Difference between revisions of "Team:Austin UTexas/Demonstrate"

 
(118 intermediate revisions by 9 users not shown)
Line 1: Line 1:
 
{{Austin_UTexas}}
 
{{Austin_UTexas}}
 +
<html>
 +
<head>
 +
<style>
  
Kombucha Strains
+
body {
 +
    background-image: url(https://static.igem.org/mediawiki/2016/6/60/T--Austin_UTexas--bg3.jpg);
 +
    background-repeat: no-repeat;
 +
    background-position: 0px 0px;
 +
    background-attachment:fixed;
 +
    background-size: 100%;
 +
}
  
Recapitulation
+
.content {
 +
    padding: 0px;
 +
    background-color: #FFF;
 +
    margin:auto;
 +
}
  
Conjugation
 
  
Ethanol
+
.page {
 +
    width:100%;
 +
    margin:auto;
 +
}
  
pH
+
div.naviSection {
 +
      display:none;
 +
}
  
{| class="wikitable" style="width: 80%;"
+
</style>
|+Microbes Isolated and Identified from Various Store Bought Kombucha Samples
+
! |Species
+
! |Classification
+
! |Brand of Kombucha Isolated From
+
|-style="text-align: center;"
+
|Staphylococcus warneri
+
|Bacteria
+
|GT’s Kombucha
+
|-style="text-align: center;"
+
|Staphylococcus epidermidis
+
|Bacteria
+
|GT's Kombucha
+
|-Yeast
+
|-style="text-align: center;"
+
|Gluconobacter oxydans*
+
|Bacteria
+
|GT’s Kombucha
+
|-style="text-align: center;"
+
|Lachancea fermentati*
+
|Yeast
+
|Buddha's Brew
+
|-style="text-align: center;"
+
|Propionibacterium acnes
+
|Bacteria
+
|Buddha's Brew
+
|-style="text-align: center;"
+
|Micrococcus luteus
+
|Bacteria
+
|Buddha's Brew
+
|-style="text-align: center;"
+
|Bacillus pumilus
+
|Bacteria
+
|Buddha's Brew
+
|-style="text-align: center;"
+
|Saccharomyces cerevisiae
+
|Yeast
+
|LIVE Soda Kombucha
+
|-style="text-align: center;"
+
|Schizosaccharomyces pombe*
+
|Yeast
+
|LIVE Soda Kombucha
+
|}
+
(*Indicates a species that is considered vital to the production of kombucha)
+
  
 +
<script>
 +
 +
$(document).ready(function(){
 +
  // Add smooth scrolling to all links
 +
  $("a").on('click', function(event) {
 +
 +
    // Make sure this.hash has a value before overriding default behavior
 +
    if (this.hash !== "") {
 +
      // Prevent default anchor click behavior
 +
      event.preventDefault();
 +
 +
      // Store hash
 +
      var hash = this.hash;
 +
 +
      // Using jQuery's animate() method to add smooth page scroll
 +
      // The optional number (800) specifies the number of milliseconds it takes to scroll to the specified area
 +
      $('html, body').animate({
 +
        scrollTop: $(hash).offset().top
 +
      }, 800, function(){
 +
 
