Difference between revisions of "Team:Austin UTexas/Demonstrate"

 
(51 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 
{{Austin_UTexas}}
 
{{Austin_UTexas}}
 
 
<html>
 
<html>
 
 
<head>
 
<head>
 
<style>
 
<style>
 +
 
body {
 
body {
 
     background-image: url(https://static.igem.org/mediawiki/2016/6/60/T--Austin_UTexas--bg3.jpg);
 
     background-image: url(https://static.igem.org/mediawiki/2016/6/60/T--Austin_UTexas--bg3.jpg);
Line 11: Line 10:
 
     background-attachment:fixed;
 
     background-attachment:fixed;
 
     background-size: 100%;
 
     background-size: 100%;
 +
}
 +
 +
.content {
 +
    padding: 0px;
 +
    background-color: #FFF;
 +
    margin:auto;
 +
}
 +
 +
 +
.page {
 +
    width:100%;
 +
    margin:auto;
 
}
 
}
  
Line 16: Line 27:
 
       display:none;
 
       display:none;
 
}
 
}
 +
 
</style>
 
</style>
 +
 
<script>
 
<script>
 +
 +
$(document).ready(function(){
 +
  // Add smooth scrolling to all links
 +
  $("a").on('click', function(event) {
 +
 +
    // Make sure this.hash has a value before overriding default behavior
 +
    if (this.hash !== "") {
 +
      // Prevent default anchor click behavior
 +
      event.preventDefault();
 +
 +
      // Store hash
 +
      var hash = this.hash;
 +
 +
      // Using jQuery's animate() method to add smooth page scroll
 +
      // The optional number (800) specifies the number of milliseconds it takes to scroll to the specified area
 +
      $('html, body').animate({
 +
        scrollTop: $(hash).offset().top
 +
      }, 800, function(){
 +
 
 +
        // Add hash (#) to URL when done scrolling (default click behavior)
 +
        window.location.hash = hash;
 +
      });
 +
    } // End if
 +
  });
 +
});
 +
 
function showOne(id) {  
 
function showOne(id) {  
 
     $(".naviSection:not(#id)").hide();
 
     $(".naviSection:not(#id)").hide();
 
     $('#'+id).show();  
 
     $('#'+id).show();  
 
}  
 
}  
 +
 +
 
</script>
 
</script>
 
</head>
 
</head>
 
  
 
<body>
 
<body>
 +
 
<div class="column full_size_outer">
 
<div class="column full_size_outer">
 
<div class="column full_size_inner">
 
<div class="column full_size_inner">
<h2>Demonstrate</h2>
+
<h2> Demonstrate </h2>
<br>
+
<p>For the gold medal “Demonstrate your work” requirement, we have shown that we can recreate kombucha from scratch by adding isolated strains of microbes to tea media. Our tea media, made with water, black tea, and sucrose, simulates the starting mixture used to brew kombucha. We have performed extensive recapitulation trials to determine which strains of yeast and bacteria are necessary for brewing kombucha. Cataloguing these vital strains is a necessary step toward modifying the starting population to create a “designer beverage” with a variety of properties that could benefit kombucha consumers and manufacturers outside the lab. </p>
<p> Click on one of the images below to learn more about our results! </p>
+
<p>Click the images below to learn more about our results!</p>
 
</div>
 
</div>
  
 
+
<div class="column sixth_size">
<div class="column fifth_size">
+
 
<input type="image" src="https://static.igem.org/mediawiki/2016/4/40/T--Austin_UTexas--StrainNavi.png" style="width:100%"; onclick="showOne('section1')"/> <p>Kombucha Strains </p>
 
<input type="image" src="https://static.igem.org/mediawiki/2016/4/40/T--Austin_UTexas--StrainNavi.png" style="width:100%"; onclick="showOne('section1')"/> <p>Kombucha Strains </p>
 
</div>
 
</div>
  
<div class="column fifth_size">
+
<div class="column sixth_size">
 
<input type="image" src="https://static.igem.org/mediawiki/2016/6/64/T--Austin_UTexas--ConjugationPic.png" style="width:100%;" onclick="showOne('section2')" /><p>Conjugation </p>
 
<input type="image" src="https://static.igem.org/mediawiki/2016/6/64/T--Austin_UTexas--ConjugationPic.png" style="width:100%;" onclick="showOne('section2')" /><p>Conjugation </p>
 
