td>
 
<td>
<p><span style="font-weight: 400;">Gene reporter</span></p>
+
<p class=black><span style="font-weight: 400;">Gene reporter</span></p>
 
</td>
 
</td>
 
</tr>
 
</tr>
Line 221: Line 218:
 
<td>&nbsp;</td>
 
<td>&nbsp;</td>
 
<td>
 
<td>
<p><span style="font-weight: 400;">Lip_Thela</span></p>
+
<p class=black><span style="font-weight: 400;">Lip_Thela</span></p>
 
</td>
 
</td>
 
<td>
 
<td>
<p><span style="font-weight: 400;">872</span></p>
+
<p class=black><span style="font-weight: 400;">872</span></p>
 
</td>
 
</td>
 
<td>
 
<td>
<p><span style="font-weight: 400;">Lipase</span></p>
+
<p class=black><span style="font-weight: 400;">Lipase</span></p>
 
</td>
 
</td>
 
</tr>
 
</tr>
Line 233: Line 230:
 
<td>&nbsp;</td>
 
<td>&nbsp;</td>
 
<td>
 
<td>
<p><span style="font-weight: 400;">gLuc</span></p>
+
<p class=black><span style="font-weight: 400;">gLuc</span></p>
 
</td>
 
</td>
 
<td>
 
<td>
<p><span style="font-weight: 400;">569</span></p>
+
<p class=black><span style="font-weight: 400;">569</span></p>
 
</td>
 
</td>
 
<td>
 
<td>
<p><span style="font-weight: 400;">Gene reporter</span></p>
+
<p class=black><span style="font-weight: 400;">Gene reporter</span></p>
 
</td>
 
</td>
 
</tr>
 
</tr>
Line 245: Line 242:
 
<td>&nbsp;</td>
 
<td>&nbsp;</td>
 
<td>
 
<td>
<p><span style="font-weight: 400;">Ea MaSp1</span></p>
+
<p class=black><span style="font-weight: 400;">Ea MaSp1</span></p>
 
</td>
 
</td>
 
<td>
 
<td>
<p><span style="font-weight: 400;">252</span></p>
+
<p class=black><span style="font-weight: 400;">252</span></p>
 
</td>
 
</td>
 
<td rowspan="4">
 
<td rowspan="4">
<p><span style="font-weight: 400;">Spider silk proteins</span></p>
+
<p class=black><span style="font-weight: 400;">Spider silk proteins</span></p>
 
</td>
 
</td>
 
</tr>
 
</tr>
Line 257: Line 254:
 
<td>&nbsp;</td>
 
<td>&nbsp;</td>
 
<td>
 
<td>
<p><span style="font-weight: 400;">Lh MaSp1 Type 2</span></p>
+
<p class=black><span style="font-weight: 400;">Lh MaSp1 Type 2</span></p>
 
</td>
 
</td>
 
<td>
 
<td>
<p><span style="font-weight: 400;">267</span></p>
+
<p class=black><span style="font-weight: 400;">267</span></p>
 
</td>
 
</td>
 
</tr>
 
</tr>
Line 266: Line 263:
 
<td>&nbsp;</td>
 
<td>&nbsp;</td>
 
<td>
 
<td>
<p><span style="font-weight: 400;">Lh MaSp1 Silwa 1</span></p>
+
<p class=black><span style="font-weight: 400;">Lh MaSp1 Silwa 1</span></p>
 
</td>
 
</td>
 
<td>
 
<td>
<p><span style="font-weight: 400;">231</span></p>
+
<p class=black><span style="font-weight: 400;">231</span></p>
 
</td>
 
</td>
 
</tr>
 
</tr>
Line 275: Line 272:
 
<td>&nbsp;</td>
 
<td>&nbsp;</td>
 
<td>
 
<td>
<p><span style="font-weight: 400;">Lh MaSp1 Silwa 2</span></p>
+
<p class=black><span style="font-weight: 400;">Lh MaSp1 Silwa 2</span></p>
 
</td>
 
</td>
 
<td>
 
<td>
<p><span style="font-weight: 400;">444</span></p>
+
<p class=black><span style="font-weight: 400;">444</span></p>
 
</td>
 
</td>
 
</tr>
 
</tr>
Line 284: Line 281:
 
<td>&nbsp;</td>
 
<td>&nbsp;</td>
 
<td>
 
<td>
<p><span style="font-weight: 400;">USER cassette</span></p>
+
<p class=black><span style="font-weight: 400;">USER cassette</span></p>
 
</td>
 
</td>
 
<td>
 
<td>
<p><span style="font-weight: 400;">141</span></p>
+
<p class=black><span style="font-weight: 400;">141</span></p>
 
</td>
 
</td>
 
<td>&nbsp;</td>
 
<td>&nbsp;</td>
Line 293: Line 290:
 
<tr>
 
<tr>
 
<td>
 
<td>
<p><span style="font-weight: 400;">BBa_K2136010</span></p>
+
<p class=black><span style="font-weight: 400;">BBa_K2136010</span></p>
 
</td>
 
</td>
 
<td>
 
<td>
<p><span style="font-weight: 400;">5' cassete for Chlamydomonas transgenic expression</span></p>
+
<p class=black><span style="font-weight: 400;">5' cassete for Chlamydomonas transgenic expression</span></p>
 
</td>
 
</td>
 
<td>
 
<td>
<p><span style="font-weight: 400;">1593</span></p>
+
<p class=black><span style="font-weight: 400;">1593</span></p>
 
</td>
 
</td>
 
<td>
 
<td>
<p><span style="font-weight: 400;">Upper part of &nbsp;our synthetic cassette</span></p>
+
<p class=black><span style="font-weight: 400;">Upper part of &nbsp;our synthetic cassette</span></p>
 
</td>
 
</td>
 
</tr>
 
</tr>
Line 308: Line 305:
 
<td>&nbsp;</td>
 
<td>&nbsp;</td>
 
<td>
 
<td>
<p><span style="font-weight: 400;">3' cassete for Chlamydomonas transgenic expression</span></p>
+
<p class=black><span style="font-weight: 400;">3' cassete for Chlamydomonas transgenic expression</span></p>
 
</td>
 
</td>
 
<td>
 
<td>
<p><span style="font-weight: 400;">1478</span></p>
+
<p class=black><span style="font-weight: 400;">1478</span></p>
 
</td>
 
</td>
 
<td>
 
<td>
<p><span style="font-weight: 400;">Lower part of our synthetic cassette</span></p>
+
<p class=black><span style="font-weight: 400;">Lower part of our synthetic cassette</span></p>
 