 +
        // Add hash (#) to URL when done scrolling (default click behavior)
 +
        window.location.hash = hash;
 +
      });
 +
    } // End if
 +
  });
 +
});
 +
 +
function showOne(id) {
 +
    $(".naviSection:not(#id)").hide();
 +
    $('#'+id).show();
 +
}
 +
 +
 +
</script>
 +
</head>
 +
 +
<body>
 +
 +
<div class="column full_size_outer">
 +
<div class="column full_size_inner">
 +
<h2> Demonstrate </h2>
 +
<p>For the gold medal “Demonstrate your work” requirement, we have shown that we can recreate kombucha from scratch by adding isolated strains of microbes to tea media. Our tea media, made with water, black tea, and sucrose, simulates the starting mixture used to brew kombucha. We have performed extensive recapitulation trials to determine which strains of yeast and bacteria are necessary for brewing kombucha. Cataloguing these vital strains is a necessary step toward modifying the starting population to create a “designer beverage” with a variety of properties that could benefit kombucha consumers and manufacturers outside the lab. </p>
 +
<p>Click the images below to learn more about our results!</p>
 +
</div>
 +
 +
<div class="column sixth_size">
 +
<input type="image" src="https://static.igem.org/mediawiki/2016/4/40/T--Austin_UTexas--StrainNavi.png" style="width:100%"; onclick="showOne('section1')"/> <p>Kombucha Strains </p>
 +
</div>
 +
 +
<div class="column sixth_size">
 +
<input type="image" src="https://static.igem.org/mediawiki/2016/6/64/T--Austin_UTexas--ConjugationPic.png" style="width:100%;" onclick="showOne('section2')" /><p>Conjugation </p>
 +
</div>
 +
 +
<div class="column sixth_size">
 +
<input type="image" src="https://static.igem.org/mediawiki/2016/0/04/T--Austin_UTexas--RecapNavi.png" style="width:100%;" onclick="showOne('section3')" /><p>Recapitulation</p>
 +
</div>
 +
 +
<div class="column sixth_size">
 +
<input type="image" src="https://static.igem.org/mediawiki/2016/b/bb/T--Austin_UTexas--EtOHNavi.png" style="width:100%;" onclick="showOne('section4')" /><p>Ethanol</p>
 +
</div>
 +
 +
<div class="column sixth_size">
 +
<input type="image" src ="https://static.igem.org/mediawiki/2016/e/e7/T--Austin_UTexas--pHNavi.png" style="width:100%;" onclick="showOne('section6')" /><p>pH</p>
 +
</div>
 +
 +
<div class="column sixth_size">
 +
<input type="image" src ="https://static.igem.org/mediawiki/2016/9/92/T--Austin_UTexas--GellanNavi.png" style="width:100%;" onclick="showOne('section7')" /><p>Gellan Gum</p>
 +
</div>
 +
 +
 +
 +
<br>
 +
<div id="section1" class= "naviSection">
 +
<h2>Kombucha Strains</h2>
 +
 +
</html>
 +
*Successfully isolated microbes from various samples of kombucha.
 +
*Identified strains of bacteria and yeast using rRNA gene sequencing.
 +
*Characterized each of the isolated microbes to facilitate further experimentation.
  
 
<html>
 
<html>
<img src="https://static.igem.org/mediawiki/2016/4/40/T--Austin_UTexas--RecapitulationsDay1vDay4.jpg" alt="RecapitulationsDay1" style="width:80%;">
+
<a href ="https://2016.igem.org/Team:Austin_UTexas/Results#section1">Results</a> (May need to open in a new tab.)
 +
</div>
  
<img src="https://static.igem.org/mediawiki/2016/7/7d/T--Austin_UTexas--Conjugation2.png" alt="Conjugation2" style="width:80%;">
+
<div id="section2" class = "naviSection">
 +
<h2>Conjugation</h2>  
  
