Difference between revisions of "Team:TAS Taipei/Experimental Summary"

(Created page with "{{TAS Taipei/CSS}} <html> <head> <title>Project Description - TAS Taipei iGEM Wiki</title> <style type='text/css'> #top_title, #sideMenu{ display: none;...")
 
Line 3: Line 3:
  
 
<head>
 
<head>
<title>Project Description - TAS Taipei iGEM Wiki</title>
+
<title>Experimental Summary - TAS Taipei iGEM Wiki</title>
 
  <style type='text/css'>
 
  <style type='text/css'>
 
       #top_title, #sideMenu{
 
       #top_title, #sideMenu{
Line 71: Line 71:
 
<div class='subcategories_container'>
 
<div class='subcategories_container'>
 
<div>
 
<div>
<h5><a href="https://2016.igem.org/Team:TAS_Taipei/Description#background">Background</a></h5>
+
<h5><a href="https://2016.igem.org/Team:TAS_Taipei/Description">Background</a></h5>
 
</div>
 
</div>
 
<div>
 
<div>
Line 121: Line 121:
 
</div>
 
</div>
 
<div>
 
<div>
<h5><a href="https://2016.igem.org/Team:TAS_Taipei/Model#gsr25hc">GSR/CH25H Pathway</a></h5>
+
<h5><a href="https://2016.igem.org/Team:TAS_Taipei/Model#gsrch25h">GSR/CH25H Pathway</a></h5>
 
</div>
 
</div>
 
<div>
 
<div>
Line 231: Line 231:
 
<div id="category_navbar">
 
<div id="category_navbar">
 
<ul class="nav nav-list" data-spy="affix" data-offset-top="160" style='-webkit-transform: translateZ(0);width:160px;margin-left:0' >
 
<ul class="nav nav-list" data-spy="affix" data-offset-top="160" style='-webkit-transform: translateZ(0);width:160px;margin-left:0' >
<li><a href="#cataract">What are Cataracts?</a></li>
+
<li><a href="#lensmodel">Lens Cataract Model</a></li>
<li><a href="#solution">What is our Solution?</a></li>
+
<li><a href="#construct">Prevention &amp; Treatment Model</a></li>
 
                         <ul>
 
                         <ul>
 
                             <li> <a href="#prevention">Prevention</a></li>
 
                             <li> <a href="#prevention">Prevention</a></li>
 
                             <li> <a href="#treatment">Treatment</a></li>
 
                             <li> <a href="#treatment">Treatment</a></li>
 
                         </ul>
 
                         </ul>
 +
                        <li><a href="#prototype">Delivery Prototype</a></li>
 
</ul>
 
</ul>
 
</div>
 
</div>
Line 244: Line 245:
  
 
<div class="col-sm-10" style="padding-right:5%">
 
<div class="col-sm-10" style="padding-right:5%">
<div class="row">
+
<div class="col-sm-12">
+
                        <body>
+
<h1 id='overview'>Project Description</h1>
+
                                                   
+
                        <p>Cataracts are the leading cause of blindness today, affecting 20 million people worldwide (World Health Organization). Half of Americans above 80 years old are affected by cataracts (National Eye Institute), and many animals are too! The International Center for Eye Health projects that in 20 years, the number of cataract patients will increase to 400 million (International Center for Eye Health). </p>                           
+
    </div>
+
                </div>
+
 
+
 
+
 
+
 
                     <div class = "row">
 
                     <div class = "row">
 
              <div class="col-sm-12">
 
              <div class="col-sm-12">
        <h2 id = 'cataract'>What are Cataracts?</h2>
+
        <h2 id = 'lensmodel'>Setting Up a Cataract Model</h2>
 
                             <div class="row">
 
                             <div class="row">
                                 <div class="col-sm-6">
+
                                 <div class="col-sm-12">
 
                                 <p>
 
                                 <p>
                                     The lens is mostly made of proteins called crystallins. Crystallin proteins are normally soluble, which keeps the lens clear and allows light entering the eye to focus. When these proteins are damaged, they form insoluble clumps (Truscott, 2005). This causes the clouding seen in cataractous lenses, which scatters light and in turn makes vision blurry (Figure Y).
+
                                     Through literature research, we found that glutathione (GSH) and 25-hydroxycholesterol (25HC) should prevent and treat cataracts, respectively. We wanted to first see if we could simulate cataract formation and reproduce the effects of GSH and 25HC seen by other researchers. If successful, then we can later test our own constructs using the same cataract model.
 