</div>
 
</div>
  
<div class="column fifth_size">
+
<div class="column sixth_size">
 
<input type="image" src="https://static.igem.org/mediawiki/2016/0/04/T--Austin_UTexas--RecapNavi.png" style="width:100%;" onclick="showOne('section3')" /><p>Recapitulation</p>
 
<input type="image" src="https://static.igem.org/mediawiki/2016/0/04/T--Austin_UTexas--RecapNavi.png" style="width:100%;" onclick="showOne('section3')" /><p>Recapitulation</p>
 
</div>
 
</div>
  
<div class="column fifth_size">
+
<div class="column sixth_size">
 
<input type="image" src="https://static.igem.org/mediawiki/2016/b/bb/T--Austin_UTexas--EtOHNavi.png" style="width:100%;" onclick="showOne('section4')" /><p>Ethanol</p>
 
<input type="image" src="https://static.igem.org/mediawiki/2016/b/bb/T--Austin_UTexas--EtOHNavi.png" style="width:100%;" onclick="showOne('section4')" /><p>Ethanol</p>
 
</div>
 
</div>
  
<div class="column fifth_size">
+
<div class="column sixth_size">
 
<input type="image" src ="https://static.igem.org/mediawiki/2016/e/e7/T--Austin_UTexas--pHNavi.png" style="width:100%;" onclick="showOne('section6')" /><p>pH</p>
 
<input type="image" src ="https://static.igem.org/mediawiki/2016/e/e7/T--Austin_UTexas--pHNavi.png" style="width:100%;" onclick="showOne('section6')" /><p>pH</p>
 
</div>
 
</div>
 +
 +
<div class="column sixth_size">
 +
<input type="image" src ="https://static.igem.org/mediawiki/2016/9/92/T--Austin_UTexas--GellanNavi.png" style="width:100%;" onclick="showOne('section7')" /><p>Gellan Gum</p>
 +
</div>
 +
  
  
Line 64: Line 109:
 
*Identified strains of bacteria and yeast using rRNA gene sequencing.
 
*Identified strains of bacteria and yeast using rRNA gene sequencing.
 
*Characterized each of the isolated microbes to facilitate further experimentation.  
 
*Characterized each of the isolated microbes to facilitate further experimentation.  
NEED LINK
 
  
__NOTOC__
 
 
<html>
 
<html>
 +
<a href ="https://2016.igem.org/Team:Austin_UTexas/Results#section1">Results</a> (May need to open in a new tab.)
 
</div>
 
</div>
  
Line 77: Line 121:
 
*Performed minimum inhibitory concentration experiments between <i>G. oxydans</i> and spectinomycin, carbenicillin and kanamycin.
 
*Performed minimum inhibitory concentration experiments between <i>G. oxydans</i> and spectinomycin, carbenicillin and kanamycin.
 
*Determined that <i>G. oxydans</i> is resistant to spectinomycin and carbenicillin.
 
*Determined that <i>G. oxydans</i> is resistant to spectinomycin and carbenicillin.
NEED LINK
 
 
<html>
 
<html>
 +
<a href = "https://2016.igem.org/Team:Austin_UTexas/Results#section2">Results </a> (May need to open in a new tab.)
 
</div>
 
</div>
  
Line 88: Line 132:
 
*Determined that the microbe <i>Ga. hansenii</i> is essential for the fermentation of kombucha.
 
*Determined that the microbe <i>Ga. hansenii</i> is essential for the fermentation of kombucha.
 
*Determined that two distinct strains of the yeast <i>Lachancea fermentati</i> are necessary for the fermentation of kombucha, including one that appears to produce high quantities of C02.
 
*Determined that two distinct strains of the yeast <i>Lachancea fermentati</i> are necessary for the fermentation of kombucha, including one that appears to produce high quantities of C02.
NEED LINK
 
 
<html>
 
<html>
 +
<a href = "https://2016.igem.org/Team:Austin_UTexas/Results#section3">Results </a> (May need to open in a new tab.)
 
