Project Description
Pulp and paper mills around British Columbia’s northern heartland were once at the forefront of the small town economy. Their main function was the production of paper and thick fiber board from organic compounds such as vegetable or wood fibers (raw biomass). However, in recent years the pulp and paper industry has struggled due to the global shift from newsprint to digital applications on a variety of electronic hardwares. In North America, demand for pulp and paper products is down at least 75 percent from its peak era in the 1990’s. The Pulp and Paper Products Council tracks paper product usage closely and has reported that demand has fallen close to ten percent each year and the decrease continues to accelerate. As such, a large portion of the paper mills in BC have closed down or significantly reduced their workforce impacting the local economic output and forcing people from their homes in search of other forms of employment. The 2016 UBC iGEM team saw a need to repurpose paper mill industry in BC to bring back work to the communities impacted by the shift in paper product utilization. With BC already having significant infrastructure for biomass processing in the form of empty mills, we aimed to develop a process that utilizes raw plant material for our starting material.
Petroleum-derived chemicals are used as building blocks to create a variety of products we take for granted in our day to day lives. And while these molecules have proven to be critical for modern society, their overuse has had significant negative environmental and societal impacts. As we push forward into a more responsible future, we must pivot towards sustainable solutions able to supersede petroleum-derived products with renewable alternatives.
One successfully implemented solution has been to use microbial biocatalysts to transform renewable biomass, from agricultural and forestry wastes, into bio-equivalent chemicals able to be directly used in established industrial processes. Companies such as BioAmber and Genomatica have championed this approach, creating important molecular building blocks such as succinic acid and 1,4-butanediol. While these early successes have highlighted the potential of these systems, renewable biomass as a whole remains underutilized. However, major roadblock to implementing successful industrial-scale bioprocesses is the high cost of processing raw biomass into a usable form. Comprising greater than 50 percent of total production costs, as estimated by the National Renewable Energy Lab, biomass processing creates a significant barrier that prevents all but the most mature technologies from utilizing renewable feedstocks.
This year, our team aimed to bring the processing of biomass back to BC mills by making the utilization of renewable biomass feedstocks cheaper and more efficient. Taking lessons from nature, we pursued a biomimicry approach, aiming to build a microbial community able to effectively transform biomass into useful products. To accomplish this task, we split our microbial community into two halves. One half responsible for transforming the biomass into usable growth substrates. While the other half focuses on using these growth substrates for the production of useful products. Our community has the potential to provide an unique method for surface display of functional enzymes, while also being a proof of concept for the direct conversion of raw biomass into usable products.