(7 intermediate revisions by 2 users not shown) | |||
Line 30: | Line 30: | ||
document.getElementById("slide4").checked = true; | document.getElementById("slide4").checked = true; | ||
} else if (document.getElementById('slide4').checked) { | } else if (document.getElementById('slide4').checked) { | ||
− | |||
− | |||
document.getElementById("slide1").checked = true; | document.getElementById("slide1").checked = true; | ||
} | } | ||
Line 46: | Line 44: | ||
</head> | </head> | ||
− | <body class="home"> | + | <body><div class="home"> |
<div id="header_navbar_top"> | <div id="header_navbar_top"> | ||
Line 71: | Line 69: | ||
<input type=radio name=slider id=slide3 onchange="resetSliderTimer()" /> | <input type=radio name=slider id=slide3 onchange="resetSliderTimer()" /> | ||
<input type=radio name=slider id=slide4 onchange="resetSliderTimer()" /> | <input type=radio name=slider id=slide4 onchange="resetSliderTimer()" /> | ||
− | |||
<!-- The Slider --> | <!-- The Slider --> | ||
Line 81: | Line 78: | ||
<article> | <article> | ||
− | <div class="info-container"><div class=info><h3>Turning pollution into a solution</h3><a href="https://2016.igem.org/Team:Chalmers_Gothenburg/ | + | <div class="info-container"><div class=info><h3>Turning pollution into a solution</h3><a href="https://2016.igem.org/Team:Chalmers_Gothenburg/Description">Learn more about our project idea</a></div></div> |
− | <a href="https://2016.igem.org/Team:Chalmers_Gothenburg/ | + | <a href="https://2016.igem.org/Team:Chalmers_Gothenburg/Description"><img src="https://static.igem.org/mediawiki/2016/a/a7/T--Chalmers_Gothenburg--slideshow_project.png" /></a> |
</article> | </article> | ||
Line 93: | Line 90: | ||
<article> | <article> | ||
− | <div class="info-container"><div class=info><h3>Achievements</h3><a href="https://2016.igem.org/Team:Chalmers_Gothenburg/ | + | <div class="info-container"><div class=info><h3>Achievements</h3><a href="https://2016.igem.org/Team:Chalmers_Gothenburg/Results">Learn more about our results</a></div></div> |
− | <a href="https://2016.igem.org/Team:Chalmers_Gothenburg/ | + | <a href="https://2016.igem.org/Team:Chalmers_Gothenburg/Results"><img src=https://static.igem.org/mediawiki/2016/9/93/T--Chalmers_Gothenburg--slideshow_achievements.png /></a> |
</article> | </article> | ||
<article> | <article> | ||
− | <div class="info-container"><div class=info><h3>Human Practices</h3><a href="https://2016.igem.org/Team:Chalmers_Gothenburg/ | + | <div class="info-container"><div class=info><h3>Integrated Human Practices</h3><a href="https://2016.igem.org/Team:Chalmers_Gothenburg/HP/Gold">Learn about how Human Practices shaped our project</a></div></div> |
− | <a href="https://2016.igem.org/Team:Chalmers_Gothenburg/ | + | <a href="https://2016.igem.org/Team:Chalmers_Gothenburg/HP/Gold"><img src=https://static.igem.org/mediawiki/2016/2/28/T--Chalmers_Gothenburg--slideshow_human_practices_presentation.png /></a> |
</article> | </article> | ||
− | |||
− | |||
− | |||
− | |||
</div> <!-- .inner --> | </div> <!-- .inner --> | ||
Line 122: | Line 115: | ||
<label for=slide3></label> | <label for=slide3></label> | ||
<label for=slide4></label> | <label for=slide4></label> | ||
− | |||
</div> <!-- #controls --> | </div> <!-- #controls --> | ||
Line 132: | Line 124: | ||
<label for=slide3></label> | <label for=slide3></label> | ||
<label for=slide4></label> | <label for=slide4></label> | ||
− | |||
</div> | </div> | ||
Line 148: | Line 139: | ||
− | <p class="text"> | + | <p class="text">It is a well-known fact that our current way of life as a species is greatly affecting our planet in a negative way. With massive emissions of greenhouse gases we’ve started seeing effects such as global warming. One way to greatly reduce greenhouse gas emission is to replace petroleum based chemical synthesis. Microbial biosynthesis is considered by many to be the most viable alternative to the petroleum based platform. </p> |
− | + | ||
− | + | <p class="text">However, biosynthesis may sound promising but it still has a few question marks to straighten out before we can see it as a perfect solution to our problems.</p> | |
− | + | ||
− | + | <p class="text">Biosynthesis of certain products has a high cost-to-benefit ratio, with substrate comprising a major part of the total costs for industrial fermentation. With this in mind, our idea is to create a self-sustaining microbial system that produces its own substrate using photosynthesis. We want to create a co-culture where a photosynthetic cyanobacterium provides a production organism with the carbon substrate. Thus by using this co-culture we could convert sunlight and carbon dioxide into desired products. By developing multiple production organisms specialized in synthesizing different products, we could create an ease-of-use library enabling quick access to environmental friendly biosynthesis.</p> | |
− | + | ||
− | + | <a href="https://2016.igem.org/Team:Chalmers_Gothenburg/Description"><h2>Welcome to the solar-powered future</h2></a> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
Line 176: | Line 160: | ||
− | </body> | + | </div></body> |
</html> | </html> |
Latest revision as of 13:26, 19 October 2016
The project
It is a well-known fact that our current way of life as a species is greatly affecting our planet in a negative way. With massive emissions of greenhouse gases we’ve started seeing effects such as global warming. One way to greatly reduce greenhouse gas emission is to replace petroleum based chemical synthesis. Microbial biosynthesis is considered by many to be the most viable alternative to the petroleum based platform.
However, biosynthesis may sound promising but it still has a few question marks to straighten out before we can see it as a perfect solution to our problems.
Biosynthesis of certain products has a high cost-to-benefit ratio, with substrate comprising a major part of the total costs for industrial fermentation. With this in mind, our idea is to create a self-sustaining microbial system that produces its own substrate using photosynthesis. We want to create a co-culture where a photosynthetic cyanobacterium provides a production organism with the carbon substrate. Thus by using this co-culture we could convert sunlight and carbon dioxide into desired products. By developing multiple production organisms specialized in synthesizing different products, we could create an ease-of-use library enabling quick access to environmental friendly biosynthesis.