 +
</html>
 +
*Attempted conjugation with <i>G. oxydans</i>.
 +
*Performed minimum inhibitory concentration experiments between <i>G. oxydans</i> and spectinomycin, carbenicillin and kanamycin.
 +
*Determined that <i>G. oxydans</i> is resistant to spectinomycin and carbenicillin.
 +
<html>
 +
<a href = "https://2016.igem.org/Team:Austin_UTexas/Results#section2">Results </a> (May need to open in a new tab.)
 +
</div>
 +
 +
<div id = "section3" class = "naviSection">
 +
<h2>Recapitulation</h2>
 +
 +
</html>
 +
*In a process called "recapitulation," we successfully created a kombucha-like culture by adding individual strains of microbes instead of a living culture containing the entire kombucha microbiome.
 +
*Determined that the microbe <i>Ga. hansenii</i> is essential for the fermentation of kombucha.
 +
*Determined that two distinct strains of the yeast <i>Lachancea fermentati</i> are necessary for the fermentation of kombucha, including one that appears to produce high quantities of C02.
 +
<html>
 +
<a href = "https://2016.igem.org/Team:Austin_UTexas/Results#section3">Results </a> (May need to open in a new tab.)
 +
</div>
 +
 +
<div id="section4"  class = "naviSection">
 +
<h2>Ethanol</h2>
 +
 +
</html>
 +
*Found literature describing sequences for genes involved in the metabolism of ethanol to acetic acid in the bacterium <i>Ga. hansenii</i>.
 +
*Designed Golden Gate parts for the assembly of these genes into a functional construct.
 +
*Used a bromothymol blue assay to compare changes in pH resulting from fermentation in multiple strains of <i>Lachancea fermentati</i> isolated from our kombucha.
 +
<html>
 +
<a href = "https://2016.igem.org/Team:Austin_UTexas/Results#section4">Results </a>( May need to open in a new tab.)
 +
</div>
 +
 +
 +
<div id="section6"  class = "naviSection">
 
<h2>pH Sensors</h2>
 
<h2>pH Sensors</h2>
 +
 +
</html>
 +
*Successfully created a neutral pH sensor with a reporter.
 +
*Further characterized the P-atp2 Biobrick.
 +
*Found literature describing three putative promoters in <i>Gluconobacter oxydans</i> that increase transcription under acidic conditions, and currently characterizing these sequences.
 +
<html>
 +
<a href = "https://2016.igem.org/Team:Austin_UTexas/Results#section6">Results</a> (May need to open in a new tab.)
 +
</div>
 +
 +
<div id="section7"  class = "naviSection">
 +
<h2>Gellan Gum</h2>
 +
 +
</html>
 +
* Successfully made Gellan Gum plates from <i>Sphingomonas paucimobilis</i>
 +
* Successfully grew other bacteria on the Gellan Gum plates
 +
* Shared this DIY technology with the Texas Tech iGEM team
 +
<html>
 +
<a href = "https://2016.igem.org/Team:Austin_UTexas/Results#section7">Results </a> (May need to open in a new tab.)
 +
</div>
 +
 +
</html>
 +
 +
{{Team:Austin_UTexas/Footer}}
 +
 +
 +
<!-- Commented out to prevent from being visible on page
 +
<div class="column full_size">
 +
 +
<p>Tell us about your project, describe what moves you and why this is something important for your team.</p>
 +
 +
 +
<h5>What should this page contain?</h5>
 +
<ul>
 +
<li> A clear and concise description of your project.</li>
 +
<li>A detailed explanation of why your team chose to work on this particular project.</li>
 +
<li>References and sources to document your research.</li>
 +
<li>Use illustrations and other visual resources to explain your project.</li>
 +
</ul>
 +
 +
 +
</div>
 +
 
<div class="column full_size" >
 
<div class="column full_size" >
 +
 +
<h5>Advice on writing your Project Description</h5>
 +
 
<p>
 
<p>
Possessing the ability to monitor the brewing process of kombucha without disturbing the microenvironment and using a very visible color reporter would allow for greater insights as to how the populations of organisms and pH may change due to competition amongst other bacteria and yeast in the beverage and SCOBY of the kombucha. The byproducts produced by the kombucha as it brews causes the tea to become more acidic, leading to our team searching for pH sensitive promoters, and for ways to implement these into kombucha.
+
We encourage you to put up a lot of information and content on your wiki, but we also encourage you to include summaries as much as possible. If you think of the sections in your project description as the sections in a publication, you should try to be consist, accurate and unambiguous in your achievements.  
<p>
+
</p>
Though an acidic sensor was what was required for our kombucha analysis, the identification of sensors in other areas of the pH spectrum were explored as well. Three sequences were identified, the CadC operon for the acidic range, CpxA-CpxR complex for the neutral range, and the P-atp2 promoter from the BioBrick Registry (<a href="http://parts.igem.org/Part:BBa_K1675021">BBa_K1675021</a>) for the basic range. Each sequence was paired with a unique corresponding reporter sequence so that if each pH sensitive plasmid were in the same environment, the specific pH of the system could be seen. The reporters used were, <a href="http://parts.igem.org/Part:BBa_E1010">BBa_E1010</a> for the CadC construct, <a href="http://parts.igem.org/Part:BBa_K1033916">BBa_K1033916</a> for the CpxA-CpxR complex, and <a href="http://partsregistry.org/Part:BBa_K592009">BBa_K592009</a> for the P-atp2 promoter.
+
 