</td>
 
</td>
 
</tr>
 
</tr>
 
</tbody>
 
</tbody>
 
</table>
 
</table>
<p><strong><strong>&nbsp;</strong></strong></p>
+
<p class=black><strong><strong>&nbsp;</strong></strong></p>
<p><span style="font-weight: 400;">Resource setbacks in life force people to such an extreme to come up with clever solutions. In this regard, a bacterial extract bearing a X7 Pfu polymerase was purified to make affordable further molecular biology operations., USER cloning (see below) take advantage of this polymerase too because of its ability on dealing with uracil residues.</span></p>
+
<p class=black><span style="font-weight: 400;">Resource setbacks in life force people to such an extreme to come up with clever solutions. In this regard, a bacterial extract bearing a X7 Pfu polymerase was purified to make affordable further molecular biology operations., USER cloning (see below) take advantage of this polymerase too because of its ability on dealing with uracil residues.</span></p>
<p><strong><strong>&nbsp;</strong></strong></p>
+
<p class=black><strong><strong>&nbsp;</strong></strong></p>
<p><span style="font-weight: 400;">Since the arrival of primers on early-July and for the following months, our team dedicated huge efforts on cloning, with tons of unsuccessful transformations, each part. </span></p>
+
<p class=black><span style="font-weight: 400;">Since the arrival of primers on early-July and for the following months, our team dedicated huge efforts on cloning, with tons of unsuccessful transformations, each part. </span></p>
<p><strong><strong>&nbsp;</strong></strong></p>
+
<p class=black><strong><strong>&nbsp;</strong></strong></p>
<p><span style="font-weight: 400;">Last but not least, throughout the project, we defy the traditional electrophoresis running buffer, named TAE or TBE, against sodium borate buffer which demonstrate to heat less, and therefore, running on high-voltage conditions without melting the gel.</span></p>
+
<p class=black><span style="font-weight: 400;">Last but not least, throughout the project, we defy the traditional electrophoresis running buffer, named TAE or TBE, against sodium borate buffer which demonstrate to heat less, and therefore, running on high-voltage conditions without melting the gel.</span></p>
<p><strong><strong><br /><br /><br /><br /><br /><br /><br /><br /></strong></strong></p>
+
<p class=black><strong><strong><br /><br /><br /><br /><br /><br /><br /><br /></strong></strong></p>
<p><strong>Gathering of expression vector units</strong></p>
+
<p class=black><strong>Gathering of expression vector units</strong></p>
<p><span style="font-weight: 400;">As we got fascinated by the novelty and eye-catching properties of </span><em><span style="font-weight: 400;">Chlamydomonas reinhardtii</span></em><span style="font-weight: 400;">, we cogitated that sending each unit of our expression vector system to Registry parts will expand current systems for protein expression, specially, the complex ones. In this way, we felt glad that we can share this with iGEMers, and even, any of each unit could be combined with other parts of the bank to enhance, test, prank in clever ways.. </span></p>
+
<p class=black><span style="font-weight: 400;">As we got fascinated by the novelty and eye-catching properties of </span><em><span style="font-weight: 400;">Chlamydomonas reinhardtii</span></em><span style="font-weight: 400;">, we cogitated that sending each unit of our expression vector system to Registry parts will expand current systems for protein expression, specially, the complex ones. In this way, we felt glad that we can share this with iGEMers, and even, any of each unit could be combined with other parts of the bank to enhance, test, prank in clever ways.. </span></p>
<p><strong><strong>&nbsp;</strong></strong></p>
+
<p class=black><strong><strong>&nbsp;</strong></strong></p>
<p><strong>Characterization of expression vector</strong></p>
+
<p class=black><strong>Characterization of expression vector</strong></p>
<p><span style="font-weight: 400;">In order to study if our construct works as we expect, a fluorescent protein mCherry was inserted in it and some analyses about its expression were done. </span></p>
+
<p class=black><span style="font-weight: 400;">In order to study if our construct works as we expect, a fluorescent protein mCherry was inserted in it and some analyses about its expression were done. </span></p>
<p><strong><strong>&nbsp;</strong></strong></p>
+
<p class=black><strong><strong>&nbsp;</strong></strong></p>
<p><strong>Screening of mCherry expressing colonies</strong></p>
+
<p class=black><strong>Screening of mCherry expressing colonies</strong></p>
<p><strong><strong>&nbsp;</strong></strong></p>
+
<p class=black><strong><strong>&nbsp;</strong></strong></p>
<p><span style="font-weight: 400;">Since expression of proteins from nuclear transformation in </span><em><span style="font-weight: 400;">Chlamydomonas </span></em><span style="font-weight: 400;">may vary due to insertion location, we decided to screen the colonies upfront in a 96 well layout (Schematic in </span><span style="font-weight: 400;">Proof of concept page</span><span style="font-weight: 400;">). Basically, we picked the colonies from selection plates (TAP media supplemented with 5-10 &mu;g/mL of Zeocin) and incubated it in 200 &mu;L TAP media in an individual well. We performed this screening in two different set ups, due to availability of equipments. The basic setup schematic can be found in </span><span style="font-weight: 400;">Proof of concept page</span><span style="font-weight: 400;">.</span></p>
+
<p class=black><span style="font-weight: 400;">Since expression of proteins from nuclear transformation in </span><em><span style="font-weight: 400;">Chlamydomonas </span></em><span style="font-weight: 400;">may vary due to insertion location, we decided to screen the colonies upfront in a 96 well layout (Schematic in </span><span style="font-weight: 400;">Proof of concept page</span><span style="font-weight: 400;">). Basically, we picked the colonies from selection plates (TAP media supplemented with 5-10 &mu;g/mL of Zeocin) and incubated it in 200 &mu;L TAP media in an individual well. We performed this screening in two different set ups, due to availability of equipments. The basic setup schematic can be found in </span><span style="font-weight: 400;">Proof of concept page</span><span style="font-weight: 400;">.</span></p>
<p><strong><strong>&nbsp;</strong></strong></p>
+
<p class=black><strong><strong>&nbsp;</strong></strong></p>
<p><strong>SETUP 1 &nbsp;</strong></p>
+
<p class=black><strong>SETUP 1 &nbsp;</strong></p>
<p><strong><strong>&nbsp;</strong></strong></p>
+
<p class=black><strong><strong>&nbsp;</strong></strong></p>
<p><span style="font-weight: 400;">Microplate Shaker model :Agitador de Micro Placas Anal&oacute;gico AM 2.4 AN - INBRAS, Jardinopolis, SP, Brazil</span></p>
+
<p class=black><span style="font-weight: 400;">Microplate Shaker model :Agitador de Micro Placas Anal&oacute;gico AM 2.4 AN - INBRAS, Jardinopolis, SP, Brazil</span></p>
<p><span style="font-weight: 400;">Agitation: 800 RPM</span></p>
+
<p class=black><span style="font-weight: 400;">Agitation: 800 RPM</span></p>
<p><span style="font-weight: 400;">Temperature: ~25</span><span style="font-weight: 400;">o</span><span style="font-weight: 400;">C</span></p>
+
<p class=black><span style="font-weight: 400;">Temperature: ~25</span><span style="font-weight: 400;">o</span><span style="font-weight: 400;">C</span></p>
<p><span style="font-weight: 400;">Light Intensity: 60 &mu;E/cm</span><span style="font-weight: 400;">2</span></p>
+
<p class=black><span style="font-weight: 400;">Light Intensity: 60 &mu;E/cm</span><span style="font-weight: 400;">2</span></p>
<p><span style="font-weight: 400;">mCherry measurement: 1 every 12 hours</span></p>
+
<p class=black><span style="font-weight: 400;">mCherry measurement: 1 every 12 hours</span></p>
<p><span style="font-weight: 400;">Absorbance 750nm: 1 every 12 hours</span></p>
+
<p class=black><span style="font-weight: 400;">Absorbance 750nm: 1 every 12 hours</span></p>
<p><span style="font-weight: 400;">Chlorophyl: 1 every 12 hours</span></p>
+
<p class=black><span style="font-weight: 400;">Chlorophyl: 1 every 12 hours</span></p>
<p><strong><strong>&nbsp;</strong></strong></p>
+
<p class=black><strong><strong>&nbsp;</strong></strong></p>
<p><strong>SETUP 2</strong><span style="font-weight: 400;"> &nbsp;</span></p>
+
<p class=black><strong>SETUP 2</strong><span style="font-weight: 400;"> &nbsp;</span></p>
<p><strong><strong>&nbsp;</strong></strong></p>
+
<p class=black><strong><strong>&nbsp;</strong></strong></p>
<p><span style="font-weight: 400;">Microplate Shaker model: VWR INCUBATOR SHAKER-508 - Radnor, Pennsylvania, US</span></p>
+
<p class=black><span style="font-weight: 400;">Microplate Shaker model: VWR INCUBATOR SHAKER-508 - Radnor, Pennsylvania, US</span></p>
<p><span style="font-weight: 400;">Agitation: 800 RPM</span></p>
+
<p class=black><span style="font-weight: 400;">Agitation: 800 RPM</span></p>
<p><span style="font-weight: 400;">Temperature: ~25</span><span style="font-weight: 400;">o</span><span style="font-weight: 400;">C</span></p>
+
<p class=black><span style="font-weight: 400;">Temperature: ~25</span><span style="font-weight: 400;">o</span><span style="font-weight: 400;">C</span></p>
<p><span style="font-weight: 400;">Light Intensity: 60 &mu;E/cm</span><span style="font-weight: 400;">2</span></p>
+
<p class=black><span style="font-weight: 400;">Light Intensity: 60 &mu;E/cm</span><span style="font-weight: 400;">2</span></p>
<p><span style="font-weight: 400;">mCherry measurement: 3 every 12 hours</span></p>
+
<p class=black><span style="font-weight: 400;">mCherry measurement: 3 every 12 hours</span></p>
<p><span style="font-weight: 400;">Absorbance 750nm: 4 every 12 hours</span></p>
+
<p class=black><span style="font-weight: 400;">Absorbance 750nm: 4 every 12 hours</span></p>
<p><span style="font-weight: 400;">Chlorophyl: 1 every 12 hours</span></p>
+
<p class=black><span style="font-weight: 400;">Chlorophyl: 1 every 12 hours</span></p>
<p><strong><strong>&nbsp;</strong></strong></p>
+
<p class=black><strong><strong>&nbsp;</strong></strong></p>
<p><span style="font-weight: 400;">We follow mCherry production measuring mCherry fluorescence, cell growth by optical density in 750 nm absorbance and chlorophyll content by its fluorescence every 12 hours in both screenings (See results in </span><span style="font-weight: 400;">Proof of Concept</span><span style="font-weight: 400;">). Data acquisition were different because we tried to have a reduced measurement time in the first screening (~aprox. 3 min per total measurement). Nevertheless, more reliable data were needed and more measurements per well per time was performed (~aprox. 3 min per total measuremnt).</span></p>
+
<p class=black><span style="font-weight: 400;">We follow mCherry production measuring mCherry fluorescence, cell growth by optical density in 750 nm absorbance and chlorophyll content by its fluorescence every 12 hours in both screenings (See results in </span><span style="font-weight: 400;">Proof of Concept</span><span style="font-weight: 400;">). Data acquisition were different because we tried to have a reduced measurement time in the first screening (~aprox. 3 min per total measurement). Nevertheless, more reliable data were needed and more measurements per well per time was performed (~aprox. 3 min per total measuremnt).</span></p>
<p><strong><strong>&nbsp;</strong></strong></p>
+
<p class=black><strong><strong>&nbsp;</strong></strong></p>
<p><strong>Plate Reading SETUP</strong></p>
+
<p class=black><strong>Plate Reading SETUP</strong></p>
<p><strong>Fluorescence Measurement - mCherry</strong></p>
+
<p class=black><strong>Fluorescence Measurement - mCherry</strong></p>
<p><span style="font-weight: 400;">Mode: Fluorescence Top Reading</span> <span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Excitation Wavelength: 575 nm</span><span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Emission Wavelength: 608 nm</span><span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Excitation Bandwidth: 9 nm</span><span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Emission Bandwidth: 20 nm</span><span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Gain: 200 Manual</span><span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Number of Flashes: 10</span> <span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Integration Time: 20 &micro;s</span><span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Lag Time: 0 &micro;s</span><span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Settle Time: 0</span> <span style="font-weight: 400;">ms</span></p>
+
<p class=black><span style="font-weight: 400;">Mode: Fluorescence Top Reading</span> <span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Excitation Wavelength: 575 nm</span><span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Emission Wavelength: 608 nm</span><span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Excitation Bandwidth: 9 nm</span><span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Emission Bandwidth: 20 nm</span><span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Gain: 200 Manual</span><span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Number of Flashes: 10</span> <span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Integration Time: 20 &micro;s</span><span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Lag Time: 0 &micro;s</span><span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Settle Time: 0</span> <span style="font-weight: 400;">ms</span></p>
<p><span style="font-weight: 400;">Z-Position (Manual): 18141 &micro;m</span></p>
+
<p class=black><span style="font-weight: 400;">Z-Position (Manual): 18141 &micro;m</span></p>
<p><strong><strong>&nbsp;</strong></strong></p>
+
<p class=black><strong><strong>&nbsp;</strong></strong></p>
<p><strong>Optical Density - </strong><strong><em>Chlamydomonas reinhardtii</em></strong></p>
+
<p class=black><strong>Optical Density - </strong><strong><em>Chlamydomonas reinhardtii</em></strong></p>
<p><span style="font-weight: 400;">Mode: Absorbance</span><span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Multiple Reads per Well (Circle (filled)): 2 x 2</span><span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Multiple Reads per Well (Border): 750 &micro;m</span><span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Wavelength: 750 nm</span><span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Bandwidth: 9 nm</span><span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Number of Flashes: 25</span><span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Settle Time: 0</span><span style="font-weight: 400;"><br /><br /></span></p>
+
<p class=black><span style="font-weight: 400;">Mode: Absorbance</span><span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Multiple Reads per Well (Circle (filled)): 2 x 2</span><span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Multiple Reads per Well (Border): 750 &micro;m</span><span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Wavelength: 750 nm</span><span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Bandwidth: 9 nm</span><span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Number of Flashes: 25</span><span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Settle Time: 0</span><span style="font-weight: 400;"><br /><br /></span></p>
<p><strong>Fluorescence Measurement - Chlorophyll</strong></p>
+
<p class=black><strong>Fluorescence Measurement - Chlorophyll</strong></p>
<p><span style="font-weight: 400;">Mode: Fluorescence Top Reading</span><span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Excitation Wavelength: 440 nm</span><span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Emission Wavelength: 680 nm</span><span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Excitation Bandwidth: 9 nm</span><span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Emission Bandwidth: 20 nm</span><span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Gain: 100 nm</span><span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Number of Flashes: 10</span><span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Integration Time: 20 &micro;s</span><span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Lag Time: 0 &micro;s</span></p>
+
<p class=black><span style="font-weight: 400;">Mode: Fluorescence Top Reading</span><span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Excitation Wavelength: 440 nm</span><span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Emission Wavelength: 680 nm</span><span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Excitation Bandwidth: 9 nm</span><span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Emission Bandwidth: 20 nm</span><span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Gain: 100 nm</span><span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Number of Flashes: 10</span><span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Integration Time: 20 &micro;s</span><span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Lag Time: 0 &micro;s</span></p>
<p><span style="font-weight: 400;">Settle Time: 0 ms</span><span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Z-Position (Manual): 18141 &micro;m</span></p>
+
<p class=black><span style="font-weight: 400;">Settle Time: 0 ms</span><span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Z-Position (Manual): 18141 &micro;m</span></p>
<p><strong><strong><br /><br /></strong></strong></p>
+
<p class=black><strong><strong><br /><br /></strong></strong></p>
<p><strong>&ldquo;Homemade&rdquo; mCherry detection</strong></p>
+
<p class=black><strong>&ldquo;Homemade&rdquo; mCherry detection</strong></p>
<p><strong><strong>&nbsp;</strong></strong></p>
+
<p class=black><strong><strong>&nbsp;</strong></strong></p>
<p><span style="font-weight: 400;">In order to observe mCherry secretion we developed a method to observe its fluorescence in the supernatant (Our target). We had a laser pointer (532nm +- 10nm) &nbsp;lay around and some filters we bought to construct a transilluminator for gels with GelRed&trade;. We set up a quick experiment with the supernatant of the Wild type Chlamydomonas (cc1690) and the supernatant of our mCherry producing strain. We basically centrifuged 50 mL of culture media with our cells at 2500 x g for 15 min, and fixed the tubes in a support with the red filter in front of part of it. A green laser and a cellphone camera (With fixed iso and exposure) was all we needed to get the awesome photos better described with schematic in the </span><span style="font-weight: 400;">Proof of Concept page.</span><span style="font-weight: 400;"> &nbsp;</span></p>
+
<p class=black><span style="font-weight: 400;">In order to observe mCherry secretion we developed a method to observe its fluorescence in the supernatant (Our target). We had a laser pointer (532nm +- 10nm) &nbsp;lay around and some filters we bought to construct a transilluminator for gels with GelRed&trade;. We set up a quick experiment with the supernatant of the Wild type Chlamydomonas (cc1690) and the supernatant of our mCherry producing strain. We basically centrifuged 50 mL of culture media with our cells at 2500 x g for 15 min, and fixed the tubes in a support with the red filter in front of part of it. A green laser and a cellphone camera (With fixed iso and exposure) was all we needed to get the awesome photos better described with schematic in the </span><span style="font-weight: 400;">Proof of Concept page.</span><span style="font-weight: 400;"> &nbsp;</span></p>
<p><strong><strong>&nbsp;</strong></strong></p>
+
<p class=black><strong><strong>&nbsp;</strong></strong></p>
<p><strong>Improvement of mCherry</strong></p>
+
<p class=black><strong>Improvement of mCherry</strong></p>
<p><strong><strong>&nbsp;</strong></strong></p>
+
<p class=black><strong><strong>&nbsp;</strong></strong></p>
<p><strong>Codon optimization</strong></p>
+
<p class=black><strong>Codon optimization</strong></p>
<p><strong><strong>&nbsp;</strong></strong></p>
+
<p class=black><strong><strong>&nbsp;</strong></strong></p>
<p><span style="font-weight: 400;">In order to express mCherry in algae, we used a codon optimized mCherry. It`s comparison with the available sequence at the registtry (BBa_J06504), in regard to CAI (Codon Adaptation Index) is summarized below at Table 1.</span></p>
+
<p class=black><span style="font-weight: 400;">In order to express mCherry in algae, we used a codon optimized mCherry. It`s comparison with the available sequence at the registtry (BBa_J06504), in regard to CAI (Codon Adaptation Index) is summarized below at Table 1.</span></p>
<p><strong><strong>&nbsp;</strong></strong></p>
+
<p class=black><strong><strong>&nbsp;</strong></strong></p>
<p><span style="font-weight: 400;">Table1: CAI comparison of BBa_J06504 with optimized mCherry to Chlamydomonas reinhardtii.</span></p>
+
<p class=black><span style="font-weight: 400;">Table1: CAI comparison of BBa_J06504 with optimized mCherry to Chlamydomonas reinhardtii.</span></p>
 
