Difference between revisions of "Team:Peking/Demonstrate"

 
(21 intermediate revisions by 6 users not shown)
Line 7: Line 7:
 
         <!--- Basic Page Needs========================================================================= -->
 
         <!--- Basic Page Needs========================================================================= -->
 
         <meta charset="utf-8"/>
 
         <meta charset="utf-8"/>
         <title>Recovery</title>
+
         <title>Proof</title>
 
         <meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.2, user-scalable=yes" />
 
         <meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.2, user-scalable=yes" />
 
         <meta name="description" content="Wiki of Peking iGEM 2016" />
 
         <meta name="description" content="Wiki of Peking iGEM 2016" />
Line 23: Line 23:
 
         <link rel="stylesheet" href="https://2016.igem.org/Template:Peking/css/layout?action=raw&ctype=text/css"/>
 
         <link rel="stylesheet" href="https://2016.igem.org/Template:Peking/css/layout?action=raw&ctype=text/css"/>
 
         <link rel="stylesheet" href="https://2016.igem.org/Template:Peking/css/media-queries?action=raw&ctype=text/css"/>
 
         <link rel="stylesheet" href="https://2016.igem.org/Template:Peking/css/media-queries?action=raw&ctype=text/css"/>
 +
        <link rel="stylesheet" href="https://2016.igem.org/Template:Peking/css/priorstyle?action=raw&ctype=text/css"/>
 
         <link rel="stylesheet" href="https://2016.igem.org/Template:Peking/css/notebook_panel?action=raw&ctype=text/css"/>
 
         <link rel="stylesheet" href="https://2016.igem.org/Template:Peking/css/notebook_panel?action=raw&ctype=text/css"/>
 
         <style>
 
         <style>
Line 166: Line 167:
 
             opacity:0.7;
 
             opacity:0.7;
 
         }
 
         }
 
        .coll p a{
 
            color:#5c9085 !important;
 
        }
 
        .coll p a:hover{
 
            color:#11abb0 !important;
 
        }
 
        .coll {
 
            width:100%;
 
            float:left;
 
        }
 
        .coll .info {
 
            width:6%;
 
            font-size:11px;
 
            color:#a4a4a4;
 
            margin-top:0px;
 
            float:left;
 
           
 
        }
 
        .coll .content {
 
            width:94%;
 
            float:left;
 
            margin-top:-3px;
 
        }
 
        .coll .ordi {
 
            width;100%;
 
            margin:0px 0px 0px 0px;
 
            font-size:35px;
 
            font-style:italic;
 
            float:left;
 
            color:#11abb0;
 
            opacity:0.8;
 
        }
 
 
 
         </style>
 
         </style>
 
          
 
          
Line 217: Line 184:
 
         <!--panel 引用 end ==================-->
 
         <!--panel 引用 end ==================-->
 
          
 
          
        <!-- Navigation -->
+
              <!-- Navigation -->
 
         <div id="navigation" class="navbar navbar-fixed-top">
 
         <div id="navigation" class="navbar navbar-fixed-top">
 
             <div class="navbar-inner ">
 
             <div class="navbar-inner ">
Line 230: Line 197:
 
                             <li class="dropdown menu-2"><a class="dropdown-toggle" data-toggle="dropdown" href="#" > Achievements</a>
 
                             <li class="dropdown menu-2"><a class="dropdown-toggle" data-toggle="dropdown" href="#" > Achievements</a>
 
                                 <ul class="dropdown-menu">
 
                                 <ul class="dropdown-menu">
                                     <li><a href="https://2016.igem.org/Team:Peking/Demonstrate" >Results</a></li>
+
                                     <li><a href="https://2016.igem.org/Team:Peking/Results" >Results</a></li>
 
                                     <li><a href="https://2016.igem.org/Team:Peking/Basic_Part" >Parts</a></li>
 
                                     <li><a href="https://2016.igem.org/Team:Peking/Basic_Part" >Parts</a></li>
 
                                     <li><a href="https://2016.igem.org/Team:Peking/Collaborations" >Collaborations</a></li>
 