<p>
+
<u>CadC</u>
+
<p>
+
The CadC operon is a native pathway in <i>E. coli</i>, involved in the cadaverine synthesis pathway. The protein CadC protein on the operon is produced and activates segments downstream of the operon on the CadBA receptors. The CadC protein is pH sensitive to an external pH 5.5 and below, as well as lysine dependent. A point mutation on codon 265, in which argenine is converted to cystine, causes the CadC protein to become lysine independent (Dell, Neely, Olson, 1994).  
+
<p>
+
Unfortunately, we have been unable to grow the modified CadC operon in <i>E. coli</i> suggesting some form of cell toxicity. Due to this apparent toxicity, no data regarding this mutant CadC could be collected. Alternative candidates are being explored for other pH sensors that sense in the acidic range.
+
<p>
+
<u>CpxA-CpxR</u>
+
 
<p>
 
<p>
CpxA-CpxR is a two-component mechanism that is activated at pH 7.4 and repressed at pH 6.0. CpxA is an intermembrane protein that autophosphorylates at a certain external pH, CpxR (a kinase) then gets phosphorylated by CpxA and acts as a transcription factor. This system originally is a transcription factor for the virF gene, but we replaced virF with the Reporter. The original sequence was found in Shigella sonnei, but E. coli has a homolog of these proteins so all that is required on the construct is the appropriate prefix/suffix and CpxR binding site.
+
Judges like to read your wiki and know exactly what you have achieved. This is how you should think about these sections; from the point of view of the judge evaluating you at the end of the year.
<p>
+
</p>
<img src="https://static.igem.org/mediawiki/2016/6/63/T--Austin_UTexas--Cpx_pH_Culture_Tubes_2.png" alt="Cpx_pH_Culture_Tubes" style="width:80%;">
+
 
<p>
+
The order from left to right is Control pH 6-9 and then Experimental pH 6-9. These are showing the gradient change in expression accordingly with the change of pH due to a pH-dependent promotor compared to consistent expression accordingly with a promoter that is always "on". The main point is that the Control at pH 6 has more expression of the Yellow-Green Chromoprotein than the Experimental at pH 6. The pH-Dependent promoter of the Experimental group is down-regulated at pH 6 whereas the control is not. Also, there is an increase in YGCP expression between the Experiment pH 7 and pH 8 that is not seen in the Control between pH 7 and pH 8. The normalized data is below shows the relative expression of YGCP. The construct can be found on the iGEM registry as: Bba_K2097000.
+
<p>
+
<img src="https://static.igem.org/mediawiki/2016/a/ad/T--Austin_UTexas--pH_Dependent_Promoter.jpeg" alt="pH_Dependent_Promoter" style="width:80%;">
+
<p>
+
<u>P-atp2</u>
+
<p>
+
The P-atp2 promoter, native to the bacterium <i>Corynebacterium glutamicum</i> is reportedly induced at pH 7, to pH 9 (XX_how to site another iGEM team?_XX). Utilizing the blue chromoprotein (<a href="http://partsregistry.org/Part:BBa_K592009">BBa_K592009</a>), a test was designed in which a plasmid containing the P-atp2 promoter with the blue chromoprotein was grown alongside an <i>E. coli</i> line that contained a plasmid with just the blue chromoprotein. We expected to see constant blue chromoprotein production in the control series (those that lacked P-atp2) and a visual increase in blue chromoprotein as the pH was raised from 6 to 9 in the cells that contained the P-atp2 construct.
+
 