<table>
 
<table>
 
<tbody>
 
<tbody>
 
<tr>
 
<tr>
 
<td>
 
<td>
<p><span style="font-weight: 400;">Parameters</span></p>
+
<p class=black><span style="font-weight: 400;">Parameters</span></p>
 
</td>
 
</td>
 
<td>
 
<td>
<p><span style="font-weight: 400;">Available mCherry in Registry BBa_J06504</span></p>
+
<p class=black><span style="font-weight: 400;">Available mCherry in Registry BBa_J06504</span></p>
 
</td>
 
</td>
 
<td>
 
<td>
<p><span style="font-weight: 400;">Codon Optimize mCherry &nbsp;to </span><em><span style="font-weight: 400;">Chlamydomonas reinhardtii</span></em></p>
+
<p class=black><span style="font-weight: 400;">Codon Optimize mCherry &nbsp;to </span><em><span style="font-weight: 400;">Chlamydomonas reinhardtii</span></em></p>
 
</td>
 
</td>
 
</tr>
 
</tr>
 
<tr>
 
<tr>
 
<td>
 
<td>
<p><span style="font-weight: 400;">G+C content (%) - %GC:</span></p>
+
<p class=black><span style="font-weight: 400;">G+C content (%) - %GC:</span></p>
 
</td>
 
</td>
 
<td>
 
<td>
<p><span style="font-weight: 400;">62.2 </span></p>
+
<p class=black><span style="font-weight: 400;">62.2 </span></p>
 
</td>
 
</td>
 
<td>
 
<td>
<p><span style="font-weight: 400;">63.9</span></p>
+
<p class=black><span style="font-weight: 400;">63.9</span></p>
 
</td>
 
</td>
 
</tr>
 
</tr>
 
<tr>
 
<tr>
 
<td>
 
<td>
<p><span style="font-weight: 400;">%GC1s:</span></p>
+
<p class=black><span style="font-weight: 400;">%GC1s:</span></p>
 
</td>
 
</td>
 
<td>
 
<td>
<p><span style="font-weight: 400;">59.2</span></p>
+
<p class=black><span style="font-weight: 400;">59.2</span></p>
 
</td>
 
</td>
 
<td>
 
<td>
<p><span style="font-weight: 400;">61.0</span></p>
+
<p class=black><span style="font-weight: 400;">61.0</span></p>
 