</div>
 
</div>
  
 
<div id="section4"  class = "naviSection">
 
<div id="section4"  class = "naviSection">
<h2> Ethanol </h2>
+
<h2>Ethanol</h2>
<P> During the fermentation process, yeast in kombucha produce ethanol, the type of alcohol present in beer, wine, and other alcoholic beverages. This presents a challenge to kombucha brewers who wish to market their product as a non-alcoholic beverage. If the alcohol content of a manufacturer’s kombucha exceeds 0.5% at any point during production, the manufacturer may not market their beverage as non-alcoholic and must be regulated as a producer of alcoholic beverages.<sup>1</sup> One way to tackle this problem with synthetic biology is to ferment with yeast that produce less ethanol. However, this may be impractical. Some bacteria in the SCOBY oxidize ethanol produced by the yeast to produce acetic acid, which is a major component of the beverage’s distinctive, tart flavor. </p>
+
<p>Another approach is to increase the rate at which the bacteria convert the ethanol to acetic acid. Two enzymes are responsible for this process: an alcohol dehydrogenase and an aldehyde dehydrogenase.<sup>2</sup> Using Golden Gate assembly, we plan to assemble a construct containing the coding sequences for these genes and insert the construct into <i>Gluconacetobacter hansenii</i>, an acetic acid-producing bacterium similar to those found in kombucha. Then, we plan to recapitulate kombucha with both the transformed and control <i>Ga. hansenii</i> to evaluate the ethanol content over the course of the fermentation with gas chromatography-mass spectrometry. We also plan to determine whether increasing the acetic acid production will lead to a pH change that could affect the flavor of the beverage by testing the pH and observing the cultures for visible differences. If we are able to create a microbial community that results in a lower ethanol content within the kombucha during fermentation, kombucha brewers could use the modified bacterium to help ensure the ethanol content of their product stays below the legal limit.
+
</p>
+
  
<h3>References</h3>
+
</html>
<ol type="1">
+
*Found literature describing sequences for genes involved in the metabolism of ethanol to acetic acid in the bacterium <i>Ga. hansenii</i>.
<li>Alcohol and Tobacco Tax and Trade Bureau. Kombucha Information and Resources. 2016. https://www.ttb.gov/kombucha/kombucha-general.shtml</li>
+
*Designed Golden Gate parts for the assembly of these genes into a functional construct.
<li>Mamlouk, D., and Gullo, M. (2013) Acetic Acid Bacteria: Physiology and Carbon Sources Oxidation. <i>Indian Journal of Microbiology</i> 53, 377–384.</li>
+
*Used a bromothymol blue assay to compare changes in pH resulting from fermentation in multiple strains of <i>Lachancea fermentati</i> isolated from our kombucha.
</ol>
+
<html>
 +
<a href = "https://2016.igem.org/Team:Austin_UTexas/Results#section4">Results </a>( May need to open in a new tab.)
 
</div>
 
</div>
  
<div id="section5"  class = "naviSection">
 
<h2> Brazzein </h2>
 
<P> One of the potential methods to create designer kombucha is to add a brazzein gene into the bacterial strains. Brazzein, a protein found in the pulp of the edible fruit of the African plant <i>Pentadiplandra brazzeana Baill</i>, is an extremely sweet substance<sup>1</sup>. It is 2,000 times sweeter than sucrose by weight. This makes it a healthy and economical alternative to sugar.  Commercial production of brazzein is limited, however, because it comes from a tropical plant. If it could be more easily harvested, it could be used to improve the flavor of various foods and drinks, including kombucha. By genetically engineering the brazzein gene into the bacteria in kombucha, the drink could be sweetened without adding sugar or excessive calories.  While still being a GMO product, this beverage would be low in sugar and could appeal to a health-conscious consumer.</p>
 
  
<h3>References</h3>
+
<div id="section6"  class = "naviSection">
<ol type="1">
+
<h2>pH Sensors</h2>
<li>Yan, Sen et al. “Expression of Plant Sweet Protein Brazzein in the Milk of Transgenic Mice.” Ed. Xiao-Jiang Li. PLoS ONE 8.10 (2013): e76769. </li>
+
 
<li>Brazzein protein structure acquired from European Bioinformatics Institute </li>
+
</html>
</ol>
+
*Successfully created a neutral pH sensor with a reporter.
 +
*Further characterized the P-atp2 Biobrick.
 +
*Found literature describing three putative promoters in <i>Gluconobacter oxydans</i> that increase transcription under acidic conditions, and currently characterizing these sequences.
 +
<html>
 +
<a href = "https://2016.igem.org/Team:Austin_UTexas/Results#section6">Results</a> (May need to open in a new tab.)
 