                                     <li><a href="https://2016.igem.org/Team:Peking/Collaborations" >Collaborations</a></li>
Line 241: Line 208:
 
                                     <li><a href="https://2016.igem.org/Team:Peking/Crosslinking" >Crosslinking</a></li>
 
                                     <li><a href="https://2016.igem.org/Team:Peking/Crosslinking" >Crosslinking</a></li>
 
                                     <li><a href="https://2016.igem.org/Team:Peking/Uranyl-adsorption" >Uranyl adsorption</a></li>
 
                                     <li><a href="https://2016.igem.org/Team:Peking/Uranyl-adsorption" >Uranyl adsorption</a></li>
                                     <li><a href="https://2016.igem.org/Team:Peking/Recovery" >Recovery</a></li>
+
                                     <li><a href="https://2016.igem.org/Team:Peking/Clearance" >Clearance</a></li>
 
                                     <li><a href="https://2016.igem.org/Team:Peking/Secretion" >Secretion</a></li>
 
                                     <li><a href="https://2016.igem.org/Team:Peking/Secretion" >Secretion</a></li>
                                     <li><a href="https://2016.igem.org/Team:Peking/Proof" >Proof and speculation</a></li>
+
                                     <li><a href="https://2016.igem.org/Team:Peking/Demonstrate" >Final Performance</a></li>
 
                                 </ul>
 
                                 </ul>
 
                             </li>
 
                             </li>
 
                             <li class="dropdown menu-4"><a class="dropdown-toggle" data-toggle="dropdown" href="#" >Modeling</a>
 
                             <li class="dropdown menu-4"><a class="dropdown-toggle" data-toggle="dropdown" href="#" >Modeling</a>
 
                                 <ul class="dropdown-menu">
 
                                 <ul class="dropdown-menu">
                                     <li><a href="https://2016.igem.org/Team:Peking/Model" >Protein polymerization</a></li>
+
                                     <li><a href="https://2016.igem.org/Team:Peking/Model/GelPoint" > Model of Gel Point </a></li>
 +
                                    <li><a href="https://2016.igem.org/Team:Peking/Model/MassDistribution" > Model of Mass Distribution</a></li>
 
                                     <li><a href="https://2016.igem.org/Team:Peking/Software" >Software</a></li>
 
                                     <li><a href="https://2016.igem.org/Team:Peking/Software" >Software</a></li>
 
                                 </ul>
 
                                 </ul>
Line 258: Line 226:
 
                                     <li><a href="https://2016.igem.org/Team:Peking/HP/questionnaire" >Questionnaire</a></li>
 
                                     <li><a href="https://2016.igem.org/Team:Peking/HP/questionnaire" >Questionnaire</a></li>
 
                                     <li><a href="https://2016.igem.org/Team:Peking/HP/consulting" >Consulting</a></li>
 
                                     <li><a href="https://2016.igem.org/Team:Peking/HP/consulting" >Consulting</a></li>
                                     <li><a href="https://2016.igem.org/Team:Peking/HP/otherHP" >Other work</a></li>
+
                                     <li><a href="https://2016.igem.org/Team:Peking/HP/otherHP" >Education&nbsp;&amp;&nbsp;Other</a></li>
 
                                 </ul>
 
                                 </ul>
 
                             </li>
 
                             </li>
Line 276: Line 244:
 
         </div>
 
         </div>
 
         <!--/Navigation -->
 
         <!--/Navigation -->
 +
 +
 
          
 
          
 
         <!-- Page Title======================================================================== -->
 
         <!-- Page Title======================================================================== -->
Line 281: Line 251:
 
             <div class="row">
 
             <div class="row">
 
                 <div class="twelve columns centered text-center">
 
                 <div class="twelve columns centered text-center">
                     <h1>Demonstration<span>.</span></h1>
+
                     <h1> FINAL PERFORMANCE</h1>
 
                     <p class="title1" style="text-align:center"></p>
 
                     <p class="title1" style="text-align:center"></p>
 
                 </div>
 
                 </div>
Line 299: Line 269:
 