                                 </p>
 
                                 </p>
 
                                 </div>
 
                                 </div>
                                <figure class = "col-sm-6">
 
        <img src="https://static.igem.org/mediawiki/2016/d/dd/T--TAS_Taipei--Normal_vs_Cataract.jpeg">
 
                                    <figcaption class='darkblue'><b>Figure Y. </b>Cataracts scatter light coming through the lens, which blurs vision.</figcaption>
 
      </figure>
 
 
                             </div>
 
                             </div>
 
                             <br><br>
 
                             <br><br>
 
                             <div class="row">
 
                             <div class="row">
                                <figure class = "col-sm-6">
+
                                 <div class="col-sm-12">
        <img src="https://static.igem.org/mediawiki/2016/9/92/T--TAS_Taipei--Oxidative_Damage.jpeg">
+
                                    <figcaption class='darkblue'><b>Figure X.</b> Oxidative damage by H2O2 can lead to proteins misfolding, breaking apart, and clumping.</figcaption>
+
                                </figure>
+
                                 <div class="col-sm-6">
+
 
                                 <p>
 
                                 <p>
                                     Cataracts can be caused by many factors, including radiation and diabetes, but the underlying cause is oxidative damage. Oxidative damage happens when unstable chemicals containing oxygen react with DNA, lipids, and proteins, disrupting cellular functions (Truscott, 2005). In the lens, crystallin proteins can be oxidized by hydrogen peroxide (H2O2), which is a reactive molecule produced during aerobic respiration (Giorgio et al., 2007). H2O2 modifies protein residues and changes the shape of the protein. The damaged proteins then aggregate and form clumps in the lens (Truscott, 2005) (Figure X).  
+
                                     We set up the model by extracting soluble proteins from the lens of Priacanthus macracanthus, a common freshwater fish that we purchased from a market (Figure 01 left). There are two distinct parts to the lens: an outer soft layer called the cortex and an inner layer called the nucleus (Figure 01 right). We focused on the lens nucleus, because that part contains older cells and is more prone to cataract formation. The lens nucleus was placed into Tris Buffer and gently shaken overnight. After centrifuging, the supernatant contains dissolved protein from the lens nucleus. We then incubated the lens solution with hydrogen peroxide (H2O2), since H2O2 is the main reactive oxygen species that oxidizes lens proteins and induces cataracts.  
 
                                 </p>
 
                                 </p>
 
                                 </div>
 
                                 </div>
                               
 
 
                             </div>
 
                             </div>
                       
+
                            <div class="row">
                         
+
                                <figure class = "col-sm-12">
 +
        <img src="https://static.igem.org/mediawiki/2016/8/86/T--TAS_Taipei--Fish_Lens_Picture.jpg">
 +
                                    <figcaption class='darkblue'> <b>Figure 1 (left).</b> Priacanthus macracanthus purchased from the market. <b>(right)</b> The two spheres on the left are lens with cortex and nucleus and the two smaller spheres on the right are nucleus. </figcaption>
 +
      </figure>
 +
                            </div>
 +
                             
 
                             <br><br>
 
                             <br><br>
 
                             <div class="row">
 
                             <div class="row">
 +
                                <div class="col-sm-6">
 +
                                <p>
 +
                                    To quantify the severity of cataracts in our model, we used spectrophotometer to measure absorbance of the protein solution (Figure 03). As lens proteins get oxidized, absorbance should increase because protein clumps that form will scatter the emitted light. To find a wavelength of light for data collection, we compared the absorbance of an untreated proteins, H2O2-treated proteins, and heat-denatured proteins as a positive control. We observed an absorbance peak at 397.5 nm for insoluble lens proteins, and chose to collect all future absorbance values at that wavelength. 
 +
                                </p>
 +
                                </div>
 +
                                <figure class = "col-sm-6">
 +
        <img src="https://static.igem.org/mediawiki/2016/f/f5/T--TAS_Taipei--Spectrophotometer_Experimental.png">
 +
                                    <figcaption class='darkblue'><b>Figure 3.</b> CT-2400 Spectrophotometer used to measure absorbance value </figcaption>
 +
      </figure>
 +
                            </div>
 +
                          <br><br>
 +
                          <div class="row">
 
