(15 intermediate revisions by one other user not shown) | |||
Line 149: | Line 149: | ||
<br><br><br><br><br><br><br><br> | <br><br><br><br><br><br><br><br> | ||
<div class = "fixed_flyer" id = "sec4" style="position:relative;z-index:10;"> | <div class = "fixed_flyer" id = "sec4" style="position:relative;z-index:10;"> | ||
− | <div class = "h1" style="color:white">Hypoxia-Induced | + | <div class = "h1" style="color:white">Hypoxia-Induced Fluorescence</div> |
</div> | </div> | ||
<div class="pagediv"> | <div class="pagediv"> | ||
Line 160: | Line 160: | ||
Transcription of the fdhf promoter is regulated by an RNA polymerase with sigma factor 54 whose binding is dictated by presence of an additional activator complex consisting of FhlA and formate. Only when the FhlA-formate complex is present will the sigma-54 polymerase initiate transcription. This process is induced by formate, but is also heavily repressed by presence of oxygen, giving it characterization as a hypoxia sensor. | Transcription of the fdhf promoter is regulated by an RNA polymerase with sigma factor 54 whose binding is dictated by presence of an additional activator complex consisting of FhlA and formate. Only when the FhlA-formate complex is present will the sigma-54 polymerase initiate transcription. This process is induced by formate, but is also heavily repressed by presence of oxygen, giving it characterization as a hypoxia sensor. | ||
</div> | </div> | ||
− | <img src="https://static.igem.org/mediawiki/2016/f/f3/Hypoxianarkconstruct.jpeg" width=“470px” | + | <img src="https://static.igem.org/mediawiki/2016/f/f3/Hypoxianarkconstruct.jpeg" width=“470px”> |
<div class = "para"> | <div class = "para"> | ||
Line 168: | Line 168: | ||
</div> | </div> | ||
− | <img src="https://static.igem.org/mediawiki/2016/1/1c/Hypoxiafdhfconstruct.jpeg" width=“470px” | + | <img src="https://static.igem.org/mediawiki/2016/1/1c/Hypoxiafdhfconstruct.jpeg" width=“470px”> |
<div class = "para"> | <div class = "para"> | ||
Line 179: | Line 179: | ||
</div> | </div> | ||
− | <img src = "https://static.igem.org/mediawiki/2016/9/99/Nark670.png" width= | + | <img src = "https://static.igem.org/mediawiki/2016/9/99/Nark670.png" width="470px"> |
<div class = "para"> | <div class = "para"> | ||
Line 185: | Line 185: | ||
</div> | </div> | ||
− | <img src = "https://static.igem.org/mediawiki/2016/c/c7/Fdhf670.png" width= | + | <img src = "https://static.igem.org/mediawiki/2016/c/c7/Fdhf670.png" width="470px"> |
<div class ="para"> | <div class ="para"> | ||
Line 191: | Line 191: | ||
</div> | </div> | ||
− | <img src = "https://static.igem.org/mediawiki/2016/4/45/Fdhf713.png" width= | + | <img src = "https://static.igem.org/mediawiki/2016/4/45/Fdhf713.png" width="470px"> |
<div class ="para"> | <div class ="para"> | ||
Line 199: | Line 199: | ||
</div> | </div> | ||
+ | </div> | ||
+ | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
<!-- one section --> | <!-- one section --> | ||
<br><br> | <br><br> | ||
Line 228: | Line 211: | ||
<br><br> | <br><br> | ||
<div class = "para"><br> | <div class = "para"><br> | ||
− | + | Violacein is a fluorescent protein for in vivo photoacoustic imaging in the near-infrared range and shows anti-tumoral activity. Violacein has high potential for future work in bacterial tumor targeting. We have succeeded in constructing violacein. Refer to “Future Directions.” | |