</div>
 
</div>
  
<div id="section6"  class = "naviSection">
+
<div id="section7"  class = "naviSection">
<h2> pH Sensors </h2>
+
<h2>Gellan Gum</h2>
<p>Many of the microorganisms involved in the fermentation of kombucha produce acidic metabolites that lower the pH of the culture. Using pH-sensitive promoters to control the expression of reporter proteins, such as GFP or a chromoprotein, would allow visualization of the pH change. The promoters Cpx, P-atp2, and Cadc were selected as pH sensors to indicate pH in the neutral, basic, and acidic ranges, respectively.<sup>1,3,5,6</sup> These constructs have been or will be transformed into <i>Escherichia coli</i> to confirm pH sensitivity prior to introduction to kombucha and to see if these constructs could be utilized as sensors in mediums besides kombucha.</p>
+
<p>Modification of <i>Gluconobacter oxydans</i>, a bacterium in kombucha, is also planned to avoid disturbing the kombucha microbiome. Three endogenous upstream regions of loci that were reported to show increased mRNA synthesis as pH decreased were obtained.<sup>2</sup> Golden Gate assembly is currently being used to quickly assemble these promoters upstream of Venus (pYTK033).<sup>4</sup> Once successful, these pH-sensitive promoters with different reporters will be used to visualize the different members of the kombucha microbiome overtime.</p>
+
  
<h3>References</h3>
+
</html>
<ol type="1">
+
* Successfully made Gellan Gum plates from <i>Sphingomonas paucimobilis</i>
<html><li><a href="https://2015.igem.org/Team:BIT-China/Parts">BIT-China-2015</a></li></html>
+
* Successfully grew other bacteria on the Gellan Gum plates
<li>Hanke, T., Richhardt, J., Polen, T., Sahm, H., Bringer, S., and Bott, M. (2012) Influence of oxygen limitation, absence of the cytochrome bc1 complex and low pH on global gene expression in Gluconobacter oxydans 621H using DNA microarray technology. <i>Journal of Biotechnology 157</i>, 359–372.</li>
+
* Shared this DIY technology with the Texas Tech iGEM team
<li>Kuper, C., and Jung, K. (2005) CadC-mediated activation of the cadBA promoter in Escherichia coli. <i>Journal of Molecular and Microbiological Biotechnology 1</i>, 26–39.</li>
+
<html>
<li>Lee ME, DeLoache, WC A, Cervantes B, Dueber, JE. (2015) A Highly-characterized Yeast Toolkit for Modular, Multi-part Assembly. <i>ACS Synthetic Biology 4</i> 975-986</li>
+
<a href = "https://2016.igem.org/Team:Austin_UTexas/Results#section7">Results </a> (May need to open in a new tab.)
<li>Nakayama, S.-I., and Watanabe, H. (1998) Identification of cpxR as a Positive Regulator Essential for Expression of the Shigella sonnei virF Gene. <i>Journal of Bacteriology 180</i>, 3522–3528.</li>
+
</div>
<li>Nakayama, S.-I., and Watanabe, H. (1995) Involvement of cpxA, a Sensor of a Two-Component Regulatory System, in the pH-Dependent Regulation of Expression of Shigella sonnei virF Gene. <i>Journal of Bacteriology 177</i>, 5062–5069.</li>
+
  
<!--
+
</html>
<div class="column full_size_outer">
+
 
 +
{{Team:Austin_UTexas/Footer}}
 +
 
 +
 
 +
<!-- Commented out to prevent from being visible on page
 +
<div class="column full_size">
 +
 
 +
<p>Tell us about your project, describe what moves you and why this is something important for your team.</p>
 +
 
 +
 
 +
<h5>What should this page contain?</h5>
 +
<ul>
 +
<li> A clear and concise description of your project.</li>
 +
<li>A detailed explanation of why your team chose to work on this particular project.</li>
 +
<li>References and sources to document your research.</li>
 +
<li>Use illustrations and other visual resources to explain your project.</li>
 +
</ul>
  
<div class="column full_size_inner">
 
  
 