                             <div id="page-wrap">
 
                             <div id="page-wrap">
 
                                 <div id="sidebar" style="color:#000000">
 
                                 <div id="sidebar" style="color:#000000">
                                     <h4><a href="javascript:void(0);" onclick="naver('Project')">Project&nbsp;Achievement</a></h4>
+
                                     <h4><a href="javascript:void(0);" onclick="naver('Background')">Background&nbsp;&amp;&nbsp;Design</a></h4>
                                     <h4><a href="javascript:void(0);" onclick="naver('Beyond')">Beyond&nbsp;Experiment</a></h4>
+
                                     <h4><a href="javascript:void(0);" onclick="naver('Methods')">Methods</a></h4>
                                     <h4><a href="javascript:void(0);" onclick="naver('Future')">Future&nbsp;Plan</a></h4>
+
                                    <h4><a href="javascript:void(0);" onclick="naver('Results')">Results<a></h4>
 +
                                    <h4><a href="javascript:void(0);" onclick="naver('Conclusion')">Discussion</a></h4>
 +
                                     <h4><a href="javascript:void(0);" onclick="naver('App')">Potential&nbsp;Applications<a></h4>
 +
                                    <ul>
 +
                                        <li><a href="javascript:void(0);" onclick="naver('Cadmium')">Cadmium&nbsp;&amp;&nbsp;Lead&nbsp;Reaper</a></li>
 +
                                        <li><a href="javascript:void(0);" onclick="naver('Visual')">Visualization</a></li>
 +
                                    </ul>
 
                                 </div>
 
                                 </div>
 
                             </div>
 
                             </div>
 
                         </div>
 
                         </div>
 
                          
 
                          
 
+
                       
 
                          
 
                          
 
                          
 
                          
 
                         <div class="nine columns">
 
                         <div class="nine columns">
 
                              
 
                              
            <a id="Project"></a>
+
                            <a id="Background"></a>
                             <div class="texttitle">Project Achievement</div>
+
                             <div class="texttitle">Background&nbsp;&amp;&nbsp;Design</div>
 +
                            <p class="lead add-bottom" style="color:#5E5656">Since we have successfully demonstrated that the bio-functional polymer network ould assemble itself quickly, capture uranyl efficiently and be enriched conveniently, we proposed to combine the features of these experiments in a single trial. We thus incubated triple SpyTag-SUP together with triple SpyTag-mSA and triple SpyCatcher, and contacted the product of crosslinking with simulated pollution. After adsorption, we used a magnet and biotin-coated beads to retrieve the polymer network, together with its contents of adsorbed uranyl (Fig. 1.).</p>
 +
                            <figure>
 +
                                <p style="text-align:center;"><img style="width:85% ;" src="https://static.igem.org/mediawiki/2016/e/e2/Fig1_%E6%94%B9.png" alt=""/></p>
 +
                                <figcaption style="text-align:center;">
 +
                                    Fig. 1. Conceptual graph of the integrated experiment.
 +
                                </figcaption>
 +
                            </figure>
 +
                           
 +
                            <br/>
 
                             <br/>
 
                             <br/>
                            <div class="coll">
 
                                <div class="info">
 
                                    <div class="ordi">1.</div>
 
                                </div>
 
                                <div class="content">
 
                                    <p>Constructed a multifunctional protein sequences of interest via molecular biological methods, and introduced the constructed plasmids into the engineered bacteria for protein expression. <a href="https://2016.igem.org/Team:Peking/Basic_Part"/>(Learn more)</a></p>
 
                                </div>
 
                            </div>
 
 
                            <div class="coll">
 
                                <div class="info">
 
                                    <div class="ordi">2.</div>
 
                                </div>
 
                                <div class="content">
 
                                    <p>Searched for methods and the best conditions for the extraction of each protein. <a href="https://2016.igem.org/Team:Peking/Notebook/Protocol:purification_of_recombinant_proteins"/>(Learn more)</a> </p>
 
                                </div>
 
                            </div>
 
 
                              
 
                              