</td>
 
</td>
 
</tr>
 
</tr>
 
<tr>
 
<tr>
 
<td>
 
<td>
<p><span style="font-weight: 400;">%GC2s</span></p>
+
<p class=black><span style="font-weight: 400;">%GC2s</span></p>
 
</td>
 
</td>
 
<td>
 
<td>
<p><span style="font-weight: 400;">35.9</span></p>
+
<p class=black><span style="font-weight: 400;">35.9</span></p>
 
</td>
 
</td>
 
<td>
 
<td>
<p><span style="font-weight: 400;">35.9</span></p>
+
<p class=black><span style="font-weight: 400;">35.9</span></p>
 
</td>
 
</td>
 
</tr>
 
</tr>
 
<tr>
 
<tr>
 
<td>
 
<td>
<p><span style="font-weight: 400;">%GC3s</span></p>
+
<p class=black><span style="font-weight: 400;">%GC3s</span></p>
 
</td>
 
</td>
 
<td>
 
<td>
<p><span style="font-weight: 400;">96.9</span></p>
+
<p class=black><span style="font-weight: 400;">96.9</span></p>
 
</td>
 
</td>
 
<td>
 
<td>
<p><span style="font-weight: 400;">99.6</span></p>
+
<p class=black><span style="font-weight: 400;">99.6</span></p>
 
</td>
 
</td>
 
</tr>
 
</tr>
 
<tr>
 
<tr>
 
<td>
 
<td>
<p><span style="font-weight: 400;">Kolmogorov-Smirnov test for the expected CAI (alpha = 0.05):</span></p>
+
<p class=black><span style="font-weight: 400;">Kolmogorov-Smirnov test for the expected CAI (alpha = 0.05):</span></p>
 
</td>
 
</td>
 
<td>
 
<td>
<p><span style="font-weight: 400;">0.054</span></p>
+
<p class=black><span style="font-weight: 400;">0.054</span></p>
 
</td>
 
</td>
 
<td>
 
<td>
<p><span style="font-weight: 400;">0.035</span></p>
+
<p class=black><span style="font-weight: 400;">0.035</span></p>
 
</td>
 
</td>
 
</tr>
 
</tr>
 
<tr>
 
<tr>
 
<td>
 
<td>
<p><span style="font-weight: 400;">Chi-Square Goodness-of-Fit test for AA (alpha = 0.05)</span></p>
+
<p class=black><span style="font-weight: 400;">Chi-Square Goodness-of-Fit test for AA (alpha = 0.05)</span></p>
 
</td>
 
</td>
 
<td>
 
<td>
<p><span style="font-weight: 400;">the 100.0% of sequences fit the AA distribution</span></p>
+
<p class=black><span style="font-weight: 400;">the 100.0% of sequences fit the AA distribution</span></p>
 
</td>
 
</td>
 
<td>
 
<td>
<p><span style="font-weight: 400;">the 100.0% of sequences fit the AA distribution</span></p>
+
<p class=black><span style="font-weight: 400;">the 100.0% of sequences fit the AA distribution</span></p>
 
</td>
 
</td>
 
</tr>
 
</tr>
 
<tr>
 
<tr>
 
<td>
 
<td>
<p><span style="font-weight: 400;">Chi-Square Goodness-of-Fit test for G+C (alpha = 0.05): </span></p>
+
<p class=black><span style="font-weight: 400;">Chi-Square Goodness-of-Fit test for G+C (alpha = 0.05): </span></p>
 
</td>
 
</td>
 
<td>
 
<td>
<p><span style="font-weight: 400;">the 100.0% of sequences fit the G+C distribution</span></p>
+
<p class=black><span style="font-weight: 400;">the 100.0% of sequences fit the G+C distribution</span></p>
 
</td>
 
</td>
 
<td>
 
<td>
<p><span style="font-weight: 400;">the 100.0% of sequences fit the G+C distribution</span></p>
+
<p class=black><span style="font-weight: 400;">the 100.0% of sequences fit the G+C distribution</span></p>
 
</td>
 
</td>
 
</tr>
 
</tr>
 
<tr>
 
<tr>
 
<td>
 
<td>
<p><span style="font-weight: 400;">Average CAI</span></p>
+
<p class=black><span style="font-weight: 400;">Average CAI</span></p>
 
</td>
 
</td>
 
<td>
 
<td>
<p><span style="font-weight: 400;">0.761</span></p>
+
<p class=black><span style="font-weight: 400;">0.761</span></p>
 
</td>
 
</td>
 
<td>
 
<td>
<p><span style="font-weight: 400;">0.807</span></p>
+
<p class=black><span style="font-weight: 400;">0.807</span></p>
 
</td>
 
</td>
 
</tr>
 
</tr>
 
<tr>
 
<tr>
 
<td>
 
<td>
<p><span style="font-weight: 400;">eCAI (p&lt;0.05)</span></p>
+
<p class=black><span style="font-weight: 400;">eCAI (p&lt;0.05)</span></p>
 
</td>
 
</td>
 
<td>
 
<td>
<p><span style="font-weight: 400;">0.850</span></p>
+
<p class=black><span style="font-weight: 400;">0.850</span></p>
 
</td>
 
</td>
 
<td>
 
<td>
<p><span style="font-weight: 400;">0.885</span></p>
+
<p class=black><span style="font-weight: 400;">0.885</span></p>
 
