Difference between revisions of "Team:Dalhousie Halifax NS/Results"

Line 81: Line 81:
 
   </div>
 
   </div>
 
   <div class="jumbotron text-center" id="future">
 
   <div class="jumbotron text-center" id="future">
   <h1 style="font-family:lato-black; opacity:0.85;"> For the Future </h1>
+
   <h1 style="font-family:lato-black; opacity:0.85; color:white;"> For the Future </h1>
 
   </div>
 
   </div>
 
   <div class="container">
 
   <div class="container">

Revision as of 18:01, 16 October 2016


This year we managed to isolate a few cellulose degrading bacteria and identify them. We also did an extensive proof of concept for our plan to use microbiomes as a "mine" for enzymes and gathered evidence that it would, likely, enable us to identify genes that encode cellulose degrading enzymes. We showed that growth of an E. coli strain used to degrade soft-wood lumber waste would not be inhibited by the anti-microbial properties of terpenes found in trees milled for softwood lumber. We also created a couple of new biobricks containing enzymes that we identified bioinformatically from Ruminiclostridium thermocellum, a cellulose degrader identified in the porcupine microbiome. Next year we intend to move forward with the metagenomic library and isolate more enzymes that would be useful for converting soft-wood lumber waste to a source of efficient fuel (ethanol) or be useful for bioremediation.


Our Results

DNA Sequencing and Bacterial Isolation

Bacterial Isolation:

Colony PCR:

The colony PCR that was done with the cellulose-degrading colonies can be seen on the gel to the left. A 1kb ladder can also be seen on this image. Most of the PCR reactions were successful here, so the DNA was quantified used the geldoc and was purified with ExoSapIt before being sent to GeneWiz for sequencing.

High-Throughput Sequencing:

The high-throughput sequencing part of our project was done mostly to provide evidence for the feasibility of creating a metagenomic library from microbiome DNA. The results are documented in detail on our Proof of Concept page.

Chemical Analysis

Gas Chromatography/Mass Spectrometry:

We analyzed two samples using GC/MS; commercial (store-bought) turpentine, and our home-made (steam-distilled) terpenic extract. In gas chromatography, analytes are first seperated by boiling point - they are then seperated based on their affinity to the column. The analytes are then identified using mass spectrometry.

We found that the commercial stuff contained mostly D-Limonene, as well as a variety of other terpenes (with alpha-pinene being present in very trace amounts). In comparison, the terpenic extract contained mostly alpha-pinene and beta-pinene in a 3:1 ratio.

Bacterial Inhibition with Terpenes:

We tested for bacterial inhibition first by simply culturing E. coli on solid media with a dab of pine tree resin in the center. We expected we would find a zone of inhibition, but did not observe such a thing.

After isolating the terpenic extract from the resin, we repeated similar experiments by soaking into Whatman filter paper and placing it in the culturing plate. No zone of inhibition was observed.

We moved on to liquid media, and solubilized the water-insoluble terpenic extract using DMF (N,N-dimethylformamide). A series of culturing tubes were innoculated with E. coli and varying amounts of the terpenic extract were added; we started at a concentration of 4.3 mg/mL and worked our way down, and then measured turbidity -- and found no inhibition. This procedure was also carried out using pure alpha-pinene (and we still found no inhibition).

Additionally, we tested the residue which remained after steam-distillation, and still found no inhibition.

The afforementioned experiments (in liquid culture using terpenic extracts and pure alpha-pinene) were also performed on S. cerevisiae, and clear, distinct inhibition was observed. We therefore conclude that E. coli is very resistant to the anti-microbial properties of pine tree resin, and that the terpenes would not interfere with our goals for cellulose degradation. For bioremediation, however, a different species of bacteria should be used to screen the metagenomic library (because E. coli can survive terpenes).

For the Future

Metagenomic Library

How?

This year we had a bit of time to perfect the metagenomic library protocol. With this new protocol we believe that we will be able to build the metagenomic library using DNA Extracted from porcupine fecal sample and transforming that library into E. coli. We should be able to screen this library for cellulose degrading enzymes as well as terpene degrading enzymes that could prove useful in our search for new biofuel feedstocks and production solutions

Why?

We have been able to provide evidence that a metagenomic library from DNA extracted from porcupine fecal samples would provide us with a new source of cellulose degrading enzymes. The next step would be to actually attempt the metagenomic library and search for the enzymes we have been able to identify bioinformatically.


Dalhousie iGEM 2016