                            <div class="coll">
 
                                <div class="info">
 
                                    <div class="ordi">3.</div>
 
                                </div>
 
                                <div class="content">
 
                                    <p>Demonstrated a quick and stable crosslinking process of Triple SpyTag-SUP and Triple SpyTag-mSA with Triple SpyCatcher via covalent bonds. We also optimized this reaction concerning the relevant parameters such as temperature, pH, etc., and confirmed that changes of pH or temperature would not interfere with the whole process. <a href="https://2016.igem.org/Team:Peking/Crosslinking"/>(Learn more)</a> </p>
 
                                </div>
 
                            </div>
 
 
                              
 
                              
                             <div class="coll">
+
                             <a id="Methods"></a>
                                <div class="info">
+
                            <div class="texttitle">Methods</div>
                                    <div class="ordi">4.</div>
+
                            <p class="lead add-bottom" style="color:#5E5656">We prepared 10μM uranyl nitrate solutions in TBS buffer, as well as in fresh water (sampled from Weiming Lake in Peking University) and seawater (sampled from Qinhuang Island) to simulate real-life pollution.</p>
                                </div>
+
                            <p class="lead add-bottom" style="color:#5E5656">After mixing of 5mg/mL solutions of triple SpyTag-SUP, triple SpyTag-mSA and triple SpyCatcher, each, in a volume ratio of 1:1:2, and subsequent incubation for 1h, we were able to obtain the dual-function crosslinked polymer network encompassing both uranium adsorption and polymer network clearance functions.</p>
                                <div class="content">
+
                            <p class="lead add-bottom" style="color:#5E5656">The protein polymer network was added into the polluted solution and the mixture shaken on a swing bed for 1min, after which the solution was contacted with a suspension of biotin-coated beads (10mg/ml) at a volume ratio of 5:1 (reaction system: beads), and shaken for 1h to ensure good contact between the protein and the beads. Finally, the beads were immobilized using a magnetic shelf, and the uranyl ion concentration in the supernatant was measured using the Arsenazo III assay.
                                    <p>Demonstrated effective adsorption of uranyl ions by monomeric Triple SpyTag-SUP or protein networks containing the SUP module under a number of conditions. The adsorption was highly efficient and fast, not only under experimental conditions but also in simulated seawater or freshwater containing uranium pollution. <a href="https://2016.igem.org/Team:Peking/Uranyl-adsorption"/>(Learn more)</a> </p>
+
                            <h3 class="classic-title">Learn more:</h3>
 +
                            <div class="panel panel-default">
 +
                                <div class="panel-heading panel-title">
 +
                                    <a href="https://2016.igem.org/Team:Peking/Notebook/Protocol:integrating_experiments" aria-expanded="false">Integrating Experiment</a>
 
                                 </div>
 
                                 </div>
 
                             </div>
 
                             </div>
 
                              
 
                              
                            <div class="coll">
 
                                <div class="info">
 
                                    <div class="ordi">5.</div>
 
                                </div>
 
                                <div class="content">
 
                                    <p>Attached biotin to amino-coated magnetic beads and achieved retrieval of the hydrogel formed via the crosslinking of Triple SpyTag-SUP and Triple SpyTag-mSA with Triple SpyCatcher with a magnet. <a href="https://2016.igem.org/Team:Peking/Clearance"/>(Learn more)</a> </p>
 
                                </div>
 
                            </div>
 
 
                              
 
                              
                             <div class="coll">
+
                             <br/>
                                <div class="info">
+
                            <br/>
                                    <div class="ordi">6.</div>
+
                           
                                </div>
+
                            <a id="Results"></a>
                                 <div class="content">
+
                            <div class="texttitle">Results</div>
                                     <p>Set up a signal peptide library and screened for optimally suited signal peptides in order to efficiently secrete the proteins of interest. We found two signal peptides of high efficiency - those derived from OmpA and LtIIB. <a href="https://2016.igem.org/Team:Peking/Secretion"/>(Learn more)</a> </p>
+
                            <p class="lead add-bottom" style="color:#5E5656">The statistical analysis of experimental results is shown in Fig.18. Under the circumstances mentioned above, the Uranium Reaper achieved a relatively good adsorption efficiency (51.4% in TBS buffer, 55.8% in seawater and 60.1% in fresh water). </p>
                                 </div>
+
                            <figure>
                             </div>
+
                                 <img class="featurette-image" src="" style="width:100%;" alt=""/>
 +
                                <figcaption>
 +
                                      