                                 <div class="col-sm-12">
 
                                 <div class="col-sm-12">
 
                                 <p>
 
                                 <p>
                                     In the eye, a natural antioxidant called glutathione (GSH) exists, which can convert H2O2 into water (Giblin, 2000). With age, however, GSH levels decrease, and oxidative damage caused by H2O2 increases. When there is more H2O2 in the lens than GSH can remove, crystallins become damaged (Figure Z). When GSH levels are low, H2O2 starts to oxidize crystallins and cause cataracts. As lens cells age, they move towards the nucleus and their GSH levels all (Cvekl, 2014), which may explain why the older cells in the lens nucleus are more prone to developing cataracts (Figure A).
+
                                     We tested different concentrations of H2O2 on this protein solution to see if cataracts form. Our results show that increasing concentrations of H2O2 lead to more severe cataracts (Figure 04). We also ran a protein gel to compare the sizes of untreated and H2O2-treated proteins. After treatment with H2O2, there was an increase in higher bands, which is consistent with the idea that proteins are clumping and aggregating (Figure 05). Together, the protein gel and our lens cataract model suggest that our model accurately represents cataract development.  
 
                                 </p>
 
                                 </p>
 
                                 </div>
 
                                 </div>
Line 295: Line 294:
 
                             <div class="row">
 
                             <div class="row">
 
                                 <figure class = "col-sm-7">
 
                                 <figure class = "col-sm-7">
        <img src="https://static.igem.org/mediawiki/2016/5/5d/T--TAS_Taipei--Antioxidant_Balance.jpeg">
+
        <img src="https://static.igem.org/mediawiki/2016/7/7c/T--TAS_Taipei--H2O2_Lens_Graph.jpg">
                                     <figcaption class='darkblue'><b>Figure Z.</b> Cataracts scatter light coming through the lens, which blurs vision.</figcaption>
+
                                     <figcaption class='darkblue'><b>Figure 4.</b> Percent change in absorbance of lens solutions treated with H2O2</figcaption>
 
      </figure>
 
      </figure>
 
                                 <div class="col-sm-1"></div>
 
                                 <div class="col-sm-1"></div>
 
                                 <figure class = "col-sm-4">
 
                                 <figure class = "col-sm-4">
        <img src="https://static.igem.org/mediawiki/2016/6/6c/T--TAS_Taipei--New_vs_Old_Cells.jpeg">
+
        <img src="https://static.igem.org/mediawiki/2016/7/7c/T--TAS_Taipei--DegradedProtein_Experimental.jpg">
                                     <figcaption class='darkblue'><b>Figure A.</b> Lens cells move towards the nucleus as they mature. Old cells have less GSH and are more susceptible to oxidation.</figcaption>
+
                                     <figcaption class='darkblue'><b>Figure 5.</b> SDS Page. The left lane is lens protein solution seated in room temperature for two days. The middle lane is lens protein solution treated with 10mM of H2O2 for two days. The right lane is the molecular ladder. </figcaption>
 
      </figure>
 
      </figure>
 
                             </div>
 
                             </div>
 
                           <br><br>
 
                           <br><br>
 +
                        <h3 id = 'preventionmodel'>Testing Prevention of Cataracts with GSH</h2>
 
                           <div class="row">
 
                           <div class="row">
 
                                 <div class="col-sm-7">
 
                                 <div class="col-sm-7">
 
                                 <p>
 
                                 <p>
                                     The current standard treatment for cataracts is surgery, which replaces the cloudy lens with a clear artificial lens. Surgery is effective, but like all surgeries, it is invasive and requires professional equipment and trained surgeons. These requirements add to the cost, which averages about $3,500 per eye in the US (Sigre, 2016), and is the biggest obstacle to solving cataracts worldwide. Through literature research, we found a molecule called 25-hydroxycholesterol (25HC) that can reverse protein aggregation. We hope to use this as an alternative to surgery to treat cataracts.  
+
                                     GSH is the main antioxidant in the lens and prevents H2O2 from oxidizing crystallin proteins. After GSH converts H2O2 into water, it becomes GSSG, which will be recycled back to GSH with the help of glutathione reductase (GSR) (figure 06). Older cells in the nucleus are unable to produce GSR efficiently, so over time GSSG builds up. Our project is to deliver the GSR into the lens in order to facilitate the conversion of GSSG to GSH. We purchased GSH from Sigma Aldrich. 8 mg of GSH was added to the protein solution prior to the addition of H2O2 .
 +
                                </p>
 +
                                </div>
 +
                              <figure class = "col-sm-5">
 +
        <img src="https://static.igem.org/mediawiki/2016/4/43/T--TAS_Taipei--GSH_Pathway_Experimental.png">
 +
                                    <figcaption class='darkblue' style="font-color:red"><b>Figure 6.</b> Glutathione and Reduced Glutathione recycling pathway</figcaption>
 +
      </figure>
 +
                            </div>
 +
                          <div class="row">
 +
                               