− | + | ||
+ | </div> | ||
+ | |||
+ | <img src ="https://static.igem.org/mediawiki/2016/4/4b/Violaceinplate.png" width="470"> | ||
+ | <div class = "para"> | ||
+ | Figure 4a. Plate of successfully produced violacein colonies. | ||
+ | <div> | ||
+ | |||
</div> | </div> | ||
<!-- one section --> | <!-- one section --> | ||
Line 240: | Line 230: | ||
<div class = "para"><br> | <div class = "para"><br> | ||
<ol> | <ol> | ||
− | <li> | + | <li>Anderson, J. (2006). Environmentally controlled invasion of cancer cells by engineered bacteria. <i>Science Direct</i> <br><a href="http://dx.doi.org/10.1016/j.jmb.2005.10.076">http://dx.doi.org/10.1016/j.jmb.2005.10.076 |
− | <li> | + | </a></li> |
− | <li> | + | <li>Archer, E. J. <i>et al.</i> Engineered E. coli that detect and respond to gut inflammation through NO sensing.<i>ACS Synthetic Biology, 10</i>(1), 451-457. |
+ | <li>Engler, C. (2009). Golden gate shuffling: A one-pot DNA shuffling method based on type 2s restriction enzymes. <i>PLOS One.</i> <br> <a href="http://dx.doi.org/10.1371/journal.pone.0005553">http://dx.doi.org/10.1371/journal.pone.0005553</a></li> | ||
+ | <li>Guzman, L. M. (1995). Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. <i>Journal of Bacteriology,</i>, 4121-4130. Retrieved from <br> <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC177145/">https://www.ncbi.nlm.nih.gov/pmc/articles/PMC177145/</a></li> | ||
+ | <li>Jiang, Y. <i>et al.</i>Violacein as a genetically-controlled, enzymatically amplified and photobleaching-resistant chromophore for optoacoustic bacterial imaging.<i>Sci. Rep. 5,</i> 11048. | ||
+ | <li>Nedosekin, D. (2013). Photoacoustic and photothermal detection of circulating tumor cells, bacteria and nanoparticles in cerebrospinal fluid in vivo and ex vivo. <i>Journal of Biophotonics.</i>, <br> <a href="http://dx.doi.org/10.1002/jbio.201200242 | ||
+ | ">http://dx.doi.org/10.1002/jbio.201200242 | ||
+ | </a></li> | ||
+ | <li>Ntziachristos, V. (2010). Going deeper than microscopy: The optical imaging frontier in biology. <i>Nature Methods</i>, 603-614. <br> <a href="http://dx.doi.org/doi:10.1038/nmeth.1483">http://dx.doi.org/doi:10.1038/nmeth.1483</a></li> | ||
+ | <li>Rockwell, N. C. (2016). Identification of cyanobacteriochromes detecting far-Red light. <i>American Chemical Society</i>. <br> <a href="http://dx.doi.org/10.1021/acs.biochem.6b00299">http://dx.doi.org/10.1021/acs.biochem.6b00299</a></li> | ||
+ | <li>Weber, J. (2016). Contrast agents for molecular photoacoustic imaging. <i>Nature Methods.</i>, <br> <a href="http://dx/doi/org/dow:10.1038/nmeth.3929 | ||
+ | ">http://dx/doi/org/dow:10.1038/nmeth.3929 | ||
+ | </a></li> | ||
+ | <li>Yao, J. (2015). Multiscale photoacoustic tomography using reversibly switchable bacterial phytochrome as a near-infrared photochromic probe. <i>Nature Methods.</i> <br> <a href="http://dx.doi.org/doi:10.1038/nmeth.3656 | ||
+ | ">http://dx.doi.org/doi:10.1038/nmeth.3656</a></li> | ||
+ | |||
</ol> | </ol> | ||
</div> | </div> | ||
</div> | </div> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
<!-- one section --> | <!-- one section --> | ||
</body> | </body> |
Latest revision as of 22:12, 27 November 2016