 +
                                </figcaption>
 +
                            </figure>
 +
                            <figure>
 +
                                <p style="text-align:center;"><img style="width:52%;" src="https://static.igem.org/mediawiki/2016/8/8d/T--Peking--images_FP_fig2zhuzhuangtu.png" alt=""/></p>
 +
                                <figcaption style="text-align:left;">
 +
                                    Fig. 2. The remaining proportion of 10μM uranyl in TBS buffer, fresh and seawater after treatment with our polymer network. ****p &lt; 0.0001. n=3. Error bars indicate standard deviations.
 +
                                 </figcaption>
 +
                             </figure>
 
                              
 
                              
                            <div class="coll">
 
                                <div class="info">
 
                                    <div class="ordi">7.</div>
 
                                </div>
 
                                <div class="content">
 
                                    <p>Used all the above-mentioned experiments together to demonstrate that the complete Uranium Reaper system, consisting of Triple SpyTag-SUP, Triple SpyTag-mSA, Triple SpyCatcher and biotin-coated magnetic beads, could effectively handle uranium pollution under simulated real-life conditions in about 2 hours. We aim to optimize this strategy and hope it can be implemented as a uranyl removal kit. <a href="https://2016.igem.org/Team:Peking/Proof"/>(Learn more)</a> </p>
 
                                </div>
 
                            </div>
 
 
                              
 
                              
                             <div class="coll">
+
                              
                                <div class="info">
+
                             <br/>
                                    <div class="ordi">8.</div>
+
                                </div>
+
                                <div class="content">
+
                                    <p>We exchanged the Triple SpyTag-SUP monomer for Triple SpyTag-LBP or Triple SpyTag-CBP, and tried using the same strategy to adsorb lead and cadmium. The results were remarkable, clearly demonstrating that the Uranium Reaper strategy has much potential to be expanded to other heavy metals. <a href="https://2016.igem.org/Team:Peking/Proof#App"/>(Learn more)</a> </p>
+
                                </div>
+
                             </div>
+
 
                             <br/>
 
                             <br/>
                            <p><b>We summarized the advantages of the Uranium Reaper system in Table 1.</b></p>
 
                            <p>Even though the efficiency of the Uranium Reaper system may be somewhat lower than current methods, it can certainly be optimized through further development work. Importantly, Uranium Reaper is much better in other aspects. In the future, we plan to optimize the entire Uranium Reaper strategy in order to enhance the adsorption efficiency.</p>
 
                            <p>&nbsp;</p>
 
 
 
                              
 
                              
 
                              
 
                              
 
                              
 
                              
 +
                            <a id="Conclusion"></a>
 +
                            <div class="texttitle">Discussion</div>
 +
                            <p class="lead add-bottom" style="color:#5E5656">In this integrated experiment, the Uranium Reaper showed an adsorption rate of 60%, which corresponds well to the product of the uranyl adsorption rate and polymer network recovery rate (90% × 70% = 63%). This result has reached the expectations but is still far removed from the efficiencies that would be needed for an industrial process. Consequently, both the uranyl adsorption and polymer network recovery rate have to be increased to improve the overall efficiency of the Uranium Reaper, which, of course, requires further research and development.</p>
 
                              
 
                              
            <a id="Beyond"></a>
+
                            <a id="App"></a>
 +
                            <div class="texttitle">Potential Applications</div>
 +
                            <h3 class="classic-title" id="Cadmium">Cadmium and Lead Reaper</h3>
 +
                            <p class="lead add-bottom" style="color:#5E5656">Due to the modularity of the SpyTag-SpyCatcher covalently cross-linked polymer network, we could easily replace the SUP fused to the Triple SpyTag module with other proteins of interest, such as Cadmium-Binding Protein (CBP) or Lead-Binding Protein (LBP), and use it to adsorb a variety of other heavy metals. A preliminary result is shown in Fig. 3.</p>
  
