Difference between revisions of "Team:Newcastle/Proof"

m
(Replaced content with "{{Newcastle}}")
Line 1: Line 1:
 
{{Newcastle}}
 
{{Newcastle}}
<html>
 
<style>
 
#box1{
 
    float: left;
 
    margin-right: 10px;
 
    position: relative;
 
}
 
#bodyContent{
 
    background-color: #EFE6C5;
 
}
 
#box2{
 
    position: relative;
 
    float: right;
 
    width: 35%;
 
    left: 2%;
 
}
 
 
#box3{
 
    float: left;
 
    margin-right: 10px;
 
    position: relative;
 
    margin-bottom: 50px;
 
 
}
 
 
h2{
 
    color: #F1594B;
 
}
 
 
li{
 
    color: #000
 
}
 
 
p{
 
    color: #000;
 
font-weight: bold;
 
}
 
#box1 a, #box3 a{
 
    color: #F1594B;
 
}
 
ol li
 
{
 
    font-size: 2rem !important;
 
}
 
</style>
 
<body>
 
  <div class="column">
 
<br>
 
<h2>Results</h2>
 
      <div id="bio-bulb">
 
        <h3><a href="https://2016.igem.org/Team:Newcastle/Proof/ElectricallyInducedLightBulb">Heat Induced 'Light Bulb'</a></h3>
 
 
<p> We aimed to engineer <i>Escherichia coli</i> so that it increases expression of a fluorescent protein (sfGFP) when an electrical current is passed through the growth medium, via the use of inducible promoters that respond to the heat-stress response created by the conversion of electrical energy to waste heat.</p>
 
 
<p> We designed two parts (<a href="http://parts.igem.org/Part:BBa_K1895000">BBa_K1895000</a> and <a href="http://parts.igem.org/Part:BBa_K1895006">BBa_K1895006</a>) which respond to the heat-stress in two different ways:</p>
 
<ol>
 
<li><a href="http://parts.igem.org/Part:BBa_K1895000">BBa_K1895000</a> contains the <em>E. coli</em> <i>htpG</i> promoter. RNA polymerase requires the stress response sigma-factor (&sigma;<sup>32</sup>) to initiate transcription of genes downstream of this promoter. &sigma;<sup>32</sup> is produced by cells when under different forms of stress, one of which is heat. This composite part also contains a modified BioBrick compatible &sigma;<sup>32</sup> coding region (the gene <em>rpoH</em>, <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K1895001">BBa_K1895001</a>) which will create a positive feedback loop to the P<em><sub>htpG</em></sub> promoter, therefore increasing the expression of the downstream reporter gene <em>sfGFP</em> and the  fluorescence of the cell.</li>
 
 
<li><a href="http://parts.igem.org/Part:BBa_K1895006">BBa_K1895006</a> contains the <em>dnaK</em> promoter which, like P<em><sub>htpG</em></sub>, is transcribed via binding of RNA polymerase by &sigma;<sup>32</sup>. P<em><sub>dnaK</sub></em> is placed upstream of the BBa_0034 RBS and BBa_I746916 sfGFP.</li>
 
</ol>
 
 
<p>To see our results <a href="https://2016.igem.org/Team:Newcastle/Proof/ElectricallyInducedLightBulb">click here </a></p>
 
 
<br>
 
      </div>
 
 
      <div id="bio-varistor">
 
          <h3><a href="https://2016.igem.org/Team:Newcastle/Proof/VariableResistor">Arabinose Controlled Variable Resistor</a></h3>
 
        <p>We aimed to create a biological “variable resistor” by modifying the <i>E. coli’s</i> natural systems to allow for controlled ion uptake. In order to do so, we looked at the work carried out by the <a href="https://2011.igem.org/Team:Tokyo-NoKoGen/metallothionein">2011 Tokyo-NokoGen iGEM team</a> who used the <i>smtA</i> gene from Cyanobacteria and inserted it into a strain of <i>E. coli</i>. SmtA is thought to play a role in preventing heavy metal toxicity by binding excess heavy metal ions such as Cadmium (II), as characterised by <a href="https://2011.igem.org/Team:Tokyo-NoKoGen/metallothionein">Tokyo-NokoGen</a>, or Zinc (II). </p>
 
 
        <p>We took the <i>smtA</i> gene, (<a href="http://parts.igem.org/Part:BBa_K519010">BBa_K519010</a>), and put it under the control of a P<em><sub>BAD</em></sub> promoter, induced by the presence of L-arabinose, making our BioBrick <a href="http://parts.igem.org/Part:BBa_K1895999">BBa_K1895999</a>. This should allow us to control the uptake of zinc ions by adding or removing L-arabinose, resulting in control over the resistance of the LB media.</p>
 
 
<p>To see our results <a href="https://2016.igem.org/Team:Newcastle/Proof/VariableResistor">click here </a></p>
 
 
<br>
 
 
        <h3><a href="https://2016.igem.org/Team:Newcastle/Proof/MFC">Microbial Fuel Cell</a></h3>
 
<p>We aimed to look at different ways of improving the voltage output of a microbial fuel cell. At first we looked at yeast microbial fuel cells with the help of <a href="http://www.ncl.ac.uk/ceg/role/profile/edmilner.html#publications">Dr Ed Milner</a>, <a href="https://www.researchgate.net/profile/Paniz_Izadi">Dr Paniz Izadi</a> and <a href="http://www.ncl.ac.uk/ceg/role/profile/ianhead.html#background">Professor Ian Head</a>, but after <a href="https://2016.igem.org/Team:Newcastle/Integrated_Practices">talking with PEALS</a> we decided to move away from using yeast and looked at working with <i>E. coli</i> instead. </p>
 
 
<p>For inspiration we looked at the <a href="https://2013.igem.org/Team:Bielefeld-Germany/Project/MFC">Bielefeld 2013 iGEM Team </a>. One of the issues we noticed with their design was that their porin overexpression protein was taken from <i>Pseudomonas fluorescens</i> and so the pores size was too large for the <i>E. coli</i> to handle. We changed this by overexpressing <i>E. coli’s</i> natural porin producing genes <i>ompF</i>,<a href="http://parts.igem.org/Part:BBa_K1895004 "> BBa_K1895004</a>. Bielefeld also had issues with cell growth due to the metabolic stress of using a T7 promoter. To improve this part we used a P<sub><i>BAD</i></sub> promoter to allow the cell population to grow before inducing the porin over-expression, <a href="http://parts.igem.org/Part:BBa_K1895005 ">BBa_K1895005.</a></p>
 
 
<p>To see our results <a href="https://2016.igem.org/Team:Newcastle/Proof/MFC">click here </a></p>
 
 
 
 
</div>
 
 
</html>
 

Revision as of 20:04, 19 October 2016