(29 intermediate revisions by 2 users not shown) | |||
Line 6: | Line 6: | ||
<head> | <head> | ||
<style> | <style> | ||
− | + | .h1 { | |
+ | font-family: "DIN Alternate Bold", Helvetica, Arial; | ||
+ | font-size: 30px; | ||
+ | font-style: normal; | ||
+ | font-variant: normal; | ||
+ | font-weight: bold; | ||
+ | line-height: 26.4pt; | ||
+ | color: white; | ||
+ | } | ||
</style> | </style> | ||
Line 12: | Line 20: | ||
<body> | <body> | ||
− | + | | |
− | <div class= | + | <div class="fixed_flyer" id = "sec1" style="position:relative;z-index:1"> |
+ | <div class = "h1">Introduction</div> | ||
+ | </div> | ||
+ | <div class="pagediv"> | ||
<br> | <br> | ||
− | <div class= | + | <div class="para"> |
− | Violacein is a fluorescent reporter with anticancer activity (Carvalho et | + | Violacein is a fluorescent reporter with anticancer activity (Carvalho et al., 2006) |
− | that has been used in several other iGEM projects (Cambridge 2009, Slovenia 2010, | + | that has been used in several other iGEM projects (<a href="https://2009.igem.org/Team:Cambridge">Cambridge 2009</a>, <a href="https://2009.igem.org/Team:Cambridge">Slovenia 2010</a>, |
− | Johns Hopkins 2011, UCSF 2012). Although it would be a good pigment candidate for | + | <a href="https://2009.igem.org/Team:Cambridge">Johns Hopkins 2011</a>, <a href="https://2012.igem.org/Team:UCSF">UCSF 2012</a>). Although it would be a good pigment candidate for |
our project, it has a complex synthetic pathway requiring five specialized enzymes | our project, it has a complex synthetic pathway requiring five specialized enzymes | ||
and oxygen (Fig. 2). It also presents multiple off-path reactions that can reduce | and oxygen (Fig. 2). It also presents multiple off-path reactions that can reduce | ||
Line 24: | Line 35: | ||
production, we needed to find a way to determine which promoters to use for | production, we needed to find a way to determine which promoters to use for | ||
the five genes involved in the pathway. Although there are studies focused on | the five genes involved in the pathway. Although there are studies focused on | ||
− | the optimization of the production of violacein (Lee et | + | the optimization of the production of violacein (Lee et al., 2013), none of |
the studies give a biochemical model of the rates of the reactions that take | the studies give a biochemical model of the rates of the reactions that take | ||
place in the bacteria. | place in the bacteria. | ||
<br><br> | <br><br> | ||
+ | </div> | ||
</div> | </div> | ||
− | <div class= | + | <div class="fixed_flyer" id = "sec2" style="position:relative;z-index:2"> |
+ | <div class = "h1">Objective</div> | ||
+ | </div> | ||
+ | <div class="pagediv"> | ||
<br> | <br> | ||
− | <div class= | + | <div class="para"> |
Create a biochemical model of the violacein production based on the synthetic | Create a biochemical model of the violacein production based on the synthetic | ||
pathway and violacein production data from bacteria with different promoters for | pathway and violacein production data from bacteria with different promoters for | ||
each of the five genes involved in the pathway. | each of the five genes involved in the pathway. | ||
− | </div> | + | <br><br> |
+ | </div> | ||
+ | </div> | ||
− | |||
− | <div class= | + | <div class="fixed_flyer" id = "sec3" style="position:relative;z-index:3"> |
− | + | <div class = "h1">Model Assumptions</div> | |
− | <div class= | + | </div> |
+ | <div class="pagediv"> | ||
+ | <br> | ||
+ | <div class="para"> | ||
<ol> | <ol> | ||
<li>The rate of dilution of the enzymes and the intermediaries is much greater than | <li>The rate of dilution of the enzymes and the intermediaries is much greater than | ||
Line 57: | Line 76: | ||
only requires one parameter for reaction and is less susceptible to overdosing | only requires one parameter for reaction and is less susceptible to overdosing | ||
+ | </div> | ||
</div> | </div> | ||
<br><br> | <br><br> | ||