</td>
 
</td>
 
</tr>
 
</tr>
 
</tbody>
 
</tbody>
 
</table>
 
</table>
<p><span style="font-weight: 400;">Ref1: Puigbo P, Bravo IG and Garcia-Vallve S. (2008) E-CAI: a novel server to estimate an expected value of Codon Adaptation Index (eCAI). BMC Bioinformatics, 9:65.</span></p>
+
<p class=black><span style="font-weight: 400;">Ref1: Puigbo P, Bravo IG and Garcia-Vallve S. (2008) E-CAI: a novel server to estimate an expected value of Codon Adaptation Index (eCAI). BMC Bioinformatics, 9:65.</span></p>
<p><span style="font-weight: 400;">Ref2: Codon usage table from </span><a href="http://www.kazusa.or.jp/codon/"><span style="font-weight: 400;">Kazusa</span></a><span style="font-weight: 400;">.</span></p>
+
<p class=black><span style="font-weight: 400;">Ref2: Codon usage table from </span><a href="http://www.kazusa.or.jp/codon/"><span style="font-weight: 400;">Kazusa</span></a><span style="font-weight: 400;">.</span></p>
<p><strong><strong><br /><br /></strong></strong></p>
+
<p class=black><strong><strong><br /><br /></strong></strong></p>
<p><strong>FPLC - Fast protein liquid chromatography of mCherry in </strong><strong><em>Chlamydomonas </em></strong><strong>supernatant</strong></p>
+
<p class=black><strong>FPLC - Fast protein liquid chromatography of mCherry in </strong><strong><em>Chlamydomonas </em></strong><strong>supernatant</strong></p>
<p><strong><strong>&nbsp;</strong></strong></p>
+
<p class=black><strong><strong>&nbsp;</strong></strong></p>
<p><span style="font-weight: 400;">Ion exchange purification exploit the net electrostatic charges of proteins, in pH values diferrent of their pI (Isoelectric point). We developed a purification protocol to mCherry, using an anionic resin. First, we performed a gradient purification protocol to establish the best salt concentration to elute mCherry. </span></p>
+
<p class=black><span style="font-weight: 400;">Ion exchange purification exploit the net electrostatic charges of proteins, in pH values diferrent of their pI (Isoelectric point). We developed a purification protocol to mCherry, using an anionic resin. First, we performed a gradient purification protocol to establish the best salt concentration to elute mCherry. </span></p>
<p><strong><strong>&nbsp;</strong></strong></p>
+
<p class=black><strong><strong>&nbsp;</strong></strong></p>
<p><strong>Gradient Set_UP:</strong></p>
+
<p class=black><strong>Gradient Set_UP:</strong></p>
<p><span style="font-weight: 400;">Column: Resource Q (6 mL) - GE Healthcare </span></p>
+
<p class=black><span style="font-weight: 400;">Column: Resource Q (6 mL) - GE Healthcare </span></p>
<p><span style="font-weight: 400;">Buffer A: Sodium Phosphate 50 mM, pH7.5</span></p>
+
<p class=black><span style="font-weight: 400;">Buffer A: Sodium Phosphate 50 mM, pH7.5</span></p>
<p><span style="font-weight: 400;">Buffer B: Sodium Phosphate 50 mM, pH7.5 + 1M NaCl</span></p>
+
<p class=black><span style="font-weight: 400;">Buffer B: Sodium Phosphate 50 mM, pH7.5 + 1M NaCl</span></p>
<p><span style="font-weight: 400;">Equilibration: 2 column volume (CV)</span></p>
+
<p class=black><span style="font-weight: 400;">Equilibration: 2 column volume (CV)</span></p>
<p><span style="font-weight: 400;">Injection: 0.5mL 40X Concentrate supernatant sample</span></p>
+
<p class=black><span style="font-weight: 400;">Injection: 0.5mL 40X Concentrate supernatant sample</span></p>
<p><span style="font-weight: 400;">Gradient length: 20 CV</span></p>
+
<p class=black><span style="font-weight: 400;">Gradient length: 20 CV</span></p>
<p><span style="font-weight: 400;">Flow rate: 5mL/min</span></p>
+
<p class=black><span style="font-weight: 400;">Flow rate: 5mL/min</span></p>
<p><span style="font-weight: 400;">Fractionation: 5mL to unbound and 3 mL to the rest of the method</span></p>
+
<p class=black><span style="font-weight: 400;">Fractionation: 5mL to unbound and 3 mL to the rest of the method</span></p>
<p><strong><strong>&nbsp;</strong></strong></p>
+
<p class=black><strong><strong>&nbsp;</strong></strong></p>
<p><span style="font-weight: 400;">We obtained the following result (Figure 1).</span></p>
+
<p class=black><span style="font-weight: 400;">We obtained the following result (Figure 1).</span></p>
<p><strong><strong>&nbsp;</strong></strong></p>
+
<p class=black><strong><strong>&nbsp;</strong></strong></p>
<p><span style="font-weight: 400;">Figure 1: Chromatogram of gradient mCherry purification. Green line (</span><strong>-</strong><span style="font-weight: 400;">) is the UV sensor reading. Red line (</span><strong>-</strong><span style="font-weight: 400;">) is buffer B percentage in the mixture. Black line (</span><strong>-</strong><span style="font-weight: 400;">) is the conductivity measurement. Blue line (</span><strong>-</strong><span style="font-weight: 400;">) is the fluorescence measurement of fractionated samples. </span></p>
+
<p class=black><span style="font-weight: 400;">Figure 1: Chromatogram of gradient mCherry purification. Green line (</span><strong>-</strong><span style="font-weight: 400;">) is the UV sensor reading. Red line (</span><strong>-</strong><span style="font-weight: 400;">) is buffer B percentage in the mixture. Black line (</span><strong>-</strong><span style="font-weight: 400;">) is the conductivity measurement. Blue line (</span><strong>-</strong><span style="font-weight: 400;">) is the fluorescence measurement of fractionated samples. </span></p>
<p><strong><strong>&nbsp;</strong></strong></p>
+
<p class=black><strong><strong>&nbsp;</strong></strong></p>
<p><span style="font-weight: 400;">We were surprised, with the result. Most of Chlamydomonas natural proteins got bound to the resin, and got eluted with an increased salt concentration. This method was an efficient way to purify mCherry from the supernatant. UV absorbance curve integration allow us to estimate the amount of protein separated from mCherry and 99% of all protein detected by the sensor was separated from mCherry fractions.</span></p>
+
<p class=black><span style="font-weight: 400;">We were surprised, with the result. Most of Chlamydomonas natural proteins got bound to the resin, and got eluted with an increased salt concentration. This method was an efficient way to purify mCherry from the supernatant. UV absorbance curve integration allow us to estimate the amount of protein separated from mCherry and 99% of all protein detected by the sensor was separated from mCherry fractions.</span></p>
<p><strong><strong>&nbsp;</strong></strong></p>
+
<p class=black><strong><strong>&nbsp;</strong></strong></p>
<p><span style="font-weight: 400;">To further develop our method and reduce processing time, we developed a step based purification method (Figure 2). We kept 0% of B after injection for 3 CV, increase it a little bit to 0.7% of B to try to remove mCherry in this step, followed by a 100% of B step. This strategy was performed in a slower flow rate (3mL/min), and allow us to separate mCherry from 2 peaks in the beginning of the method. mCherry still left in the 0% step, but this method proved to be efficient, 99,7% of detected proteins were separated from mCherry. </span></p>
+
<p class=black><span style="font-weight: 400;">To further develop our method and reduce processing time, we developed a step based purification method (Figure 2). We kept 0% of B after injection for 3 CV, increase it a little bit to 0.7% of B to try to remove mCherry in this step, followed by a 100% of B step. This strategy was performed in a slower flow rate (3mL/min), and allow us to separate mCherry from 2 peaks in the beginning of the method. mCherry still left in the 0% step, but this method proved to be efficient, 99,7% of detected proteins were separated from mCherry. </span></p>
<p><strong><strong>&nbsp;</strong></strong></p>
+
<p class=black><strong><strong>&nbsp;</strong></strong></p>
<p><strong>Step based purification Set_UP:</strong></p>
+
<p class=black><strong>Step based purification Set_UP:</strong></p>
<p><span style="font-weight: 400;">Column: Resource Q (6 mL) - GE Healthcare </span></p>
+
<p class=black><span style="font-weight: 400;">Column: Resource Q (6 mL) - GE Healthcare </span></p>
<p><span style="font-weight: 400;">Buffer A: Sodium Phosphate 50 mM, pH7.5</span></p>
+
<p class=black><span style="font-weight: 400;">Buffer A: Sodium Phosphate 50 mM, pH7.5</span></p>
<p><span style="font-weight: 400;">Buffer B: Sodium Phosphate 50 mM, pH7.5 + 1M NaCl</span></p>
+
<p class=black><span style="font-weight: 400;">Buffer B: Sodium Phosphate 50 mM, pH7.5 + 1M NaCl</span></p>
<p><span style="font-weight: 400;">Equilibration: 2 column volume (CV)</span></p>
+
<p class=black><span style="font-weight: 400;">Equilibration: 2 column volume (CV)</span></p>
<p><span style="font-weight: 400;">Injection: 0.5mL 40X Concentrate supernatant sample</span></p>
+
<p class=black><span style="font-weight: 400;">Injection: 0.5mL 40X Concentrate supernatant sample</span></p>
<p><span style="font-weight: 400;">Step1: 3 CV</span></p>
+
<p class=black><span style="font-weight: 400;">Step1: 3 CV</span></p>
<p><span style="font-weight: 400;">Step2: 2 CV</span></p>
+
<p class=black><span style="font-weight: 400;">Step2: 2 CV</span></p>
<p><span style="font-weight: 400;">Step3: 5 CV</span></p>
+
<p class=black><span style="font-weight: 400;">Step3: 5 CV</span></p>
<p><span style="font-weight: 400;">Flow rate: 3mL/min</span></p>
+
<p class=black><span style="font-weight: 400;">Flow rate: 3mL/min</span></p>
<p><span style="font-weight: 400;">Fractionation: 5mL to unbound and 1 mL to Step 1, 3 mL to Step 2 and 5 mL to step 3.</span></p>
+
<p class=black><span style="font-weight: 400;">Fractionation: 5mL to unbound and 1 mL to Step 1, 3 mL to Step 2 and 5 mL to step 3.</span></p>
<p><strong><strong><br /><br /></strong></strong></p>
+
<p class=black><strong><strong><br /><br /></strong></strong></p>
<p><span style="font-weight: 400;">Figure 2: Chromatogram of step based mCherry purification. Green line (</span><strong>-</strong><span style="font-weight: 400;">) is the UV sensor reading. Red line (</span><strong>-</strong><span style="font-weight: 400;">) is buffer B percentage in the mixture. Black line (</span><strong>-</strong><span style="font-weight: 400;">) is the conductivity measurement. Blue line (</span><strong>-</strong><span style="font-weight: 400;">) is the fluorescence measurement of fractionated samples.</span></p>
+
<p class=black><span style="font-weight: 400;">Figure 2: Chromatogram of step based mCherry purification. Green line (</span><strong>-</strong><span style="font-weight: 400;">) is the UV sensor reading. Red line (</span><strong>-</strong><span style="font-weight: 400;">) is buffer B percentage in the mixture. Black line (</span><strong>-</strong><span style="font-weight: 400;">) is the conductivity measurement. Blue line (</span><strong>-</strong><span style="font-weight: 400;">) is the fluorescence measurement of fractionated samples.</span></p>
<p><strong><strong>&nbsp;</strong></strong></p>
+
<p class=black><strong><strong>&nbsp;</strong></strong></p>
<p><span style="font-weight: 400;">Fluorescence measurements in all fractions were obtained in a plate reader (TECAN Infinite&reg; 200 PRO), following the fluorescence measurement method described above.</span></p>
+
<p class=black><span style="font-weight: 400;">Fluorescence measurements in all fractions were obtained in a plate reader (TECAN Infinite&reg; 200 PRO), following the fluorescence measurement method described above.</span></p>
<p><strong><strong>&nbsp;</strong></strong></p>
+
<p class=black><strong><strong>&nbsp;</strong></strong></p>
<p><strong>mCherry Fluorescence Spectrum (Ex/Em)</strong></p>
+
<p class=black><strong>mCherry Fluorescence Spectrum (Ex/Em)</strong></p>
<p><strong><strong>&nbsp;</strong></strong></p>
+
<p class=black><strong><strong>&nbsp;</strong></strong></p>
<p><span style="font-weight: 400;">The samples purified by FPLC were used to further characterize our mCherry produced by </span><em><span style="font-weight: 400;">Chlamydomonas reinhardtii</span></em><span style="font-weight: 400;">. We used aliquots from fractions 5 and 6 (Step purification) to construct and further characterize codon optimized mCherry (</span><a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K2136016"><span style="font-weight: 400;">BBa_K2136016</span></a><span style="font-weight: 400;">). We set up a plate reader (TECAN Infinite&reg; 200 PRO) to obtain fluorescence spectrum of our mCherry.</span></p>
+
<p class=black><span style="font-weight: 400;">The samples purified by FPLC were used to further characterize our mCherry produced by </span><em><span style="font-weight: 400;">Chlamydomonas reinhardtii</span></em><span style="font-weight: 400;">. We used aliquots from fractions 5 and 6 (Step purification) to construct and further characterize codon optimized mCherry (</span><a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K2136016"><span style="font-weight: 400;">BBa_K2136016</span></a><span style="font-weight: 400;">). We set up a plate reader (TECAN Infinite&reg; 200 PRO) to obtain fluorescence spectrum of our mCherry.</span></p>
<p><strong><strong>&nbsp;</strong></strong></p>
+
<p class=black><strong><strong>&nbsp;</strong></strong></p>
<p><strong>Experiment SETUP:</strong></p>
+
<p class=black><strong>Experiment SETUP:</strong></p>
