Line 18: | Line 18: | ||
<div class="container" id="summary" style="width:80%;"> | <div class="container" id="summary" style="width:80%;"> | ||
<hr> | <hr> | ||
− | <h3 style="font-family:lato-heavy">This year we managed to isolate a few cellulose degraders and identify them. We also did an extensive proof of concept for our plan to use microbiomes as a "mine" for enzymes and gathered evidence that it would likely work to identify cellulose degrading enzymes. We showed that an E. coli used to degrade soft-wood lumber waste would not be inhibited by the anti-microbial properties of terpenes found in tree's milled for softwood lumber. We also created a couple of new biobricks containing enzymes that we identified bioinformatically from Ruminiclostridium thermocellum, a cellulose degrader identified in the porcupine microbiome. Next year we intend to move forward with the metagenomic library and isolate more enzymes that would be useful for converting soft-wood lumber waste to a better source of fuel (ethanol) or be useful for bioremediation.</h3> | + | <h3 style="font-family:lato-heavy;text-align:center;">This year we managed to isolate a few cellulose degraders and identify them. We also did an extensive proof of concept for our plan to use microbiomes as a "mine" for enzymes and gathered evidence that it would likely work to identify cellulose degrading enzymes. We showed that an E. coli used to degrade soft-wood lumber waste would not be inhibited by the anti-microbial properties of terpenes found in tree's milled for softwood lumber. We also created a couple of new biobricks containing enzymes that we identified bioinformatically from Ruminiclostridium thermocellum, a cellulose degrader identified in the porcupine microbiome. Next year we intend to move forward with the metagenomic library and isolate more enzymes that would be useful for converting soft-wood lumber waste to a better source of fuel (ethanol) or be useful for bioremediation.</h3> |
<hr> | <hr> | ||
− | |||
</div> | </div> | ||
<div class="jumbotron" id="1"> | <div class="jumbotron" id="1"> |
Revision as of 17:04, 10 October 2016
Results
This year we managed to isolate a few cellulose degraders and identify them. We also did an extensive proof of concept for our plan to use microbiomes as a "mine" for enzymes and gathered evidence that it would likely work to identify cellulose degrading enzymes. We showed that an E. coli used to degrade soft-wood lumber waste would not be inhibited by the anti-microbial properties of terpenes found in tree's milled for softwood lumber. We also created a couple of new biobricks containing enzymes that we identified bioinformatically from Ruminiclostridium thermocellum, a cellulose degrader identified in the porcupine microbiome. Next year we intend to move forward with the metagenomic library and isolate more enzymes that would be useful for converting soft-wood lumber waste to a better source of fuel (ethanol) or be useful for bioremediation.
What Worked Out
Chemical Analysis, Proof of Concept and Biobrick
For the Future
What we have planned for the future