Difference between revisions of "Team:Chalmers Gothenburg/Parts"

 
(3 intermediate revisions by 2 users not shown)
Line 12: Line 12:
 
   </head>
 
   </head>
  
   <body class="achievements">
+
   <body><div class="achievements">
 
      
 
      
 
     <div id="header_navbar_wrapper">
 
     <div id="header_navbar_wrapper">
Line 40: Line 40:
  
  
         <h3>Acetate kinase (AckA) – <a href="http://parts.igem.org/Part:BBa_K2030002">BBa_K2030002</a></h3>
+
         <h3>Acetate kinase (<i>AckA</i>) – <a href="http://parts.igem.org/Part:BBa_K2030002">BBa_K2030002</a></h3>
  
 
         <p class="text">The coding region of the <i>AckA</i> gene. The gene codes for acetate kinase, an enzyme which is part of the Phosphate acetyltransferase-acetate kinase pathway and is responsible for catalyzing the conversion of acetyl-CoA into acetate [4].</p>
 
         <p class="text">The coding region of the <i>AckA</i> gene. The gene codes for acetate kinase, an enzyme which is part of the Phosphate acetyltransferase-acetate kinase pathway and is responsible for catalyzing the conversion of acetyl-CoA into acetate [4].</p>
Line 50: Line 50:
 
         <p class="text">The promoter to the <i>PYK2</i> gene. <i>PYK2</i> codes for pyruvate kinase, an essential enzyme in the glycolysis that catalyzes the conversion of phosphoenolpyruvate and ADP into pyruvate and ATP [5]. Transcription of <i>PYK2</i> is repressed by glucose [6].</p>
 
         <p class="text">The promoter to the <i>PYK2</i> gene. <i>PYK2</i> codes for pyruvate kinase, an essential enzyme in the glycolysis that catalyzes the conversion of phosphoenolpyruvate and ADP into pyruvate and ATP [5]. Transcription of <i>PYK2</i> is repressed by glucose [6].</p>
 
         <p class="text">The part was taken from the <i>S. cerevisiae</i> genome.</p>
 
         <p class="text">The part was taken from the <i>S. cerevisiae</i> genome.</p>
 +
 +
 +
        <h3>pGLN1 – <a href="http://parts.igem.org/Part:BBa_K2030004">Bba_K2030004</a></h3>
 +
 +
        <p class="text">The promoter to the <i>GLN1</i> gene. <i>GLN1</i> codes for glutamine synthetase, catalyzing the conversion of glutamate and ammonia into glutamine [7]. This part was not sent into the part registry due to it having illegal restriction sites for biobricks.</p>
 +
 +
        <p class="text">The part was taken from <i>S. cerevisiae</i> genome.</p>
 +
  
  
Line 57: Line 65:
 
         <div class="reference_list">
 
         <div class="reference_list">
 
           <ul>
 
           <ul>
             <li>[1]&nbsp;&nbsp; Velasco I, Tenreiro S, Calderon IL, André B. Saccharomyces cerevisiae Aqr1 Is an Internal-Membrane Transporter Involved in Excretion of Amino Acids. Eukaryotic Cell. 2004;3(6):1492-503.</li>
+
             <li>[1]&nbsp;&nbsp; Velasco I, Tenreiro S, Calderon IL, André B. <i>Saccharomyces cerevisiae Aqr1</i> Is an Internal-Membrane Transporter Involved in Excretion of Amino Acids. Eukaryotic Cell. 2004;3(6):1492-503.</li>
  
             <li>[2]&nbsp;&nbsp; Valdés-Hevia MD, de la Guerra R, Gancedo C. Isolation and characterization of the gene encoding phosphoenolpyruvate carboxykinase from Saccharomyces cerevisiae. FEBS Letters. 1989;258(2):313-6.</li>
+
             <li>[2]&nbsp;&nbsp; Valdés-Hevia MD, de la Guerra R, Gancedo C. Isolation and characterization of the gene encoding phosphoenolpyruvate carboxykinase from <i>Saccharomyces cerevisiae</i>. FEBS Letters. 1989;258(2):313-6.</li>
  
 
             <li>[3]&nbsp;&nbsp; Weinhandl K, Winkler M, Glieder A, Camattari A. Carbon source dependent promoters in yeasts. MICROBIAL CELL FACTORIES. 2014;13(1):5.</li>
 
             <li>[3]&nbsp;&nbsp; Weinhandl K, Winkler M, Glieder A, Camattari A. Carbon source dependent promoters in yeasts. MICROBIAL CELL FACTORIES. 2014;13(1):5.</li>
Line 65: Line 73:
 
             <li>[4]&nbsp;&nbsp; Anfelt J, Kaczmarzyk D, Shabestary K, Renberg B, Rockberg J, Nielsen J, et al. Genetic and nutrient modulation of acetyl-CoA levels in <i>Synechocystis</i> for n-butanol production. MICROBIAL CELL FACTORIES. 2015;14(1):167.</li>
 
             <li>[4]&nbsp;&nbsp; Anfelt J, Kaczmarzyk D, Shabestary K, Renberg B, Rockberg J, Nielsen J, et al. Genetic and nutrient modulation of acetyl-CoA levels in <i>Synechocystis</i> for n-butanol production. MICROBIAL CELL FACTORIES. 2015;14(1):167.</li>
  