</div>
 
</div>
 +
 +
<div class="column full_size" >
 +
 +
<h5>Advice on writing your Project Description</h5>
 +
 +
<p>
 +
We encourage you to put up a lot of information and content on your wiki, but we also encourage you to include summaries as much as possible. If you think of the sections in your project description as the sections in a publication, you should try to be consist, accurate and unambiguous in your achievements.
 +
</p>
 +
 +
<p>
 +
Judges like to read your wiki and know exactly what you have achieved. This is how you should think about these sections; from the point of view of the judge evaluating you at the end of the year.
 +
</p>
 +
 +
</div>
 +
 +
 +
<div class="column half_size" >
 +
 +
<h5>References</h5>
 +
<p>iGEM teams are encouraged to record references you use during the course of your research. They should be posted somewhere on your wiki so that judges and other visitors can see how you thought about your project and what works inspired you.</p>
 +
 +
</div>
 +
 +
 +
<div class="column half_size" >
 +
<h5>Inspiration</h5>
 +
<p>See how other teams have described and presented their projects: </p>
 +
 +
<ul>
 +
<li><a href="https://2014.igem.org/Team:Imperial/Project"> Imperial</a></li>
 +
<li><a href="https://2014.igem.org/Team:UC_Davis/Project_Overview"> UC Davis</a></li>
 +
<li><a href="https://2014.igem.org/Team:SYSU-Software/Overview">SYSU Software</a></li>
 +
</ul>
 +
</div>
 +
 +
 +
 +
</html>
 +
--!>
 +
 +
 +
 +
 +
<!--{{Austin_UTexas}}
 +
<html>
 +
 +
<head>
 +
<style>
 +
body {
 +
    background-image: url(https://static.igem.org/mediawiki/2016/6/60/T--Austin_UTexas--bg3.jpg);
 +
    background-repeat: no-repeat;
 +
    background-position: 0px 0px;
 +
    background-attachment:fixed;
 +
    background-size: 100%;
 +
}
 +
 +
div.naviSection {
 +
      display:none;
 +
}
 +
</style>
 +
<script>
 +
function showOne(id) {
 +
    $(".naviSection:not(#id)").hide();
 +
    $('#'+id).show();
 +
}
 +
</script>
 +
</head>
 +
 +
 +
<body>
 +
<div class="column full_size_outer">
 +
<div class="column full_size_inner">
 +
  <h2>Demonstrate</h2>
 +
  <br>
 +
    <p> Click on one of the images below to learn more about our results! </p>
 +
    </div>
 +
  
 
<div class="column fifth_size">
 
<div class="column fifth_size">
Line 156: Line 288:
 
<input type="image" src ="https://static.igem.org/mediawiki/2016/e/e7/T--Austin_UTexas--pHNavi.png" style="width:100%;" onclick="showOne('section6')" /><p>pH</p>
 
<input type="image" src ="https://static.igem.org/mediawiki/2016/e/e7/T--Austin_UTexas--pHNavi.png" style="width:100%;" onclick="showOne('section6')" /><p>pH</p>
 
</div>
 
</div>
<br>
 
  
<div class="naviSection" id="section1">
+
<div class="column full_size_inner">
 +
<div id="section1" class= "naviSection">
 
<h2>Kombucha Strains</h2>  
 
<h2>Kombucha Strains</h2>  
  
Line 165: Line 297:
 
*Identified strains of bacteria and yeast using rRNA gene sequencing.
 
*Identified strains of bacteria and yeast using rRNA gene sequencing.
 
*Characterized each of the isolated microbes to facilitate further experimentation.  
 
*Characterized each of the isolated microbes to facilitate further experimentation.  
NEED LINK
 
  
__NOTOC__
 
 
<html>
 
<html>
 +
<a href = "https://2016.igem.org/Team:Austin_UTexas/Results#section1">Results </a>
 
</div>
 
</div>
  
<div class="naviSection" id="section3">
+
<div id="section2" class = "naviSection">
<h2>Recapitulation</h2>
+
<h2>Conjugation</h2>  
  
 
</html>
 
</html>
*In a process called "recapitulation," we successfully created a kombucha-like culture by adding individual strains of microbes instead of a living culture containing the entire kombucha microbiome.
+
*Attempted conjugation with <i>G. oxydans</i>.
*Determined that the microbe <i>Ga. hansenii</i> is essential for the fermentation of kombucha.
+
*Performed minimum inhibitory concentration experiments between <i>G. oxydans</i> and spectinomycin, carbenicillin and kanamycin.
*Determined that two distinct strains of the yeast <i>Lachancea fermentati</i> are necessary for the fermentation of kombucha, including one that appears to produce high quantities of C02.
+
*Determined that <i>G. oxydans</i> is resistant to spectinomycin and carbenicillin.
NEED LINK
+
 