<div class="texttitle"">Beyond Experiment</div>
+
                            <figure>
                             <br/>
+
                                <p style="text-align:center;"><img style="width:80% ;" src="https://static.igem.org/mediawiki/2016/c/c8/T--Peking--images_FP_fig3.png" alt=""/></p>
                             <div class="coll">
+
                                <figcaption style="text-align:left;">
                                <div class="info">
+
                                    Fig. 3. The adsorption of Cd (A) and Pb (B) by modified functional polymer network based on the Uranium Reaper platform.
                                    <div class="ordi">1.</div>
+
                                </figcaption>
                                </div>
+
                             </figure>
                                 <div class="content">
+
                             <p class="lead add-bottom" style="color:#5E5656">We simulated Cd and Pb pollution (10μM) in TBS buffer. Using the same strategy which we have used for uranyl removal, with the 3A-SUP monomer replaced by 3A-CBP or 3A-LBP, about 84.5% of the Cd 53.9% of the Pb could be adsorbed, respectively. The results demonstrated that the strategy has great potential for broader metal recovery applications. It is thus necessary to optimize the polymer network under various conditions.</p>
                                    <p>We submitted about 70 high-quality and well-characterized Standard BioBricks, including a set of derivatives of triple SpyTag and triple SpyCatcher, such as the triple SpyTag-SUP and triple SpyTag-mSA. <a href="https://2016.igem.org/Team:Peking/Basic_Part"/>(Learn more)</a></p>
+
                            <h3 class="classic-title" id="Visual">Visualization</h3>
                                 </div>
+
                            <p class="lead add-bottom" style="color:#5E5656">We fused mRFP to the Triple SpyTag to make impart color to our polymer network (Fig. 4.).</p>
                             </div>
+
                            <figure>
 +
                                 <p style="text-align:center;"><img style="width:75% ;" src="https://static.igem.org/mediawiki/2016/4/48/T--Peking--images_FP_fig4.png" alt=""/></p>
 +
                                <figcaption style="text-align:left;">
 +
                                    Fig. 4. Left: Crosslinking of Triple SpyTag-mRFP and Triple SpyCatcher at high concentrations, showing gel formation. Right: Triple SpyTag-mRFP monomer solution (negative control).
 +
                                 </figcaption>
 +
                             </figure>
 +
                            <p class="lead add-bottom" style="color:#5E5656">When the SUP module in the Triple SpyTag-SUP monomer was changed to mRFP, a red-colored gel was formed (Fig 4. left), and by crosslinking proteins at higher concentrations, we could get a relatively stable gel structure. This attribute of the polymer network promises a literally colorful future in artistic creation, with potential applications in 3D printing.</p>
 
                              
 
                              
                            <div class="coll">
 
                                <div class="info">
 
                                    <div class="ordi">2.</div>
 
                                </div>
 
                                <div class="content">
 
                                    <p>We developed a special software which can be used to calculate the molecular weight distribution of protein polymers using Flory’s theory. The results of testing have demonstrated that the software is accurate and useful. <a href="https://2016.igem.org/Team:Peking/Software"/>(Learn more)</a> </p>
 
                                </div>
 
                            </div>
 
 
                              
 
                              
                            <div class="coll">
 
                                <div class="info">
 
                                    <div class="ordi">3.</div>
 
                                </div>
 
                                <div class="content">
 
                                    <p>We visited experts from the Peking University departments for Nuclear &amp; Radiochemistry and Physics, respectively, to learn about the current situation surrounding uranium pollution in the real world and how people can control the situation. After finishing the main work, we presented them with the achievements of the project and got their feedback. <a href="https://2016.igem.org/Team:Peking/HP/consulting"/>(Learn more)</a> </p>
 
                                </div>
 
                            </div>
 
 
                              
 
                              
                            <div class="coll">
 
                                <div class="info">
 
                                    <div class="ordi">4.</div>
 
                                </div>
 
                                <div class="content">
 
                                    <p>We did an interview with the Hunan Nuclear Geology 311 Brigade and gained thorough insights into the treatment of uranyl pollution used by the people on the firing line. This way we could compare the methods they were using with the Uranium Reaper strategy. <a href="https://2016.igem.org/Team:Peking/HP/Gold/311"/>(Learn more)</a> </p>
 