<p><span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Mode: Fluorescence Top Reading</span> <span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Excitation Wavelength Start: 300 nm</span><span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Excitation Wavelength End: 600 nm</span><span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Excitation Wavelength Step Size: 1nm</span><span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Excitation Scan Number: 301</span> <span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Emission Wavelength: 640 nm</span><span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Bandwidth (Em): 280...850: 20 nm</span> <span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Bandwidth (Ex) (Range 1): 230...315: 5 nm</span> <span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Bandwidth (Ex) (Range 2): 316...850: 10 nm</span> <span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Gain: 200 Manual</span><span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Number of Flashes: 10</span> <span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Integration Time: 20 &micro;s</span><span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Lag Time: 0 &micro;s</span><span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Settle Time:0 ms</span><span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Z-Position (Manual): 18141 &micro;m</span> <span style="font-weight: 400;"><br /><br /></span></p>
+
<p class=black><span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Mode: Fluorescence Top Reading</span> <span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Excitation Wavelength Start: 300 nm</span><span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Excitation Wavelength End: 600 nm</span><span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Excitation Wavelength Step Size: 1nm</span><span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Excitation Scan Number: 301</span> <span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Emission Wavelength: 640 nm</span><span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Bandwidth (Em): 280...850: 20 nm</span> <span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Bandwidth (Ex) (Range 1): 230...315: 5 nm</span> <span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Bandwidth (Ex) (Range 2): 316...850: 10 nm</span> <span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Gain: 200 Manual</span><span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Number of Flashes: 10</span> <span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Integration Time: 20 &micro;s</span><span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Lag Time: 0 &micro;s</span><span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Settle Time:0 ms</span><span style="font-weight: 400;"><br /></span><span style="font-weight: 400;">Z-Position (Manual): 18141 &micro;m</span> <span style="font-weight: 400;"><br /><br /></span></p>
<p><span style="font-weight: 400;">We were happy to see that our Excitation/Emission spectrum obtained was similar to the ones available to mCherry. We extended the available spectrum from 300 nm to 850 nm, allowing us to observe a small excitable region in 360 nm to mCherry. This experiment allowed us, simultaneously, further characterize this important biobrick (</span><a href="http://parts.igem.org/Part:BBa_J06504"><span style="font-weight: 400;">BBa_J06504</span></a><span style="font-weight: 400;">), by adding an extended fluorescence spectrum and demonstrate the presence of mCherry in the supernatant of our algae strain (See Proof of Concept page for mCherry Fluorescence spectrum). </span></p>
+
<p class=black><span style="font-weight: 400;">We were happy to see that our Excitation/Emission spectrum obtained was similar to the ones available to mCherry. We extended the available spectrum from 300 nm to 850 nm, allowing us to observe a small excitable region in 360 nm to mCherry. This experiment allowed us, simultaneously, further characterize this important biobrick (</span><a href="http://parts.igem.org/Part:BBa_J06504"><span style="font-weight: 400;">BBa_J06504</span></a><span style="font-weight: 400;">), by adding an extended fluorescence spectrum and demonstrate the presence of mCherry in the supernatant of our algae strain (See Proof of Concept page for mCherry Fluorescence spectrum). </span></p>
<p><strong><strong><br /><br /></strong></strong></p>
+
<p class=black><strong><strong><br /><br /></strong></strong></p>
<p><span style="font-weight: 400;">Figure 3: Excitation/Emission spectrum of mCherry produced and purified from Chlamydomonas supernatant. </span></p>
+
<p class=black><span style="font-weight: 400;">Figure 3: Excitation/Emission spectrum of mCherry produced and purified from Chlamydomonas supernatant. </span></p>
<p><strong><strong><br /><br /></strong></strong></p>
+
<p class=black><strong><strong><br /><br /></strong></strong></p>
<p><strong>USER of Lh Masp 1 Type 2</strong></p>
+
<p class=black><strong>USER of Lh Masp 1 Type 2</strong></p>
<p><strong><strong>&nbsp;</strong></strong></p>
+
<p class=black><strong><strong>&nbsp;</strong></strong></p>
<p><span style="font-weight: 400;">The size of silk genes is one of the most important problems to be solved in a project about silk production. Chemical synthesis presented some limitations to this sequence due to their high CG content and their repetitives sequences. Many cloning approaches has been used to polymerase them. We decided to explore a new technique to achieve this.</span></p>
+
<p class=black><span style="font-weight: 400;">The size of silk genes is one of the most important problems to be solved in a project about silk production. Chemical synthesis presented some limitations to this sequence due to their high CG content and their repetitives sequences. Many cloning approaches has been used to polymerase them. We decided to explore a new technique to achieve this.</span></p>
<p><strong><strong>&nbsp;</strong></strong></p>
+
<p class=black><strong><strong>&nbsp;</strong></strong></p>
<p><span style="font-weight: 400;">USER is a seamless assembly method to recombinant molecules from multiples components. USER reaction performs a excision of a Uracil in a nucleotide sequence, and this is exploited to generate complementary overhangs between sequences. Primers are designed to contain a Uracil at nucleotide 8-10 of its sequence. In the reaction a complementary overhang of 8-10 is created and allowed to align. The reaction mixture containing linearized plasmid with a USER adaptor sequence, and desired sequences are transformed into </span><em><span style="font-weight: 400;">E.coli</span></em><span style="font-weight: 400;"> where the plasmid and sequence are completely ligated. We designed 4 primers to this experiment. </span></p>
+
<p class=black><span style="font-weight: 400;">USER is a seamless assembly method to recombinant molecules from multiples components. USER reaction performs a excision of a Uracil in a nucleotide sequence, and this is exploited to generate complementary overhangs between sequences. Primers are designed to contain a Uracil at nucleotide 8-10 of its sequence. In the reaction a complementary overhang of 8-10 is created and allowed to align. The reaction mixture containing linearized plasmid with a USER adaptor sequence, and desired sequences are transformed into </span><em><span style="font-weight: 400;">E.coli</span></em><span style="font-weight: 400;"> where the plasmid and sequence are completely ligated. We designed 4 primers to this experiment. </span></p>
<p><strong><strong><br /><br /></strong></strong></p>
+
<p class=black><strong><strong><br /><br /></strong></strong></p>
<p><span style="font-weight: 400;">Figura USER se der</span></p>
+
<p class=black><span style="font-weight: 400;">Figura USER se der</span></p>
<p><strong><strong><br /><br /></strong></strong></p>
+
<p class=black><strong><strong><br /><br /></strong></strong></p>
<p><strong>Assembly by restriction enzyme of Lh Masp 1 Type 2</strong></p>
+
<p class=black><strong>Assembly by restriction enzyme of Lh Masp 1 Type 2</strong></p>
<p><strong><strong>&nbsp;</strong></strong></p>
+
<p class=black><strong><strong>&nbsp;</strong></strong></p>
<p><span style="font-weight: 400;">As we had trouble with our USER-specific primers request and could not start with the USER method, we started an alternative way to polymerize the MaSp1 monomers. </span></p>
+
<p class=black><span style="font-weight: 400;">As we had trouble with our USER-specific primers request and could not start with the USER method, we started an alternative way to polymerize the MaSp1 monomers. </span></p>
<p><span style="font-weight: 400;">Based on the Nature protocol of Teul&eacute; et al(ref) we designed a cut and paste technique, to duplicate the MaSp1 sequence at each round. Telu&eacute; and collaborators use a cloning vector with a restriction site in its resistance gene and two complementary but non regenerable restriction sites, one at each side of the insert, which is the sequence that is going to be duplicated. The vector is cut in two parallel separated digestions, at one side of the insert and at the resistance gene, and on the other side of the insert and also at the resistance gene. In both digestions, two fragments will be generated: one that contains the insert and a part of the resistance gene, and one that does not contain the insert. Ligating the insert-containing fragments of the two different digestions together results in the duplication of the insert in a vector with a complete resistance gene.</span></p>
+
<p class=black><span style="font-weight: 400;">Based on the Nature protocol of Teul&eacute; et al(ref) we designed a cut and paste technique, to duplicate the MaSp1 sequence at each round. Telu&eacute; and collaborators use a cloning vector with a restriction site in its resistance gene and two complementary but non regenerable restriction sites, one at each side of the insert, which is the sequence that is going to be duplicated. The vector is cut in two parallel separated digestions, at one side of the insert and at the resistance gene, and on the other side of the insert and also at the resistance gene. In both digestions, two fragments will be generated: one that contains the insert and a part of the resistance gene, and one that does not contain the insert. Ligating the insert-containing fragments of the two different digestions together results in the duplication of the insert in a vector with a complete resistance gene.</span></p>
<p><strong><strong>&nbsp;</strong></strong></p>
+
<p class=black><strong><strong>&nbsp;</strong></strong></p>
<p><span style="font-weight: 400;">In our case we used the same vector, that would be transformed into our production organism, </span><em><span style="font-weight: 400;">Chlamydomonas reinhardtii.</span></em><span style="font-weight: 400;"> The pJP22 has a ScaI restriction site in the ampicillin resistance gene and two compatible but non regenerable restriction sites at the MCS: BglII and BamHI, so we went on and cloned the spider silk monomer MaSp1 Type2(link to part). Then, following the scheme of Teul&eacute; and collaborators(ref figure), we cut in parallel digestions the pJP22-MaSp1t2 with ScaI and either BamHI or BglII(ref figure). The insert-containing fragments were then ligated together and transformed into E. coli DH5alfa cells </span></p>
+
<p class=black><span style="font-weight: 400;">In our case we used the same vector, that would be transformed into our production organism, </span><em><span style="font-weight: 400;">Chlamydomonas reinhardtii.</span></em><span style="font-weight: 400;"> The pJP22 has a ScaI restriction site in the ampicillin resistance gene and two compatible but non regenerable restriction sites at the MCS: BglII and BamHI, so we went on and cloned the spider silk monomer MaSp1 Type2(link to part). Then, following the scheme of Teul&eacute; and collaborators(ref figure), we cut in parallel digestions the pJP22-MaSp1t2 with ScaI and either BamHI or BglII(ref figure). The insert-containing fragments were then ligated together and transformed into E. coli DH5alfa cells </span></p>
<p><strong><strong><br /><br /><br /><br /><br /></strong></strong></p>
+
<p class=black><strong><strong><br /><br /><br /><br /><br /></strong></strong></p>
<p><strong>&hellip;</strong></p>
+
<p class=black><strong>&hellip;</strong></p>
<p><strong>We obtained an 8-mer MaSp1 type2 insert.</strong></p>
+
<p class=black><strong>We obtained an 8-mer MaSp1 type2 insert.</strong></p>
<p><strong><strong>&nbsp;</strong></strong></p>
+
<p class=black><strong><strong>&nbsp;</strong></strong></p>
<p><strong>Lysostaphin expression</strong></p>
+
<p class=black><strong>Lysostaphin expression</strong></p>
<p><strong><strong>&nbsp;</strong></strong></p>
+
<p class=black><strong><strong>&nbsp;</strong></strong></p>
<p><span style="font-weight: 400;">To analyse the activity of an </span><em><span style="font-weight: 400;">enzybiotic</span></em><span style="font-weight: 400;"> that could be applied on silk functionalization in future works, we tried to express Lysostaphin. The lysostaphin sequence that was synthesized by IDT was successfully cloned into pSB1C3 and from there, we tried to clone it into pETDuet to be expressed in BL21 DE3. Unfortunately we did not get positive clones so far.</span></p>
+
<p class=black><span style="font-weight: 400;">To analyse the activity of an </span><em><span style="font-weight: 400;">enzybiotic</span></em><span style="font-weight: 400;"> that could be applied on silk functionalization in future works, we tried to express Lysostaphin. The lysostaphin sequence that was synthesized by IDT was successfully cloned into pSB1C3 and from there, we tried to clone it into pETDuet to be expressed in BL21 DE3. Unfortunately we did not get positive clones so far.</span></p>
<p>&nbsp;</p></html>
+
<p class=black>&nbsp;</p></html>