− | + | <div class="fixed_flyer" id = "sec4" style="position:relative;z-index:4"> | |
− | <div class= | + | <div class = "h1">Model Building Process</div> |
+ | </div> | ||
+ | <div class="pagediv"> | ||
<br> | <br> | ||
− | <div class= | + | <div class="para"> |
− | <div class= | + | <div class="h3">1. Modeling Promoter Strength</div> |
<br> | <br> | ||
Because a major goal of the model is to predict the effects of the selection of | Because a major goal of the model is to predict the effects of the selection of | ||
Line 80: | Line 102: | ||
<br><br> | <br><br> | ||
− | <img src="https://static.igem.org/mediawiki/2016/3/32/Promoter_Strengh_vs_Time_paper.png"> | + | <img src="https://static.igem.org/mediawiki/2016/3/32/Promoter_Strengh_vs_Time_paper.png" style="display: block; margin: auto; width: 80%"> |
<br><br> | <br><br> | ||
Line 86: | Line 108: | ||
<br><br> | <br><br> | ||
− | <img src="https://static.igem.org/mediawiki/2016/ | + | <img src="https://static.igem.org/mediawiki/2016/2/28/Protomter_Equations_new.png" style="display: block; margin: auto; width: 25%"> |
<br><br> | <br><br> | ||
Line 92: | Line 114: | ||
<br><br> | <br><br> | ||
− | <img src="https://static.igem.org/mediawiki/2016/ | + | <img src="https://static.igem.org/mediawiki/2016/5/54/Promoter_ODE_new.png" style="display: block; margin: auto; width: 25%"> |
<br><br> | <br><br> | ||
Since we assumed that the promoter strength is proportional to the promoter concentration, we would use the equation to fit our data using least squares method (Fig. 1). | Since we assumed that the promoter strength is proportional to the promoter concentration, we would use the equation to fit our data using least squares method (Fig. 1). | ||
<br><br> | <br><br> | ||
− | <img src="https://static.igem.org/mediawiki/2016/thumb/3/3a/Fitted_Lines_of_Promoter_Strength_vs_Time.png/800px-Fitted_Lines_of_Promoter_Strength_vs_Time.png"> | + | <img src="https://static.igem.org/mediawiki/2016/thumb/3/3a/Fitted_Lines_of_Promoter_Strength_vs_Time.png/800px-Fitted_Lines_of_Promoter_Strength_vs_Time.png" style="display: block; margin: auto; width: 80%"> |
<br><br> | <br><br> | ||
Line 105: | Line 127: | ||
<br><br> | <br><br> | ||
− | <img src="https://static.igem.org/mediawiki/2016/7/7e/Promoter_Strength_Fit_Parameters.png"> | + | <img src="https://static.igem.org/mediawiki/2016/7/7e/Promoter_Strength_Fit_Parameters.png" style="display: block; margin: auto; width: 60%"> |
<br><br> | <br><br> | ||
− | In the table, ki (i = 1,2,3,4,5) are the production rate coefficients of promoter I (i = 1,2,3,4,5), and kd is the degradation rate coefficient of all promoters. | + | <b>Table 1.</b> Parameters realted to promoter strength and degradation of molecules. In the table, ki (i = 1,2,3,4,5) are the production rate coefficients of promoter I (i = 1,2,3,4,5), and kd is the degradation rate coefficient of all promoters. |
<br><br> | <br><br> | ||
Line 115: | Line 137: | ||
After we finished the regression model of each promoter, we created a second model to describe the violacein biosynthetic pathway. The pathway (Fig. 2) involves five enzyme-catalyzed reactions and one non-enzymatic reaction (Lee et al, 2013). | After we finished the regression model of each promoter, we created a second model to describe the violacein biosynthetic pathway. The pathway (Fig. 2) involves five enzyme-catalyzed reactions and one non-enzymatic reaction (Lee et al, 2013). | ||
<br><br> | <br><br> | ||
− | <img src= "https://static.igem.org/mediawiki/2016/thumb/2/2f/Violacein_Biosynthetic_Pathway.png/ | + | <img src= "https://static.igem.org/mediawiki/2016/thumb/2/2f/Violacein_Biosynthetic_Pathway.png/737px-Violacein_Biosynthetic_Pathway.png" style="display: block; margin: auto; width: 80%"> |
<br><br> | <br><br> | ||
Line 142: | Line 164: | ||
<li>Set the initial guess of the parameters.</li> | <li>Set the initial guess of the parameters.</li> | ||