 +
                              <figure class = "col-sm-5">
 +
        <img src="https://static.igem.org/mediawiki/2016/2/2a/T--TAS_Taipei--GSH_Lens_Graph.jpg">
 +
                                    <figcaption class='darkblue' style="font-color:red"><b>Figure ???.</b> Caption not provided!!!</figcaption>
 +
      </figure>
 +
                              <div class="col-sm-7">
 +
                                <p>
 +
                                    Protein solutions with GSH and H2O2 have an absorbance value lesser than those with just protein solutions with H2O2 . The smaller absorbance value indicates smaller protein aggregation and shows GSH has preventative effect. (figure #)
 +
                                </p>
 +
                                </div>
 +
                            </div>
 +
                         
 +
                         
 +
                          <h3 id = 'treatmentmodel'>Testing Treatment of Cataracts with CH25H</h3>
 +
                          <div class="row">
 +
                              <div class="col-sm-7">
 +
                                <p>
 +
                                    We select 25 HC (25 hydroxycholesterol) to be our treatment because it reverses aggregation and restores solubility of the lens crystallin protein by stabilizing the natural state of the proteins.
 +
                                    In order to verify our research, we use commercially bought 25 HC from Sigma Aldrich to treat the cataracts model. Commercial 25HC came in powder form, and was dissolved in 95% ethanol; thus, for our negative control, we added both H2O2 and ethanol into the protein solution. We also bought vet eyedrops for cataracts from OcluVet to be the positive control (Figure 1). Figure 2 shows the setup of the experiment.  
 
                                 </p>
 
                                 </p>
 
                                 </div>
 
                                 </div>
 +
                             
 
                               <figure class = "col-sm-5">
 
                               <figure class = "col-sm-5">
        <img src="https://static.igem.org/mediawiki/2016/e/e2/T--TAS_Taipei--Surgery_Cataract.jpeg">
+
        <img src="https://static.igem.org/mediawiki/2016/7/7f/T--TAS_Taipei--Eyedrop_Experimental.png">
                                     <figcaption class='darkblue' style="font-color:red"><b>Figure ???.</b> Caption not provided!!</figcaption>
+
                                     <figcaption class='darkblue' style="font-color:red"><b>Figure 1.</b> The Ocluvet vet eyedrop contains antioxidants that can treat cataracts. We used this eyedrop as our positive control for cataracts treatment.</figcaption>
 
      </figure>
 
      </figure>
 +
                             
 
                             </div>
 
                             </div>
  

Revision as of 04:44, 7 October 2016

Experimental Summary - TAS Taipei iGEM Wiki





Setting Up a Cataract Model

Through literature research, we found that glutathione (GSH) and 25-hydroxycholesterol (25HC) should prevent and treat cataracts, respectively. We wanted to first see if we could simulate cataract formation and reproduce the effects of GSH and 25HC seen by other researchers. If successful, then we can later test our own constructs using the same cataract model.



We set up the model by extracting soluble proteins from the lens of Priacanthus macracanthus, a common freshwater fish that we purchased from a market (Figure 01 left). There are two distinct parts to the lens: an outer soft layer called the cortex and an inner layer called the nucleus (Figure 01 right). We focused on the lens nucleus, because that part contains older cells and is more prone to cataract formation. The lens nucleus was placed into Tris Buffer and gently shaken overnight. After centrifuging, the supernatant contains dissolved protein from the lens nucleus. We then incubated the lens solution with hydrogen peroxide (H2O2), since H2O2 is the main reactive oxygen species that oxidizes lens proteins and induces cataracts.

Figure 1 (left). Priacanthus macracanthus purchased from the market. (right) The two spheres on the left are lens with cortex and nucleus and the two smaller spheres on the right are nucleus.