                                </div>
 
                            </div>
 
 
                              
 
                              
                            <div class="coll">
 
                                <div class="info">
 
                                    <div class="ordi">5.</div>
 
                                </div>
 
                                <div class="content">
 
                                    <p>We helped and collaborated with 7 other iGEM teams by guiding a new team (BHU-China), as well as discussing about project design and technical skills and sharing DNA materials (OUC-China, BIT-China, Tianjin, UCAS, Jinlin-China and BNU-China). <a href="https://2016.igem.org/Team:Peking/Collaborations"/>(Learn more)</a> </p>
 
                                </div>
 
                            </div>
 
 
                              
 
                              
                            <div class="coll">
 
                                <div class="info">
 
                                    <div class="ordi">6.</div>
 
                                </div>
 
                                <div class="content">
 
                                    <p>We attended the CCiC (Central China iGEM Consortium), which is a large-scale competition-free jamboree of about 50 teams, providing participants with an opportunity for meaningful exchanges of ideas and problem solving. <a href="https://2016.igem.org/Team:Peking/Collaborations"/>(Learn more)</a> </p>
 
                                </div>
 
                            </div>
 
                   
 
 
 
                              
 
                              
 
                              
 
                              
 
                           
 
            <a id="Future"></a>
 
            <div class="texttitle">Our future plan</div>
 
            <br/>
 
            <div class="coll">
 
                <div class="info">
 
                    <div class="ordi">1.</div>
 
                </div>
 
                <div class="content">
 
                    <p>We should reproduce all of the experiments that we have done this summer to make sure the results are credible.</p>
 
                </div>
 
            </div>
 
           
 
            <div class="coll">
 
                <div class="info">
 
                    <div class="ordi">2.</div>
 
                </div>
 
                <div class="content">
 
                    <p>We will optimize the whole strategy to enhance the adsorption efficiency by changing pH, temperature, reaction time of crosslinking and recovery. (The efficiency is only about 60% without further optimization)</p>
 
                </div>
 
            </div>
 
           
 
            <div class="coll">
 
                <div class="info">
 
                    <div class="ordi">3.</div>
 
                </div>
 
                <div class="content">
 
                    <p>According to the results for the adsorption of 13nM uranyl, the hydrogel exhibited a good ability in a simulated seawater environment. We can thus also look into other usage scenarios of Uranium Reaper, such as bio-mining and uranium enrichment.</p>
 
                </div>
 
            </div>
 
           
 
            <div class="coll">
 
                <div class="info">
 
                    <div class="ordi">4.</div>
 
                </div>
 
                <div class="content">
 
                    <p>Exchange of the SUP module for other functional proteins. For example, we can integrate proteins which can bind other heavy metals such as mercury so that the hydrogel can be used to treat other kinds of pollution as well.</p>
 
                </div>
 
            </div>
 
           
 
            <div class="coll">
 
                <div class="info">
 
                    <div class="ordi">5.</div>
 
                </div>
 
                <div class="content">
 
                    <p>We can assemble enzyme systems behind the SpyTag backbone to create a production plant in vitro. In the protein hydrogel, the concentration of enzymes can be increased and the efficiency of biocatalysis may consequently also be enhanced.</p>
 
                </div>
 
            </div>
 
           
 
            <div class="coll">
 
                <div class="info">
 
                    <div class="ordi">6.</div>
 
                </div>
 
                <div class="content">
 
                    <p>If we optimize the number of SpyTag or SpyCatcher modules per protein monomer, as well as the working concentrations of proteins, we may make protein-3D printing using the Spy Crosslinking Network come true.</p>
 
                </div>
 
            </div>
 
           
 
           
 
           
 
 
                         </div><!--9 columns end-->
 
                         </div><!--9 columns end-->
 
                          
 