<li>Load the data from literature, which include the choice of promoter for each gene and the corresponding violacein yield determined experimentally.</li> | <li>Load the data from literature, which include the choice of promoter for each gene and the corresponding violacein yield determined experimentally.</li> | ||
− | <li>For each promoter selection scenario, pass | + | <li>For each promoter selection scenario, pass the promoter types and the temporary parameters to the steady-state model.</li> |
<li>Obtain the violacein yield predicted by the steady-state model for each promoter selection scenario.</li> | <li>Obtain the violacein yield predicted by the steady-state model for each promoter selection scenario.</li> | ||
<li>Compute the residual sum of squares (RSS) of between the predicted violacein yields and the violacein yields given by experiment.</li> | <li>Compute the residual sum of squares (RSS) of between the predicted violacein yields and the violacein yields given by experiment.</li> | ||
<li>Determine the optimal parameters by minimizing the RSS (least square method).</li> | <li>Determine the optimal parameters by minimizing the RSS (least square method).</li> | ||
</ol> | </ol> | ||
+ | |||
+ | <br> | ||
+ | |||
+ | Using the principles of mass action kinetics, we derived the system of ODE equations in the model. The equations involves 17 parameters (Table 2). Five parameters (kA, kB, kC, kD and kE) are related to the production rates of the five enzymes, which depend only the strength of the promoter type. Another parameter, kd, is the degradation coefficient of all molecules due to the growth of E.coli. The value of this parameter is fixed and shown in Table1. In addition to these known parameters, the equations include 11 undetermined parameters related to the reaction rates at specific steps in the violacein synthetic pathway. As described in the pseudocode, we used least square regression to determine the optimal values of these parameters. | ||
+ | <br><br> | ||
+ | Each one of the11 differential equations describes the rate of change of specific molecule in the system. The equations consider the production, consumption, and degradation rates of the molecules. Degradation of molecules is described by first order decay. Therefore, the rate of degradation of a molecule depends on a degradation constant and the degradation coefficient. The degradation coefficient is identical for all molecules since it only depends on E.coli growth rate. | ||
+ | <br><br> | ||
+ | <div class="h3"> Differential Equations in the Model</div> | ||
+ | |||
+ | |||
+ | <br><br> | ||
+ | <img src="https://static.igem.org/mediawiki/2016/c/cf/Enzyme_Production_Rate.png" style="display: block; margin: auto; width: 80%"> | ||
+ | <img src="https://static.igem.org/mediawiki/2016/thumb/7/7f/Chemical_Production_Rate_1.png/1200px-Chemical_Production_Rate_1.png" style="display: block; margin: auto; width: 100%"> | ||
+ | <img src="https://static.igem.org/mediawiki/2016/thumb/f/fd/Chemical_Production_Rate_2.png/1199px-Chemical_Production_Rate_2.png" style="display: block; margin: auto; width: 100%"> | ||
+ | <br><br> | ||
+ | |||
+ | <div class="fixed_flyer" id = "sec5" style="position:relative;z-index:5"> | ||
+ | <div class = "h1">Results</div> | ||
</div> | </div> | ||
+ | <div class="pagediv"> | ||
+ | <br> | ||
+ | <div class="para"> | ||
+ | |||
+ | Our model is able to compute the average violacein yields for all the strains tested experimentally, but can not capture the difference of violacein yield with different promoters strengths. The comparison between the violacein yields determined by experiments and those predicted by our model is shown in Figure 3. The optimal parameters determined by the model are listed in Table 2. | ||
<br><br> | <br><br> | ||
− | <img src="https://static.igem.org/mediawiki/2016/thumb/0/01/Violacein_Yields_Model_Prediction_vs_Data.png/800px-Violacein_Yields_Model_Prediction_vs_Data.png"> | + | <img src="https://static.igem.org/mediawiki/2016/thumb/0/01/Violacein_Yields_Model_Prediction_vs_Data.png/800px-Violacein_Yields_Model_Prediction_vs_Data.png" style="display: block; margin: auto; width: 100%"> |
