Line 14: | Line 14: | ||
<div class="container text_header"><h3>Assembly</h3></div> | <div class="container text_header"><h3>Assembly</h3></div> | ||
− | <div class="container text">As our library is made of binding proteins possessing variable as well as constant regions we had to assemble them in a special manner. For the assembly of our library we had to anneal the fragments containing the variable regions that we ordered through oligonucleotide synthesis. As for Monobodies we assembled the fragments called V1-1 and V1-2 to V1 and V2-1 and V2-2 to V2, and then again V1 and V2 to have the variable region essential for the construct. The correct size of the assembled construct was estimated by a gelelectrophoresis (Figure 1) and then <a href= https://2016.igem.org/Team:Bielefeld-CeBiTec/Results/Library/Sequencing >sequenced</a>. | + | <div class="container text">As our library is made of binding proteins possessing variable as well as constant regions we had to assemble them in a special manner. For the assembly of our library we had to anneal the fragments containing the variable regions that we ordered through oligonucleotide synthesis. <br> |
+ | As for Monobodies we assembled the fragments called V1-1 and V1-2 to V1 and V2-1 and V2-2 to V2, and then again V1 and V2 to have the variable region essential for the construct. The correct size of the assembled, whole construct was estimated by a gelelectrophoresis (Figure 1) and then later <a href= https://2016.igem.org/Team:Bielefeld-CeBiTec/Results/Library/Sequencing >sequenced</a>. For the Monobody construct we deciced to set the design up in a way that one can exchange RFP for the fragment containing the variable (randomized) regions (Figure 1a, 1b). The size of the annealed V1 fragment is 114 bp, the size of V2 is 132 bp. These are the fragments inserted into our Monobody construct which can be used to <a href=https://2016.igem.org/Team:Bielefeld-CeBiTec/Project/Library/CreateYours>build the library</a>.This construct was submitted by us as <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K2082000">BBa_K2082000</a> for the simple Monobody and as <a href="BBa_K2082004">BBa_K2082004</a> as the Monobody construct equipped for use in our <a href="https://2016.igem.org/Team:Bielefeld-CeBiTec/Description">system</a>.<br> | ||
+ | <img src="https://static.igem.org/mediawiki/2016/0/06/Bielefeld_CeBiTec_2016_10_19_LIB_mbrfp.png" width=60%><br> | ||
+ | <img src="https://static.igem.org/mediawiki/2016/3/3a/Bielefeld_CeBiTec_2016_10_19_LIB_mbrfppas.png" width=60%> | ||
+ | <br>To get further insight into the theoretical assembly take a look <a href=https://2016.igem.org/Team:Bielefeld-CeBiTec/Project/Library/Design>here</a>.<br><br> | ||
<figure class="figure"> | <figure class="figure"> |
Revision as of 01:08, 20 October 2016
Library Results
Assembly
Assembly
As our library is made of binding proteins possessing variable as well as constant regions we had to assemble them in a special manner. For the assembly of our library we had to anneal the fragments containing the variable regions that we ordered through oligonucleotide synthesis.
As for Monobodies we assembled the fragments called V1-1 and V1-2 to V1 and V2-1 and V2-2 to V2, and then again V1 and V2 to have the variable region essential for the construct. The correct size of the assembled, whole construct was estimated by a gelelectrophoresis (Figure 1) and then later sequenced. For the Monobody construct we deciced to set the design up in a way that one can exchange RFP for the fragment containing the variable (randomized) regions (Figure 1a, 1b). The size of the annealed V1 fragment is 114 bp, the size of V2 is 132 bp. These are the fragments inserted into our Monobody construct which can be used to build the library.This construct was submitted by us as BBa_K2082000 for the simple Monobody and as BBa_K2082004 as the Monobody construct equipped for use in our system.
To get further insight into the theoretical assembly take a look here.
We further annealed F2-1 and F2-2 to the region containing the variable region called F2 for the Nanobody construct. To get more insight take a look here.
The size of the annealed F2 fragment is ought to be 143 bp, this was checked by gelectrophoresis (Figure 2) first and sequencing later. This then can be inserted into our Nanobody construct (BBa_K2082001) to create the Nanobody library.