</div>
 
</div>
  
<img src="https://static.igem.org/mediawiki/2016/4/46/T--Austin_UTexas--Patp2Results.png" alt="Patp2Results" style="width:80%;">
 
  
<div class="column full_size" >
+
<div class="column half_size" >
<p>
+
 
<u>Next Steps and the GOX Sequences as Putative Promoters</u>
+
<h5>References</h5>
 +
<p>iGEM teams are encouraged to record references you use during the course of your research. They should be posted somewhere on your wiki so that judges and other visitors can see how you thought about your project and what works inspired you.</p>
  
 
</div>
 
</div>
 +
 +
 +
<div class="column half_size" >
 +
<h5>Inspiration</h5>
 +
<p>See how other teams have described and presented their projects: </p>
 +
 +
<ul>
 +
<li><a href="https://2014.igem.org/Team:Imperial/Project"> Imperial</a></li>
 +
<li><a href="https://2014.igem.org/Team:UC_Davis/Project_Overview"> UC Davis</a></li>
 +
<li><a href="https://2014.igem.org/Team:SYSU-Software/Overview">SYSU Software</a></li>
 +
</ul>
 +
</div>
 +
 +
 +
 
</html>
 
</html>
 +
--!>
 +
 +
 +
 +
 +
<!--{{Austin_UTexas}}
 
<html>
 
<html>
<div class="column full_size" >
+
 
 +
<head>
 +
<style>
 +
body {
 +
    background-image: url(https://static.igem.org/mediawiki/2016/6/60/T--Austin_UTexas--bg3.jpg);
 +
    background-repeat: no-repeat;
 +
    background-position: 0px 0px;
 +
    background-attachment:fixed;
 +
    background-size: 100%;
 +
}
 +
 
 +
div.naviSection {
 +
      display:none;
 +
}
 +
</style>
 +
<script>
 +
function showOne(id) {
 +
    $(".naviSection:not(#id)").hide();
 +
    $('#'+id).show();
 +
}
 +
</script>
 +
</head>
 +
 
 +
 
 +
<body>
 +
<div class="column full_size_outer">
 +
<div class="column full_size_inner">
 +
  <h2>Demonstrate</h2>
 +
  <br>
 +
    <p> Click on one of the images below to learn more about our results! </p>
 +
    </div>
 +
 
 +
 
 +
<div class="column fifth_size">
 +
<input type="image" src="https://static.igem.org/mediawiki/2016/4/40/T--Austin_UTexas--StrainNavi.png" style="width:100%"; onclick="showOne('section1')"/> <p>Kombucha Strains </p>
 +
</div>
 +
 
 +
<div class="column fifth_size">
 +
<input type="image" src="https://static.igem.org/mediawiki/2016/6/64/T--Austin_UTexas--ConjugationPic.png" style="width:100%;" onclick="showOne('section2')" /><p>Conjugation </p>
 +
</div>
 +
 
 +
<div class="column fifth_size">
 +
<input type="image" src="https://static.igem.org/mediawiki/2016/0/04/T--Austin_UTexas--RecapNavi.png" style="width:100%;" onclick="showOne('section3')" /><p>Recapitulation</p>
 +
</div>
 +
 
 +
<div class="column fifth_size">
 +
<input type="image" src="https://static.igem.org/mediawiki/2016/b/bb/T--Austin_UTexas--EtOHNavi.png" style="width:100%;" onclick="showOne('section4')" /><p>Ethanol</p>
 +
</div>
 +
 
 +
<div class="column fifth_size">
 +
<input type="image" src ="https://static.igem.org/mediawiki/2016/e/e7/T--Austin_UTexas--pHNavi.png" style="width:100%;" onclick="showOne('section6')" /><p>pH</p>
 +
</div>
 +
 
 +
<div class="column full_size_inner">
 +
<div id="section1" class= "naviSection">
 +
<h2>Kombucha Strains</h2>
 +
 