             <li>[5]&nbsp;&nbsp; Burke RL, Tekamp-Olson P, Najarian R. The isolation, characterization, and sequence of the pyruvate kinase gene of Saccharomyces cerevisiae. Journal of Biological Chemistry. 1983;258(4):2193-201.</li>
+
             <li>[5]&nbsp;&nbsp; Burke RL, Tekamp-Olson P, Najarian R. The isolation, characterization, and sequence of the pyruvate kinase gene of <i>Saccharomyces cerevisiae</i>. Journal of Biological Chemistry. 1983;258(4):2193-201.</li>
  
             <li>[6]&nbsp;&nbsp; Boles E, Schulte F, Miosga T, Freidel K, Schlüter E, Zimmermann FK, et al. Characterization of a glucose-repressed pyruvate kinase (Pyk2p) in Saccharomyces cerevisiae that is catalytically insensitive to fructose-1,6-bisphosphate. Journal of Bacteriology. 1997;179(9):2987-93.</li>
+
             <li>[6]&nbsp;&nbsp; Boles E, Schulte F, Miosga T, Freidel K, Schlüter E, Zimmermann FK, et al. Characterization of a glucose-repressed pyruvate kinase (Pyk2p) in <i>Saccharomyces cerevisiae</i> that is catalytically insensitive to fructose-1,6-bisphosphate. Journal of Bacteriology. 1997;179(9):2987-93.</li>
  
 +
            <li>[7]&nbsp;&nbsp; Petrovska I, Nuske E, Munder M, Kulasegaran G, Malinovska L, Kroschwald S, et al. Filament formation by metabolic enzymes is a specific adaptation to an advanced state of cellular starvation. ELIFE. 2014;3(3):e02409-.</li>
 
             </ul>
 
             </ul>
 
           </div>
 
           </div>
Line 77: Line 86:
 
       </html>{{:Team:Chalmers_Gothenburg/footer}}<html>
 
       </html>{{:Team:Chalmers_Gothenburg/footer}}<html>
 
     </div>
 
     </div>
   </body>
+
   </div></body>
  
  

Latest revision as of 13:49, 19 October 2016

Chalmers Gothenburg iGEM 2016

ACHIEVEMENTS
Parts

pAQR1 – BBa_K2030000

The promoter to the AQR1 gene. AQR1 codes for a transporter that enhances secretion of excess amino acids. The transcription of AQR1 is induced by amino acids [1].

The part was taken from the S. cerevisiae genome.

pPCK1 – BBa_K2030001

The promoter to the PCK1 gene. PCK1 codes for phosphoenolpyruvate carboxykinase, an enzyme involved in converting oxaloacetate into phosphoenolpyruvate and carbon dioxide [2]. The promoter pPCK1 has an activity which is induced by acetate, glycerol or ethanol [3].

The part was taken from the S. cerevisiae genome.

Acetate kinase (AckA) – BBa_K2030002

The coding region of the AckA gene. The gene codes for acetate kinase, an enzyme which is part of the Phosphate acetyltransferase-acetate kinase pathway and is responsible for catalyzing the conversion of acetyl-CoA into acetate [4].

The part was taken from the Synechocystis genome.

pPYK2 – BBa_K2030003

The promoter to the PYK2 gene. PYK2 codes for pyruvate kinase, an essential enzyme in the glycolysis that catalyzes the conversion of phosphoenolpyruvate and ADP into pyruvate and ATP [5]. Transcription of PYK2 is repressed by glucose [6].

The part was taken from the S. cerevisiae genome.

pGLN1 – Bba_K2030004

The promoter to the GLN1 gene. GLN1 codes for glutamine synthetase, catalyzing the conversion of glutamate and ammonia into glutamine [7]. This part was not sent into the part registry due to it having illegal restriction sites for biobricks.

The part was taken from S. cerevisiae genome.

References

  • [1]   Velasco I, Tenreiro S, Calderon IL, André B. Saccharomyces cerevisiae Aqr1 Is an Internal-Membrane Transporter Involved in Excretion of Amino Acids. Eukaryotic Cell. 2004;3(6):1492-503.
  • [2]   Valdés-Hevia MD, de la Guerra R, Gancedo C. Isolation and characterization of the gene encoding phosphoenolpyruvate carboxykinase from Saccharomyces cerevisiae. FEBS Letters. 1989;258(2):313-6.
  • [3]   Weinhandl K, Winkler M, Glieder A, Camattari A. Carbon source dependent promoters in yeasts. MICROBIAL CELL FACTORIES. 2014;13(1):5.
  • [4]   Anfelt J, Kaczmarzyk D, Shabestary K, Renberg B, Rockberg J, Nielsen J, et al. Genetic and nutrient modulation of acetyl-CoA levels in Synechocystis for n-butanol production. MICROBIAL CELL FACTORIES. 2015;14(1):167.
  • [5]   Burke RL, Tekamp-Olson P, Najarian R. The isolation, characterization, and sequence of the pyruvate kinase gene of Saccharomyces cerevisiae. Journal of Biological Chemistry. 1983;258(4):2193-201.
  • [6]   Boles E, Schulte F, Miosga T, Freidel K, Schlüter E, Zimmermann FK, et al. Characterization of a glucose-repressed pyruvate kinase (Pyk2p) in Saccharomyces cerevisiae that is catalytically insensitive to fructose-1,6-bisphosphate. Journal of Bacteriology. 1997;179(9):2987-93.
  • [7]   Petrovska I, Nuske E, Munder M, Kulasegaran G, Malinovska L, Kroschwald S, et al. Filament formation by metabolic enzymes is a specific adaptation to an advanced state of cellular starvation. ELIFE. 2014;3(3):e02409-.