As for Monobodies we assembled the fragments called V1-1 and V1-2 to V1 and V2-1 and V2-2 to V2, and then again V1 and V2 to have the variable region essential for the construct. The correct size of the assembled, whole construct was estimated by a gelelectrophoresis (Figure 1) and then later sequenced. For the Monobody construct we deciced to set the design up in a way that one can exchange RFP for the fragment containing the variable (randomized) regions (Figure 1a, 1b). The size of the annealed V1 fragment is 114 bp, the size of V2 is 132 bp. These are the fragments inserted into our Monobody construct which can be used to build the library.This construct was submitted by us as BBa_K2082000 for the simple Monobody and as BBa_K2082004 as the Monobody construct equipped for use in our system.
To get further insight into the theoretical assembly take a look here.
We further annealed F2-1 and F2-2 to the region containing the variable region called F2 for the Nanobody construct. To get more insight take a look here.
The size of the annealed F2 fragment is ought to be 143 bp, this was checked by gelectrophoresis (Figure 2) first and sequencing later. This then can be inserted into our Nanobody construct (BBa_K2082001) to create the Nanobody library.
As we were sure our constructs were right, we strieved for having as much clones as possible. To create enough room for the high quantities of colonies we produced, we used big agar plates (picture below). They consisted of 750ml LB-Agar and provided space for the amount of about 15 normal agar plates. We totally recommend larger plates for every team with a library approach!
Comparison of Polymerases
As our variable regions (for each Monobodies and Nanobodies) were ordered through oligonucleotide synthesis, the strands naturally were single stranded. For the correct assembly of the variable regions into the construct, they had to be annealed. For this purpose we tried using the Klenow Fragment (3'→5' exo-) by New England Biolabs at first. However, the cloning of the Klenow annealed fragments was not optimal.
For example, when inserting the variable regions for the Nanobodies, the primers called F2-1 and F2-2 had to be annealed, to then be cloned into the Nanobody construc t (missing the variable regions). When separating the samples (annealed oligonucleotides) by gel electrophoresis the reason why was hinted as no fragments of 143 bp were found in the bands on which the annealed sample were loaded (see Figure 1).
For example, when inserting the variable regions for the Nanobodies, the primers called F2-1 and F2-2 had to be annealed, to then be cloned into the Nanobody construc t (missing the variable regions). When separating the samples (annealed oligonucleotides) by gel electrophoresis the reason why was hinted as no fragments of 143 bp were found in the bands on which the annealed sample were loaded (see Figure 1).
We then concluded to use other Polymerases to anneal the oligonucleotides. For that we annealed two oligonucleotides called V1-1 and V1-2 to a fragment called V1 as well as V2-1 and V2-2 to a fragment called V2. These were used to bring in the variable region of the Monobody construct, inhabitating the randomized regions essential for binding proteins in the following.
For this purpose we used the following polymerases: Q5 High-Fidelity DNA Polymerase (by New England Biolabs), KOD DNA Polymerase (by Merck Millipore), Phusion High-Fidelity DNA Polymerase (by New England Biolabs), GoTaq G2 (by Promega).
In Figure 2.1 one can see the result of the annealing of the oligonucleotides V1-1 and V1-2 to the fragment V1 and V2-1 and V2-2 to the fragment V2 by the four polymerases.
The same was done for the annealing of the oligonucleotides F2-1 and F2-2 to fragment F2 containing the variable region for the Nanobody. The gel photography can be viewed in figure 2.2.
After choosing the Q5 High-Fidelity DNA Polymerase (by New England Biolabs) for the annealing of the oligonucleotides we once again checked for the right size of the fragments mentioned above (V1, V2 and F2) on an 1% agarose gel (see Figure 3).
We so chose to procee d with further annealing with the Q5 High-Fidelity DNA Polymerase (by New England Biolabs) as the bands were clearly sharper in the gel as well as the transformation efficiency was seemingly higher. The use of this polymerase also resulted in an up to nearly 8 fold greater number of clones counted in later cloning compared to cloning steps where other polymerases were employed
To put it in a nutshell, the construction of the plasmids for our library was successful and delivered the right constructs to set up our library.