<br><br> | <br><br> | ||
− | <b>Figure 3.</b> | + | <b>Figure 3.</b> VIolacein yield with different promoter combinations. This graph compares the violacein found for various promoter combinations determined by Jones et al., 2013 (shown in blue) with the violacein concentrations that our model predicted for the same promoter combinations. The root-mean-square error (RMSE) is 52.04. |
+ | <br><br> | ||
+ | <img src="https://static.igem.org/mediawiki/2016/b/bb/Full_parameter_table.png" style="display: block; margin: auto; width: 100%"> | ||
<br><br> | <br><br> | ||
+ | <b>Table 2.</b> Notations of parameters. | ||
+ | <br><br> | ||
+ | </div> | ||
+ | </div> | ||
+ | </div> | ||
+ | </div> | ||
+ | <div class="fixed_flyer" id = "sec6" style="position:relative;z-index:6"> | ||
+ | <div class = "h1">Discussion</div> | ||
+ | </div> | ||
+ | <div class="pagediv"> | ||
+ | <br> | ||
+ | <div class="para"> | ||
+ | The current model is not able to show the expected dependence of violacein yield on promoter strength. After reevaluating our assumptions, we identified some potential flaws of the model that might cause the unexpected results. | ||
+ | <br><br> | ||
+ | One of the assumptions from our model is that the rate of production of L-tryptophan is constant and independent of the promoter strength. Jones el al. suggest that the L-tryptophan production rate may be affected by the metabolic burden of the production of the recombinant enzymes (VioA, VioB, etc.). This phenomenon may be caused by the depletion of essential metabolic resource, such as amino acids, mRNA and ATP. Therefore, the L-tryptophan production rate might need to be dependent on enzymes production rates. | ||
+ | <br><br> | ||
+ | Another effect that we didn’t consider is the saturation of the enzymes. To improve our model, we could include these effects by employing Michaelis-Menten Kinetics equations in our next step. Nevertheless, we have been cautious about including this in our model, since increasing the number of parameters, without increasing the number of data points usually causes the overfitting of the model. | ||
+ | <br><br> | ||
+ | Finally, since the violacein pathway has not been fully characterized, it is possible that we ignored some reactions in the complete pathway. Moreover, there may be feedback loops that regulate the pathway. We will need to investigate these possible components and incorporate them into our model if they prove to be present in the pathway. | ||
+ | <br><br> | ||
+ | </div> | ||
+ | </div> | ||
+ | <div class="fixed_flyer" id = "sec7" style="position:relative;z-index:7"> | ||
+ | <div class = "h1">Conclusion</div> | ||
+ | </div> | ||
+ | <div class="pagediv"> | ||
+ | <br> | ||
+ | <div class="para"> | ||
+ | Here we present a method to fit a model of violacein production in E.coli to experimental data of violacein yield with different promoters using nonlinear regression. Although it fails to calculate the dependence on promoter strength, our model is able predict the average violacein concentration. We expect that small changes on the model, such as including a L-tryptophan production dependence of the metabolic burden, would allow us to successfully predict the violacein production in response to the variation of promoter strength. Once the predictive model is complete, we will be able to find the strains that lead to optimal violacein yield computationally. | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | <div class="fixed_flyer" id = "sec8" style="position:relative;z-index:8"> | ||
+ | <div class = "h1">References</div> | ||
+ | </div> | ||
+ | <div class="para"> | ||
+ | |||
+ | <ol> | ||
+ | <li>Carvalho, D. D., Costa, F. T. M., Duran, N., & Haun, M. (2006). Cytotoxic activity of violacein in human colon cancer cells. <i>Toxicology in Vitro</i>, 20(8), 1514–1521. <br><a href="http://dx.doi.org/10.1016/j.tiv.2006.06.007">http://dx.doi.org/10.1016/j.tiv.2006.06.007</a></li> | ||