 +
</html>
 +
*Successfully isolated microbes from various samples of kombucha.
 +
*Identified strains of bacteria and yeast using rRNA gene sequencing.
 +
*Characterized each of the isolated microbes to facilitate further experimentation.
 +
 
 +
<html>
 +
<a href = "https://2016.igem.org/Team:Austin_UTexas/Results#section1">Results </a>
 +
</div>
 +
 
 +
<div id="section2" class = "naviSection">
 +
<h2>Conjugation</h2>
 +
 
 +
</html>
 +
*Attempted conjugation with <i>G. oxydans</i>.
 +
*Performed minimum inhibitory concentration experiments between <i>G. oxydans</i> and spectinomycin, carbenicillin and kanamycin.
 +
*Determined that <i>G. oxydans</i> is resistant to spectinomycin and carbenicillin.
 +
<html>
 +
<a href = "https://2016.igem.org/Team:Austin_UTexas/Results#section2">Results </a>
 +
</div>
 +
 
 +
<div id = "section3" class = "naviSection">
 +
<h2>Recapitulation</h2>
 +
 
 +
</html>
 +
*In a process called "recapitulation," we successfully created a kombucha-like culture by adding individual strains of microbes instead of a living culture containing the entire kombucha microbiome.
 +
*Determined that the microbe <i>Ga. hansenii</i> is essential for the fermentation of kombucha.
 +
*Determined that two distinct strains of the yeast <i>Lachancea fermentati</i> are necessary for the fermentation of kombucha, including one that appears to produce high quantities of C02.
 +
<html>
 +
<a href = "https://2016.igem.org/Team:Austin_UTexas/Results#section3">Results </a>
 +
</div>
 +
 
 +
<div id="section4"  class = "naviSection">
 +
<h2>Ethanol</h2>
 +
 
 +
</html>
 +
*Found literature describing sequences for genes involved in the metabolism of ethanol to acetic acid in the bacterium <i>Ga. hansenii</i>.
 +
*Designed Golden Gate parts for the assembly of these genes into a functional construct.
 +
*Used a bromothymol blue assay to compare changes in pH resulting from fermentation in multiple strains of <i>Lachancea fermentati</i> isolated from our kombucha.
 +
<html>
 +
<a href = "https://2016.igem.org/Team:Austin_UTexas/Results#section4">Results </a>
 +
</div>
 +
 
 +
<div id="section6"  class = "naviSection">
 +
<h2>pH Sensors</h2>
 +
 
 +
</html>
 +
*Successfully created a neutral pH sensor with a reporter.
 +
*Further characterized the P-atp2 Biobrick.
 +
*Found literature describing three putative promoters in <i>Gluconobacter oxydans</i> that increase transcription under acidic conditions, and currently characterizing these sequences.
 +
<html>
 +
<a href = "https://2016.igem.org/Team:Austin_UTexas/Results#section6">Results </a></div>
 +
 
 +
<div="column full_size"> <br><br><br></div>
 +
</html>
 +
 
  
 
<!-- Commented out to prevent from being visible on page
 
<!-- Commented out to prevent from being visible on page
Line 140: Line 388:
 
</div>
 
</div>
 
-->
 
-->
 
 
 
</html>
 

Latest revision as of 00:48, 20 October 2016

Demonstrate

For the gold medal “Demonstrate your work” requirement, we have shown that we can recreate kombucha from scratch by adding isolated strains of microbes to tea media. Our tea media, made with water, black tea, and sucrose, simulates the starting mixture used to brew kombucha. We have performed extensive recapitulation trials to determine which strains of yeast and bacteria are necessary for brewing kombucha. Cataloguing these vital strains is a necessary step toward modifying the starting population to create a “designer beverage” with a variety of properties that could benefit kombucha consumers and manufacturers outside the lab.

Click the images below to learn more about our results!

Kombucha Strains

Conjugation

Recapitulation

Ethanol

pH

Gellan Gum