Difference between revisions of "Team:Marburg/Notebooks"

(Replaced content with "{{Marburg/navigation}} {{Marburg/master_heading}} <html lang="en"> <body> <!-- Content --> <!-- Heading --> <div class="container"> <div class=...")
Line 11: Line 11:
 
<div class="container">
 
<div class="container">
 
     <div class="heading">
 
     <div class="heading">
         <h2>Projects</h2>
+
         <h2>Notebooks</h2>
 
     </div>
 
     </div>
 
</div>
 
</div>
Line 22: Line 22:
 
         <div class="col-sm-12 text-justify">
 
         <div class="col-sm-12 text-justify">
 
          
 
          
            <h3 class="text-center">Utilization of artificial endosymbiosis to abolish land grabbing through the production of terpenoid derived chemicals</h3>
 
           
 
 
             <p>
 
             <p>
                 The term "land grabbing" describes the acquisition of land, mainly in developing
+
                 The team's notebooks. TODO.
                and newly industrialized countries through foreign investors to plant crops for
+
                food production as well as for the production of valuable secondary plant substrates,
+
                for example pharmaceuticals or biofuels derived from terpenoids <a href="#ref_1" class="ref">[1]</a>.
+
                Although production of secondary plant substrates through microorganisms is possible in general,
+
                it is mostly either inefficient or extremely expensive in terms of research <a href="#ref_2" class="ref">[2]</a>.
+
                This is mainly due to the different properties of various microorganisms, where some are more
+
                suitable than others for the production of a desired substrate. In addition, this often
+
                goes beyond the utilization of traditional model organisms in microbiology, such as S.
+
                cerevisiae and E. coli. As mentioned before, it requires great effort in terms of engineering
+
                one of these organisms to make the production of especially these secondary plant substrates
+
                feasible.
+
            </p>
+
 
+
            <p>
+
                To make this production through microorganisms more interesting and therefore solve the issue of
+
                land grabbing for this purpose, our project "Syndustry – Fuse. Produce. Use" combines the naturally
+
                given advantages of various model organism strains. For this, we created an artificial endosymbiosis
+
                between different organisms, mainly S. cerevisiae and E. coli. The organisms can be specialized to
+
                overcome bottlenecks for improvement of biotechnological productions or can even grant possibilities
+
                for productions that have not been established to date. The process to make this possible can mainly be
+
                divided into three parts: establishing a dependency between the organisms, implementation of a production
+
                pathway and the actual fusion of the organisms.
+
            </p>
+
 
+
            <p>
+
                Since the biological safety of our system would be relevant to the recipients and the environment, we
+
                also investigated in the behaviour of certain bacterial safety mechanisms, the kill switches. Instead
+
                of designing one of our own, we took advantage of the numerous kill switches already implemented in the
+
                iGEM database. Using these, we were creating a model describing their escape rate in terms of evolutionary
+
                stability seeing them as a genetic network. We did so in collaboration with the iGEM team of Lethbridge,
+
                who performed to experimental work for verification of our model.
+
            </p>
+
 
+
            <p>
+
                Due to the multiplicity of kill switches designed in the past years of iGEM, we also created a simple and
+
                easy overseeable database of all kill switches either described or implemented. It contains all relevant
+
                information for the selection of a suitable kill switch, for example a classification regarding the redundancy of crucial compounds, such as inducer and toxin or a topology map.  
+
 
             </p>
 
             </p>
 
          
 
          
Line 68: Line 29:
 
          
 
          
 
     </div>
 
     </div>
   
 
    <hr class="featurette-divider">
 
 
<!-- TODO: Maybe add img-responsive -->
 
<!-- TODO: Tweak the responsive reduction width -->
 
<!-- TODO: What does featurette-image and featurette classes? -->
 
   
 
    <div class="row featurette">
 
        <div class="col-md-7">
 
            <h2 class="featurette-heading">
 
                Dependency.
 
                <span class="text-muted">
 
                    Keeps the system together.
 
                </span>
 
            </h2>
 
            <p class="featurette-text">
 
                In order to guarantee the fitness of  the host organism as well as the invading cell,
 
                we established different exchange-based dependencies - a malonate based dependency with
 
                the invading <i>E. coli</i> cell as the malonate source and a protein based dependency
 
                complementing essential gene knockout.
 