To quantify the severity of cataracts in our model, we used spectrophotometer to measure absorbance of the protein solution (Figure 03). As lens proteins get oxidized, absorbance should increase because protein clumps that form will scatter the emitted light. To find a wavelength of light for data collection, we compared the absorbance of an untreated proteins, H2O2-treated proteins, and heat-denatured proteins as a positive control. We observed an absorbance peak at 397.5 nm for insoluble lens proteins, and chose to collect all future absorbance values at that wavelength.

Figure 3. CT-2400 Spectrophotometer used to measure absorbance value


We tested different concentrations of H2O2 on this protein solution to see if cataracts form. Our results show that increasing concentrations of H2O2 lead to more severe cataracts (Figure 04). We also ran a protein gel to compare the sizes of untreated and H2O2-treated proteins. After treatment with H2O2, there was an increase in higher bands, which is consistent with the idea that proteins are clumping and aggregating (Figure 05). Together, the protein gel and our lens cataract model suggest that our model accurately represents cataract development.



Figure 4. Percent change in absorbance of lens solutions treated with H2O2
Figure 5. SDS Page. The left lane is lens protein solution seated in room temperature for two days. The middle lane is lens protein solution treated with 10mM of H2O2 for two days. The right lane is the molecular ladder.


Testing Prevention of Cataracts with GSH

GSH is the main antioxidant in the lens and prevents H2O2 from oxidizing crystallin proteins. After GSH converts H2O2 into water, it becomes GSSG, which will be recycled back to GSH with the help of glutathione reductase (GSR) (figure 06). Older cells in the nucleus are unable to produce GSR efficiently, so over time GSSG builds up. Our project is to deliver the GSR into the lens in order to facilitate the conversion of GSSG to GSH. We purchased GSH from Sigma Aldrich. 8 mg of GSH was added to the protein solution prior to the addition of H2O2 .

Figure 6. Glutathione and Reduced Glutathione recycling pathway
Figure ???. Caption not provided!!!

Protein solutions with GSH and H2O2 have an absorbance value lesser than those with just protein solutions with H2O2 . The smaller absorbance value indicates smaller protein aggregation and shows GSH has preventative effect. (figure #)

Testing Treatment of Cataracts with CH25H

We select 25 HC (25 hydroxycholesterol) to be our treatment because it reverses aggregation and restores solubility of the lens crystallin protein by stabilizing the natural state of the proteins. In order to verify our research, we use commercially bought 25 HC from Sigma Aldrich to treat the cataracts model. Commercial 25HC came in powder form, and was dissolved in 95% ethanol; thus, for our negative control, we added both H2O2 and ethanol into the protein solution. We also bought vet eyedrops for cataracts from OcluVet to be the positive control (Figure 1). Figure 2 shows the setup of the experiment.

Figure 1. The Ocluvet vet eyedrop contains antioxidants that can treat cataracts. We used this eyedrop as our positive control for cataracts treatment.

What is our Solution?

Our goal is to develop noninvasive, easy-to-use, and affordable eyedrops to prevent and treat cataracts. Patients who already have cataracts need to reverse protein damage. Through literature research, we found a molecule called 25-hydroxycholesterol (25HC) that can reverser protein aggregation.

Prevention

Through literature research, we found an enzyme that recycles oxidized glutathione (GSSG) into glutathione (GSH), which neutralizes H2O2 and prevents crystallin damage. This enzyme is called glutathione reductase (GR) (Ganea & Harding, 2006). Even though GR exists in the lens, its amount decreases with age (Michael, 2011). We produced GR for delivery into the lens and prevention of cataracts.

Figure ???. Caption not provided!!!
Figure ???. Caption not provided!!!







Figure ???. Caption not provided!!!


Treatment

We also found a molecule that can restore solubility of protein clumps and lens transparency. It is called 25-hydroxycholesterol (25HC) (Makley et al., 2015). 25HC can be produced from cholesterol, which is abundant in the lens, by the enzyme cholesterol 25-hydroxylase (CH25H). We produced CH25H for delivery into the lens and treatment of cataracts.

Figure ???. Caption not provided!!!


Citations












Prevention

GSR Eyedrop

Treatment

25HC Eyedrop

LOCS: 0      


Eyedrops




× The tutorial is disabled.          
Turn off prevention eyedrops to activate the animation. For a full tutorial, click the question mark.