Revision as of 21:57, 19 October 2016




Experiments

Assembly of spider silk gene sequence: Getting ready for expression!

Assembly by cut&paste

As we had trouble with our USER-specific primers request and could not start with the USER method, we started an alternative way to polymerize the MaSp1 monomers. Based on the Nature protocol of Teulé et al(ref) we designed a cut and paste technique, to duplicate the MaSp1 sequence at each round.

Telué and collaborators use a cloning vector with a restriction site in its resistance gene and two complementary but non regenerable restriction sites, one at each side of the insert, which is the sequence that is going to be duplicated. The vector is cut in two parallel separated digestions, at one side of the insert and at the resistance gene, and on the other side of the insert and also at the resistance gene. In both digestions, two fragments will be generated: one that contains the insert and a part of the resistance gene, and one that does not contain the insert. Ligating the insert-containing fragments of the two different digestions together results in the duplication of the insert in a vector with a complete resistance gene.

In our case we used the same vector, that would be transformed into our production organism, Chlamydomonas reinhardtii. The pJP22 has a ScaI restriction site in the ampicillin resistance gene and two compatible but non regenerable restriction sites at the MCS: BglII and BamHI, so we went on and cloned the spider silk monomer MaSp1 Type2(link to part). Then, following the scheme of Teulé and collaborators(ref figure), we cut in parallel digestions the pJP22-MaSp1t2 with ScaI and either BamHI or BglII(ref figure). The insert-containing fragments were then ligated together and transformed into E. coli DH5α cells

Positive results

We were able to purify a PfuX7 polymerase and standardize a working PCR protocol

We were able to design and clone in pSB1C3 a protein domain part (BBa_K2136002) and a working gene expression cassete for microalgae (BBa_K2136010) !

General sequences assembly

iGEM requests all teams submit their sequences using pSB1C3 as plasmid backbone. Then, we have tried to bind our project’s sequences to it.

Initially, all our sequences were designed taking into account the codon usage of C. reinhardtii. Afterwards, we submitted these to IDT offer of gene synthesis (Table 1).

Table 1. Synthetic constructs designed by our team

On registry

Description

Length

Function

 

LysK

1550

Enzybiotic

 

MV-L

1508

Enzybiotic

BBa_K2136002

Lysostaphin

803

Enzybiotic

 

b-galacto

1547

Gene reporter

 

Lip_Thela

872

Lipase

 

gLuc

569

Gene reporter

 

Ea MaSp1

252

Spider silk proteins

 

Lh MaSp1 Type 2

267

 

Lh MaSp1 Silwa 1

231

 

Lh MaSp1 Silwa 2

444

 

USER cassette

141

 

BBa_K2136010

5' cassete for Chlamydomonas transgenic expression

1593

Upper part of  our synthetic cassette

 

3' cassete for Chlamydomonas transgenic expression

1478

Lower part of our synthetic cassette

 

Resource setbacks in life force people to such an extreme to come up with clever solutions. In this regard, a bacterial extract bearing a X7 Pfu polymerase was purified to make affordable further molecular biology operations., USER cloning (see below) take advantage of this polymerase too because of its ability on dealing with uracil residues.

 

Since the arrival of primers on early-July and for the following months, our team dedicated huge efforts on cloning, with tons of unsuccessful transformations, each part.

 

Last but not least, throughout the project, we defy the traditional electrophoresis running buffer, named TAE or TBE, against sodium borate buffer which demonstrate to heat less, and therefore, running on high-voltage conditions without melting the gel.









Gathering of expression vector units

As we got fascinated by the novelty and eye-catching properties of Chlamydomonas reinhardtii, we cogitated that sending each unit of our expression vector system to Registry parts will expand current systems for protein expression, specially, the complex ones. In this way, we felt glad that we can share this with iGEMers, and even, any of each unit could be combined with other parts of the bank to enhance, test, prank in clever ways..

 

Characterization of expression vector

In order to study if our construct works as we expect, a fluorescent protein mCherry was inserted in it and some analyses about its expression were done.

 

Screening of mCherry expressing colonies

 

Since expression of proteins from nuclear transformation in Chlamydomonas may vary due to insertion location, we decided to screen the colonies upfront in a 96 well layout (Schematic in Proof of concept page). Basically, we picked the colonies from selection plates (TAP media supplemented with 5-10 μg/mL of Zeocin) and incubated it in 200 μL TAP media in an individual well. We performed this screening in two different set ups, due to availability of equipments. The basic setup schematic can be found in Proof of concept page.

 

SETUP 1  

 

Microplate Shaker model :Agitador de Micro Placas Analógico AM 2.4 AN - INBRAS, Jardinopolis, SP, Brazil

Agitation: 800 RPM

Temperature: ~25oC

Light Intensity: 60 μE/cm2

mCherry measurement: 1 every 12 hours

Absorbance 750nm: 1 every 12 hours

Chlorophyl: 1 every 12 hours

 

SETUP 2  

 

Microplate Shaker model: VWR INCUBATOR SHAKER-508 - Radnor, Pennsylvania, US

Agitation: 800 RPM

Temperature: ~25oC

Light Intensity: 60 μE/cm2

mCherry measurement: 3 every 12 hours

Absorbance 750nm: 4 every 12 hours

Chlorophyl: 1 every 12 hours

 

We follow mCherry production measuring mCherry fluorescence, cell growth by optical density in 750 nm absorbance and chlorophyll content by its fluorescence every 12 hours in both screenings (See results in Proof of Concept). Data acquisition were different because we tried to have a reduced measurement time in the first screening (~aprox. 3 min per total measurement). Nevertheless, more reliable data were needed and more measurements per well per time was performed (~aprox. 3 min per total measuremnt).

 

Plate Reading SETUP

Fluorescence Measurement - mCherry

Mode: Fluorescence Top Reading
Excitation Wavelength: 575 nm
Emission Wavelength: 608 nm
Excitation Bandwidth: 9 nm
Emission Bandwidth: 20 nm
Gain: 200 Manual
Number of Flashes: 10
Integration Time: 20 µs
Lag Time: 0 µs
Settle Time: 0 ms

Z-Position (Manual): 18141 µm

 

Optical Density - Chlamydomonas reinhardtii

Mode: Absorbance
Multiple Reads per Well (Circle (filled)): 2 x 2
Multiple Reads per Well (Border): 750 µm
Wavelength: 750 nm
Bandwidth: 9 nm
Number of Flashes: 25
Settle Time: 0

Fluorescence Measurement - Chlorophyll

Mode: Fluorescence Top Reading
Excitation Wavelength: 440 nm
Emission Wavelength: 680 nm
Excitation Bandwidth: 9 nm
Emission Bandwidth: 20 nm
Gain: 100 nm
Number of Flashes: 10
Integration Time: 20 µs
Lag Time: 0 µs

Settle Time: 0 ms
Z-Position (Manual): 18141 µm



“Homemade” mCherry detection

 

In order to observe mCherry secretion we developed a method to observe its fluorescence in the supernatant (Our target). We had a laser pointer (532nm +- 10nm)  lay around and some filters we bought to construct a transilluminator for gels with GelRed™. We set up a quick experiment with the supernatant of the Wild type Chlamydomonas (cc1690) and the supernatant of our mCherry producing strain. We basically centrifuged 50 mL of culture media with our cells at 2500 x g for 15 min, and fixed the tubes in a support with the red filter in front of part of it. A green laser and a cellphone camera (With fixed iso and exposure) was all we needed to get the awesome photos better described with schematic in the Proof of Concept page.  