+ | <li>Jones, J. A., Vernacchio, V. R., Lachance, D. M., Lebovich, M., Fu, L., Shirke, A. N., … Koffas, M. A. G. (2015). ePathOptimize: A Combinatorial Approach for Transcriptional Balancing of Metabolic Pathways. <i>Scientific Reports</i>, 5, 11301. <br><a href="http://doi.org/10.1038/srep11301">http://doi.org/10.1038/srep11301</a></li> | ||
+ | <li>Lee, M. E., Aswani, A., Han, A. S., Tomlin, C. J., & Dueber, J. E. (2013). Expression-level optimization of a multi-enzyme pathway in the absence of a high-throughput assay. <i>Nucleic Acids Research</i>, 41(22), 10668–10678. <br> <a href="http://doi.org/10.1093/nar/gkt809">http://doi.org/10.1093/nar/gkt809</a></li> | ||
+ | </ol> | ||
+ | </div> | ||
+ | </div> | ||
<br><br><br><br><br> | <br><br><br><br><br> | ||
</body> | </body> | ||
− | + | <script> | |
+ | $(document).ready(function(){ | ||
+ | var sec1=$(".fixed_flyer#sec1"); | ||
+ | var sec1_pos=sec1.offset().top; | ||
+ | var sec2=$(".fixed_flyer#sec2"); | ||
+ | var sec2_pos=sec2.offset().top; | ||
+ | var sec3=$(".fixed_flyer#sec3"); | ||
+ | var sec3_pos=sec3.offset().top; | ||
+ | var sec4=$(".fixed_flyer#sec4"); | ||
+ | var sec4_pos=sec4.offset().top; | ||
+ | var sec5=$(".fixed_flyer#sec5"); | ||
+ | var sec5_pos=sec5.offset().top; | ||
+ | var sec6=$(".fixed_flyer#sec6"); | ||
+ | var sec6_pos=sec6.offset().top; | ||
+ | var sec7=$(".fixed_flyer#sec7"); | ||
+ | var sec7_pos=sec7.offset().top; | ||
+ | var sec8=$(".fixed_flyer#sec8"); | ||
+ | var sec8_pos=sec8.offset().top; | ||
+ | $(window).scroll(function () { | ||
+ | var y=$(this).scrollTop(); | ||
+ | console.log('new position-----------------------'); | ||
+ | console.log('y:',y); | ||
+ | console.log('sec1:', sec1_pos); | ||
+ | console.log('sec2:', sec2_pos); | ||
+ | console.log('sec3:', sec3_pos); | ||
+ | console.log('sec4:', sec3_pos); | ||
+ | if(y<sec2_pos-50){ | ||
+ | if (y>sec1_pos){ | ||
+ | console.log('sec 1 supposed to move'); | ||
+ | sec1.stop().animate({'top':y-sec1_pos+18},1); | ||
+ | } | ||
+ | } else { | ||
+ | sec1.stop().animate({'top':10},1); | ||
+ | }; | ||
+ | if(y<sec3_pos-50){ | ||
+ | if(y>sec2_pos){ | ||
+ | console.log('sec 2 supposed to move'); | ||
+ | sec2.stop().animate({'top':y-sec2_pos+18},1); | ||
+ | } | ||
+ | } else { | ||
+ | sec2.stop().animate({'top':10},1); | ||
+ | }; | ||
+ | if(y<sec4_pos-40){ | ||
+ | if(y>sec3_pos){ | ||
+ | console.log('sec 3 supposed to move'); | ||
+ | sec3.stop().animate({'top':y-sec3_pos+18},1); | ||
+ | } | ||
+ | } else { | ||
+ | sec3.stop().animate({'top':10},1); | ||
+ | }; | ||
+ | if(y<sec5_pos-40){ | ||
+ | if(y>sec4_pos){ | ||
+ | console.log('sec 4 supposed to move'); | ||
+ | sec4.stop().animate({'top':y-sec4_pos+18},1); | ||
+ | } | ||
+ | } else { | ||
+ | sec4.stop().animate({'top':10},1); | ||
+ | }; | ||
+ | if(y<sec6_pos-40){ | ||
+ | if(y>sec5_pos){ | ||
+ | console.log('sec 5 supposed to move'); | ||
+ | sec5.stop().animate({'top':y-sec5_pos+18},1); | ||
+ | } | ||
+ | } else { | ||
+ | sec5.stop().animate({'top':10},1); | ||
+ | }; | ||
+ | if(y<sec7_pos-40){ | ||
+ | if(y>sec6_pos){ | ||
+ | console.log('sec 6 supposed to move'); | ||
+ | sec6.stop().animate({'top':y-sec6_pos+18},1); | ||
+ | } | ||
+ | } else { | ||
+ | sec6.stop().animate({'top':10},1); | ||
+ | }; | ||
+ | if(y<sec8_pos-40){ | ||
+ | if(y>sec7_pos){ | ||
+ | console.log('sec 7 supposed to move'); | ||
+ | sec7.stop().animate({'top':y-sec7_pos+18},1); | ||
+ | } | ||
+ | } else { | ||
+ | sec7.stop().animate({'top':10},1); | ||
+ | }; | ||
+ | if(y<5000){ | ||
+ | if(y>sec8_pos){ | ||
+ | console.log('sec 8 supposed to move'); | ||
+ | sec8.stop().animate({'top':y-sec8_pos+18},1); | ||
+ | } | ||
+ | } else { | ||
+ | sec8.stop().animate({'top':10},1); | ||
+ | }; | ||
+ | }); | ||
+ | }); | ||
+ | </script> | ||
</html> | </html> |
Latest revision as of 03:25, 20 October 2016