Team:TU Darmstadt/Lab/KILLswitch

If you can see this message, you do not use Javascript. This Website is best to use with Javascript enabled. Without Javascript enabled, many features including the mobile version are not usable.
iGEM TU Darmstadt 2016

KILL(switch)

ABSTRACT
Synthetic suicide systems have been choice safeguards in synthetic biology for as long as the field exists. There are different kinds of designs, often based on a regulating mechanism and a toxin such as host killing proteins or different kinds of metabolism inhibiting pathways. However, these most often don't tackle the problem of synthetic DNA surviving the death of the host cell.
Here we show a possible design for a simple synthetic killswitch based on an endonuclease called colicin E2 and its corresponding suppressing protein, Im2. It is regulated by amber suppression, the usage of an amber stop codon to code for a non-natural amino acid O-methyl-L-tyrosine. The aim of the system is to not only kill its host, but also to destroy all DNA within the cell and its surroundings, preventing the escape of transgenic DNA.

References
  • [1]
  • [2]
  • [3]