 

Improvement of mCherry

 

Codon optimization

 

In order to express mCherry in algae, we used a codon optimized mCherry. It`s comparison with the available sequence at the registtry (BBa_J06504), in regard to CAI (Codon Adaptation Index) is summarized below at Table 1.

 

Table1: CAI comparison of BBa_J06504 with optimized mCherry to Chlamydomonas reinhardtii.

Parameters

Available mCherry in Registry BBa_J06504

Codon Optimize mCherry  to Chlamydomonas reinhardtii

G+C content (%) - %GC:

62.2

63.9

%GC1s:

59.2

61.0

%GC2s

35.9

35.9

%GC3s

96.9

99.6

Kolmogorov-Smirnov test for the expected CAI (alpha = 0.05):

0.054

0.035

Chi-Square Goodness-of-Fit test for AA (alpha = 0.05)

the 100.0% of sequences fit the AA distribution

the 100.0% of sequences fit the AA distribution

Chi-Square Goodness-of-Fit test for G+C (alpha = 0.05):

the 100.0% of sequences fit the G+C distribution

the 100.0% of sequences fit the G+C distribution

Average CAI

0.761

0.807

eCAI (p<0.05)

0.850

0.885

Ref1: Puigbo P, Bravo IG and Garcia-Vallve S. (2008) E-CAI: a novel server to estimate an expected value of Codon Adaptation Index (eCAI). BMC Bioinformatics, 9:65.

Ref2: Codon usage table from Kazusa.



FPLC - Fast protein liquid chromatography of mCherry in Chlamydomonas supernatant

 

Ion exchange purification exploit the net electrostatic charges of proteins, in pH values diferrent of their pI (Isoelectric point). We developed a purification protocol to mCherry, using an anionic resin. First, we performed a gradient purification protocol to establish the best salt concentration to elute mCherry.

 

Gradient Set_UP:

Column: Resource Q (6 mL) - GE Healthcare

Buffer A: Sodium Phosphate 50 mM, pH7.5

Buffer B: Sodium Phosphate 50 mM, pH7.5 + 1M NaCl

Equilibration: 2 column volume (CV)

Injection: 0.5mL 40X Concentrate supernatant sample

Gradient length: 20 CV

Flow rate: 5mL/min

Fractionation: 5mL to unbound and 3 mL to the rest of the method

 

We obtained the following result (Figure 1).

 

Figure 1: Chromatogram of gradient mCherry purification. Green line (-) is the UV sensor reading. Red line (-) is buffer B percentage in the mixture. Black line (-) is the conductivity measurement. Blue line (-) is the fluorescence measurement of fractionated samples.

 

We were surprised, with the result. Most of Chlamydomonas natural proteins got bound to the resin, and got eluted with an increased salt concentration. This method was an efficient way to purify mCherry from the supernatant. UV absorbance curve integration allow us to estimate the amount of protein separated from mCherry and 99% of all protein detected by the sensor was separated from mCherry fractions.

 

To further develop our method and reduce processing time, we developed a step based purification method (Figure 2). We kept 0% of B after injection for 3 CV, increase it a little bit to 0.7% of B to try to remove mCherry in this step, followed by a 100% of B step. This strategy was performed in a slower flow rate (3mL/min), and allow us to separate mCherry from 2 peaks in the beginning of the method. mCherry still left in the 0% step, but this method proved to be efficient, 99,7% of detected proteins were separated from mCherry.

 

Step based purification Set_UP:

Column: Resource Q (6 mL) - GE Healthcare

Buffer A: Sodium Phosphate 50 mM, pH7.5

Buffer B: Sodium Phosphate 50 mM, pH7.5 + 1M NaCl

Equilibration: 2 column volume (CV)

Injection: 0.5mL 40X Concentrate supernatant sample

Step1: 3 CV

Step2: 2 CV

Step3: 5 CV

Flow rate: 3mL/min

Fractionation: 5mL to unbound and 1 mL to Step 1, 3 mL to Step 2 and 5 mL to step 3.



Figure 2: Chromatogram of step based mCherry purification. Green line (-) is the UV sensor reading. Red line (-) is buffer B percentage in the mixture. Black line (-) is the conductivity measurement. Blue line (-) is the fluorescence measurement of fractionated samples.

 

Fluorescence measurements in all fractions were obtained in a plate reader (TECAN Infinite® 200 PRO), following the fluorescence measurement method described above.

 

mCherry Fluorescence Spectrum (Ex/Em)

 

The samples purified by FPLC were used to further characterize our mCherry produced by Chlamydomonas reinhardtii. We used aliquots from fractions 5 and 6 (Step purification) to construct and further characterize codon optimized mCherry (BBa_K2136016). We set up a plate reader (TECAN Infinite® 200 PRO) to obtain fluorescence spectrum of our mCherry.

 

Experiment SETUP:


Mode: Fluorescence Top Reading
Excitation Wavelength Start: 300 nm
Excitation Wavelength End: 600 nm
Excitation Wavelength Step Size: 1nm
Excitation Scan Number: 301
Emission Wavelength: 640 nm
Bandwidth (Em): 280...850: 20 nm
Bandwidth (Ex) (Range 1): 230...315: 5 nm
Bandwidth (Ex) (Range 2): 316...850: 10 nm
Gain: 200 Manual
Number of Flashes: 10
Integration Time: 20 µs
Lag Time: 0 µs
Settle Time:0 ms
Z-Position (Manual): 18141 µm

We were happy to see that our Excitation/Emission spectrum obtained was similar to the ones available to mCherry. We extended the available spectrum from 300 nm to 850 nm, allowing us to observe a small excitable region in 360 nm to mCherry. This experiment allowed us, simultaneously, further characterize this important biobrick (BBa_J06504), by adding an extended fluorescence spectrum and demonstrate the presence of mCherry in the supernatant of our algae strain (See Proof of Concept page for mCherry Fluorescence spectrum).



Figure 3: Excitation/Emission spectrum of mCherry produced and purified from Chlamydomonas supernatant.



USER of Lh Masp 1 Type 2

 

The size of silk genes is one of the most important problems to be solved in a project about silk production. Chemical synthesis presented some limitations to this sequence due to their high CG content and their repetitives sequences. Many cloning approaches has been used to polymerase them. We decided to explore a new technique to achieve this.

 

USER is a seamless assembly method to recombinant molecules from multiples components. USER reaction performs a excision of a Uracil in a nucleotide sequence, and this is exploited to generate complementary overhangs between sequences. Primers are designed to contain a Uracil at nucleotide 8-10 of its sequence. In the reaction a complementary overhang of 8-10 is created and allowed to align. The reaction mixture containing linearized plasmid with a USER adaptor sequence, and desired sequences are transformed into E.coli where the plasmid and sequence are completely ligated. We designed 4 primers to this experiment.



Figura USER se der



Assembly by restriction enzyme of Lh Masp 1 Type 2

 

As we had trouble with our USER-specific primers request and could not start with the USER method, we started an alternative way to polymerize the MaSp1 monomers.

Based on the Nature protocol of Teulé et al(ref) we designed a cut and paste technique, to duplicate the MaSp1 sequence at each round. Telué and collaborators use a cloning vector with a restriction site in its resistance gene and two complementary but non regenerable restriction sites, one at each side of the insert, which is the sequence that is going to be duplicated. The vector is cut in two parallel separated digestions, at one side of the insert and at the resistance gene, and on the other side of the insert and also at the resistance gene. In both digestions, two fragments will be generated: one that contains the insert and a part of the resistance gene, and one that does not contain the insert. Ligating the insert-containing fragments of the two different digestions together results in the duplication of the insert in a vector with a complete resistance gene.

 

In our case we used the same vector, that would be transformed into our production organism, Chlamydomonas reinhardtii. The pJP22 has a ScaI restriction site in the ampicillin resistance gene and two compatible but non regenerable restriction sites at the MCS: BglII and BamHI, so we went on and cloned the spider silk monomer MaSp1 Type2(link to part). Then, following the scheme of Teulé and collaborators(ref figure), we cut in parallel digestions the pJP22-MaSp1t2 with ScaI and either BamHI or BglII(ref figure). The insert-containing fragments were then ligated together and transformed into E. coli DH5alfa cells






We obtained an 8-mer MaSp1 type2 insert.

 

Lysostaphin expression

 

To analyse the activity of an enzybiotic that could be applied on silk functionalization in future works, we tried to express Lysostaphin. The lysostaphin sequence that was synthesized by IDT was successfully cloned into pSB1C3 and from there, we tried to clone it into pETDuet to be expressed in BL21 DE3. Unfortunately we did not get positive clones so far.