                          
                         </div>
+
                          
                   
+
                       
                   
+
                       
                   
+
                   
+
 
                     </div><!--row end-->
 
                     </div><!--row end-->
 
                 </section>
 
                 </section>

Latest revision as of 15:23, 1 December 2016

Proof

FINAL PERFORMANCE

Background & Design

Since we have successfully demonstrated that the bio-functional polymer network ould assemble itself quickly, capture uranyl efficiently and be enriched conveniently, we proposed to combine the features of these experiments in a single trial. We thus incubated triple SpyTag-SUP together with triple SpyTag-mSA and triple SpyCatcher, and contacted the product of crosslinking with simulated pollution. After adsorption, we used a magnet and biotin-coated beads to retrieve the polymer network, together with its contents of adsorbed uranyl (Fig. 1.).

Fig. 1. Conceptual graph of the integrated experiment.


Methods

We prepared 10μM uranyl nitrate solutions in TBS buffer, as well as in fresh water (sampled from Weiming Lake in Peking University) and seawater (sampled from Qinhuang Island) to simulate real-life pollution.

After mixing of 5mg/mL solutions of triple SpyTag-SUP, triple SpyTag-mSA and triple SpyCatcher, each, in a volume ratio of 1:1:2, and subsequent incubation for 1h, we were able to obtain the dual-function crosslinked polymer network encompassing both uranium adsorption and polymer network clearance functions.

The protein polymer network was added into the polluted solution and the mixture shaken on a swing bed for 1min, after which the solution was contacted with a suspension of biotin-coated beads (10mg/ml) at a volume ratio of 5:1 (reaction system: beads), and shaken for 1h to ensure good contact between the protein and the beads. Finally, the beads were immobilized using a magnetic shelf, and the uranyl ion concentration in the supernatant was measured using the Arsenazo III assay.

Learn more:



Results

The statistical analysis of experimental results is shown in Fig.18. Under the circumstances mentioned above, the Uranium Reaper achieved a relatively good adsorption efficiency (51.4% in TBS buffer, 55.8% in seawater and 60.1% in fresh water).

Fig. 2. The remaining proportion of 10μM uranyl in TBS buffer, fresh and seawater after treatment with our polymer network. ****p < 0.0001. n=3. Error bars indicate standard deviations.


Discussion

In this integrated experiment, the Uranium Reaper showed an adsorption rate of 60%, which corresponds well to the product of the uranyl adsorption rate and polymer network recovery rate (90% × 70% = 63%). This result has reached the expectations but is still far removed from the efficiencies that would be needed for an industrial process. Consequently, both the uranyl adsorption and polymer network recovery rate have to be increased to improve the overall efficiency of the Uranium Reaper, which, of course, requires further research and development.

Potential Applications

Cadmium and Lead Reaper

Due to the modularity of the SpyTag-SpyCatcher covalently cross-linked polymer network, we could easily replace the SUP fused to the Triple SpyTag module with other proteins of interest, such as Cadmium-Binding Protein (CBP) or Lead-Binding Protein (LBP), and use it to adsorb a variety of other heavy metals. A preliminary result is shown in Fig. 3.

Fig. 3. The adsorption of Cd (A) and Pb (B) by modified functional polymer network based on the Uranium Reaper platform.

We simulated Cd and Pb pollution (10μM) in TBS buffer. Using the same strategy which we have used for uranyl removal, with the 3A-SUP monomer replaced by 3A-CBP or 3A-LBP, about 84.5% of the Cd 53.9% of the Pb could be adsorbed, respectively. The results demonstrated that the strategy has great potential for broader metal recovery applications. It is thus necessary to optimize the polymer network under various conditions.

Visualization

We fused mRFP to the Triple SpyTag to make impart color to our polymer network (Fig. 4.).

Fig. 4. Left: Crosslinking of Triple SpyTag-mRFP and Triple SpyCatcher at high concentrations, showing gel formation. Right: Triple SpyTag-mRFP monomer solution (negative control).

When the SUP module in the Triple SpyTag-SUP monomer was changed to mRFP, a red-colored gel was formed (Fig 4. left), and by crosslinking proteins at higher concentrations, we could get a relatively stable gel structure. This attribute of the polymer network promises a literally colorful future in artistic creation, with potential applications in 3D printing.