            </p>
 
            <p class="text-center">
 
                <a class="featurette-button btn btn-default" href="https://2016.igem.org/Team:Marburg/Dependency" role="button">More details &raquo;</a>
 
            </p>
 
        </div>
 
        <div class="col-md-5">
 
            <img class="featurette-image img-fluid m-x-auto" src="https://static.igem.org/mediawiki/2016/a/a9/T--Marburg--img_Dependency_small.png" alt="Generic placeholder image">
 
        </div>
 
    </div>
 
   
 
    <hr class="featurette-divider">
 
   
 
    <div class="row featurette">
 
        <div class="col-md-5">
 
            <img class="featurette-image img-fluid m-x-auto" src="https://static.igem.org/mediawiki/2016/2/29/T--Marburg--img_PEG_small.png" alt="Generic placeholder image">
 
        </div>
 
        <div class="col-md-7">
 
            <h2 class="featurette-heading">
 
                Fusion.
 
                <span class="text-muted">
 
                    Brings the system together.
 
                </span>
 
            </h2>
 
            <p class="featurette-text">
 
                Since our whole project relies on the utilization of the principles of endosymbiosis for production purposes, we had to decide for a method to bring the organisms together. This was accomplished by modification and optimization of a protocol using <i>polyethylene glycol</i> (PEG).
 
            </p>
 
            <p class="text-center">
 
                <a class="featurette-button btn btn-default" href="https://2016.igem.org/Team:Marburg/PEG_Method" role="button">More details &raquo;</a>
 
            </p>
 
        </div>
 
    </div>
 
   
 
    <hr class="featurette-divider">
 
   
 
    <div class="row featurette">
 
        <div class="col-md-7">
 
            <h2 class="featurette-heading">
 
                Production Line.
 
                <span class="text-muted">
 
                    Novel system for modular synthesis.
 
                </span>
 
            </h2>
 
            <p class="featurette-text">
 
                Design of a production line that starts with limonene production in E. coli and export in S. cerevisiae.                                         
 
                Limonene gets hydroxylated to the cancer drug perillyl alcohol and exported to the media.
 
            </p>
 
            <p class="text-center">
 
                <a class="featurette-button btn btn-default" href="https://2016.igem.org/Team:Marburg/Production" role="button">More details &raquo;</a>
 
            </p>
 
        </div>
 
        <div class="col-md-5">
 
            <img class="featurette-image img-fluid m-x-auto" src="https://static.igem.org/mediawiki/2016/c/c0/T--Marburg--img_Production_small.png" alt="Generic placeholder image">
 
        </div>
 
    </div>
 
   
 
    <hr class="featurette-divider">
 
   
 
    <div class="row featurette">
 
        <div class="col-md-5">
 
            <img class="featurette-image img-fluid m-x-auto" src="https://static.igem.org/mediawiki/2016/c/c5/T--Marburg--img_Modelling_small.png" alt="Generic placeholder image">
 
        </div>
 
        <div class="col-md-7">
 
            <h2 class="featurette-heading">
 
                Modeling.
 
                <span class="text-muted">
 
                    Evolutionary stability analysis of killswitches.
 
                </span>
 
            </h2>
 
            <p class="featurette-text">
 
                Quantitative work using mathematical modeling and numerics to study genetical killswitches. Treated as
 
                genetic regulatory networks, the stability of network topologies against evolution - selection and mutation -
 
                is studied.
 
            </p>
 
            <p class="text-center">
 
                <a class="featurette-button btn btn-default" href="https://2016.igem.org/Team:Marburg/Modeling" role="button">More details &raquo;</a>
 
            </p>
 
        </div>
 
    </div>
 
   
 
    <hr class="featurette-divider">
 
   
 
    <h3 class="text-center">Literature</h3>
 
   
 
    <ol class="literature_list">
 
        <li id="ref_1"><a href="#ref_1" class="ref">[1]</a> Ajikumar, Parayil Kumaran, et al. "Terpenoids: opportunities for biosynthesis of natural product drugs using
 
        engineered microorganisms." Molecular pharmaceutics 5.2 (2008): 167-190.</li>
 
        <li id="ref_2"><a href="#ref_2" class="ref">[2]</a> Van Dien, Stephen. "From the first drop to the first truckload: commercialization of microbial processes for
 
        renewable chemicals." Current opinion in biotechnology 24.6 (2013): 1061-1068.</li>
 
    </ol>
 
   
 
</div>
 
  
 
     </body>
 
     </body>
  
 
</html>
 
</html>

Revision as of 12:54, 22 November 2016

SynDustry Fuse. Produce. Use.

Notebooks

The team's notebooks. TODO.