<html>
 
<html>
 +
<a href = "https://2016.igem.org/Team:Austin_UTexas/Results#section2">Results </a>
 
</div>
 
</div>
  
 
+
<div id = "section3" class = "naviSection">
<div class="naviSection" id="section2">
+
<h2>Recapitulation</h2>
<h2>Conjugation</h2>  
+
  
 
</html>
 
</html>
*Attempted conjugation with <i>G. oxydans</i>.
+
*In a process called "recapitulation," we successfully created a kombucha-like culture by adding individual strains of microbes instead of a living culture containing the entire kombucha microbiome.
*Performed minimum inhibitory concentration experiments between <i>G. oxydans</i> and spectinomycin, carbenicillin and kanamycin.
+
*Determined that the microbe <i>Ga. hansenii</i> is essential for the fermentation of kombucha.
*Determined that <i>G. oxydans</i> is resistant to spectinomycin and carbenicillin.
+
*Determined that two distinct strains of the yeast <i>Lachancea fermentati</i> are necessary for the fermentation of kombucha, including one that appears to produce high quantities of C02.
NEED LINK
+
 
<html>
 
<html>
 +
<a href = "https://2016.igem.org/Team:Austin_UTexas/Results#section3">Results </a>
 
</div>
 
</div>
  
<div class="naviSection" id="section4">
+
<div id="section4" class = "naviSection">
 
<h2>Ethanol</h2>
 
<h2>Ethanol</h2>
  
Line 201: Line 331:
 
*Designed Golden Gate parts for the assembly of these genes into a functional construct.
 
*Designed Golden Gate parts for the assembly of these genes into a functional construct.
 
*Used a bromothymol blue assay to compare changes in pH resulting from fermentation in multiple strains of <i>Lachancea fermentati</i> isolated from our kombucha.
 
*Used a bromothymol blue assay to compare changes in pH resulting from fermentation in multiple strains of <i>Lachancea fermentati</i> isolated from our kombucha.
NEED LINK
 
 
<html>
 
<html>
 +
<a href = "https://2016.igem.org/Team:Austin_UTexas/Results#section4">Results </a>
 
</div>
 
</div>
  
<div class="naviSection" id="section6">
+
<div id="section6" class = "naviSection">
 
<h2>pH Sensors</h2>
 
<h2>pH Sensors</h2>
  
Line 212: Line 342:
 
*Further characterized the P-atp2 Biobrick.
 
*Further characterized the P-atp2 Biobrick.
 
*Found literature describing three putative promoters in <i>Gluconobacter oxydans</i> that increase transcription under acidic conditions, and currently characterizing these sequences.
 
*Found literature describing three putative promoters in <i>Gluconobacter oxydans</i> that increase transcription under acidic conditions, and currently characterizing these sequences.
NEED LINK
 
 
<html>
 
<html>
</div>
+
<a href = "https://2016.igem.org/Team:Austin_UTexas/Results#section6">Results </a></div>
</div>
+
 
 +
<div="column full_size"> <br><br><br></div>
 +
</html>
 +
 
  
 
<!-- Commented out to prevent from being visible on page
 
<!-- Commented out to prevent from being visible on page
Line 256: Line 388:
 
</div>
 
</div>
 
-->
 
-->
 
 
 
</html>
 

Latest revision as of 00:48, 20 October 2016

Demonstrate

For the gold medal “Demonstrate your work” requirement, we have shown that we can recreate kombucha from scratch by adding isolated strains of microbes to tea media. Our tea media, made with water, black tea, and sucrose, simulates the starting mixture used to brew kombucha. We have performed extensive recapitulation trials to determine which strains of yeast and bacteria are necessary for brewing kombucha. Cataloguing these vital strains is a necessary step toward modifying the starting population to create a “designer beverage” with a variety of properties that could benefit kombucha consumers and manufacturers outside the lab.

Click the images below to learn more about our results!

Kombucha Strains

Conjugation

Recapitulation

Ethanol

pH

Gellan Gum