Difference between revisions of "Team:Peking/Uranyl-adsorption"

 
(29 intermediate revisions by 7 users not shown)
Line 4: Line 4:
 
<html class="no-js" lang="en">
 
<html class="no-js" lang="en">
 
     <!--<![endif]-->
 
     <!--<![endif]-->
<head>
+
    <head>
<!--- Basic Page Needs========================================================================= -->
+
        <!--- Basic Page Needs========================================================================= -->
<meta charset="utf-8"/>
+
        <meta charset="utf-8"/>
<title>Uranyl adsorption</title>
+
        <title>Uranyl adsorption</title>
<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.2, user-scalable=yes" />
+
        <meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.2, user-scalable=yes" />
<meta name="description" content="Wiki of Peking iGEM 2016" />
+
        <meta name="description" content="Wiki of Peking iGEM 2016" />
<meta name="author" content="Li Jiamian & Wang Yuqing"/>
+
        <meta name="author" content="Li Jiamian & Wang Yuqing"/>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
+
        <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<!-- Mobile Specific Metas===================================================================== -->
+
        <!-- Mobile Specific Metas===================================================================== -->
<meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1"/>
+
        <meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1"/>
<!-- Fix  Overwrite the original iGEM style=================================================== -->
+
        <!-- Fix  Overwrite the original iGEM style=================================================== -->
<link href="https://2016.igem.org/Template:Peking/css/fix?action=raw&ctype=text/css" rel="stylesheet" />
+
        <link href="https://2016.igem.org/Template:Peking/css/fix?action=raw&ctype=text/css" rel="stylesheet" />
<!-- CSS======================================================================================= -->
+
        <!-- CSS======================================================================================= -->
<link href="https://2016.igem.org/Template:Peking/css/bootstrap_min?action=raw&ctype=text/css" rel="stylesheet" />
+
        <link href="https://2016.igem.org/Template:Peking/css/bootstrap_min?action=raw&ctype=text/css" rel="stylesheet" />
<link href="https://2016.igem.org/Template:Peking/css/style?action=raw&ctype=text/css" rel="stylesheet" />
+
        <link href="https://2016.igem.org/Template:Peking/css/style?action=raw&ctype=text/css" rel="stylesheet" />
<!-- CSS======================================================================================= -->
+
        <!-- CSS======================================================================================= -->
<link rel="stylesheet" href="https://2016.igem.org/Template:Peking/css/default?action=raw&ctype=text/css"/>
+
        <link rel="stylesheet" href="https://2016.igem.org/Template:Peking/css/default?action=raw&ctype=text/css"/>
<link rel="stylesheet" href="https://2016.igem.org/Template:Peking/css/layout?action=raw&ctype=text/css"/>
+
        <link rel="stylesheet" href="https://2016.igem.org/Template:Peking/css/layout?action=raw&ctype=text/css"/>
<link rel="stylesheet" href="https://2016.igem.org/Template:Peking/css/media-queries?action=raw&ctype=text/css"/>
+
        <link rel="stylesheet" href="https://2016.igem.org/Template:Peking/css/media-queries?action=raw&ctype=text/css"/>
<link rel="stylesheet" href="https://2016.igem.org/Template:Peking/css/priorstyle?action=raw&ctype=text/css"/>
+
        <link rel="stylesheet" href="https://2016.igem.org/Template:Peking/css/priorstyle?action=raw&ctype=text/css"/>
<link rel="stylesheet" href="https://2016.igem.org/Template:Peking/css/notebook_panel?action=raw&ctype=text/css"/>
+
        <link rel="stylesheet" href="https://2016.igem.org/Template:Peking/css/notebook_panel?action=raw&ctype=text/css"/>
<style>
+
        <style>
    .texttitle{
+
            .texttitle{
        color: #11abb0;
+
                color: #11abb0;
        font-size: 38px;
+
                font-size: 38px;
        line-height: 48px;
+
                line-height: 48px;
        margin-bottom: 12px;
+
                margin-bottom: 12px;
        font-family: raleway-bold, sans-serif !important;
+
                font-family: raleway-bold, sans-serif !important;
        background: transparent;
+
                background: transparent;
        letter-spacing: 3px;
+
                letter-spacing: 3px;
        text-transform: uppercase;
+
                text-transform: uppercase;
        font-weight: 350;
+
                font-weight: 350;
        text-align: center;
+
                text-align: center;
        padding-top:40px;
+
                padding-top:40px;
    }
+
            }
    sup{font-size:11px;}
+
        sup{font-size:11px;}
    .references{margin-top:150px;margin-bottom:40px;}
+
        .references{margin-top:150px;margin-bottom:40px;}
    .references p{font-size:14px !important; color:#666161 !important;}
+
        .references p{font-size:14px !important; color:#666161 !important;}
    .classic-title {font-weight: 300;padding-top:30px;}
+
        .classic-title {font-weight: 300;padding-top:30px;}
    .classic-title span {
+
        .classic-title span {
        padding-bottom: 8px;
+
            padding-bottom: 8px;
        border-bottom: 1px solid #383232;
+
            border-bottom: 1px solid #383232;
        font-weight: 400;
+
            font-weight: 400;
    }
+
        }
    figure{margin-top:40px;margin-bottom:40px;height:auto;}
+
        figure{margin-top:40px;margin-bottom:40px;height:auto;}
    .anchor{padding-top:100px;margin-top:-100px;}
+
        .anchor{padding-top:100px;margin-top:-100px;}
</style>
+
            </style>
                                   
+
</head>
+
<body>
+
<!--sidebar 引用==============================================================================-->
+
<style>
+
    #primary span{
+
        display:block;
+
        word-break:break-all
+
    }
+
 
+
#page-wrap {
+
    width: 25%;
+
    margin: 0px;
+
    position: relative;
+
}
+
 
+
#sidebar {
+
    width: 25%;
+
    margin-left: 0px;
+
}
+
@media (min-width:1024px){
+
    #sidebar{position:relative;top:120px;max-width:200px;}}
+
@media (max-width: 1023px){
+
    #sidebar{display:none;
+
    }
+
    #page-wrap{display:none;}
+
}
+
</style>
+
 
+
 
+
<script type="text/javascript">
+
    function menuFixed(id){
+
        var obj = document.getElementById(id);
+
        var _getHeight = obj.offsetTop;
+
 
          
 
          
         window.onscroll = function(){
+
    </head>
             changePos(id,_getHeight);
+
    <body>
 +
         <!--sidebar 引用==============================================================================-->
 +
        <style>
 +
            #primary span{
 +
                display:block;
 +
                word-break:break-all
 +
            }
 +
       
 +
        #page-wrap {
 +
            width: 25%;
 +
            margin: 0px;
 +
             position: relative;
 
         }
 
         }
    }
 
function changePos(id,height){
 
    var obj = document.getElementById(id);var windowBottom = $(window).scrollTop() + $(window).innerHeight();
 
    if(w>=1024){
 
        if($(window).scrollTop() + $(window).height() > $(document).height() - 230){
 
            $('#sidebar').fadeOut("fast");}else{$('#sidebar').fadeIn("fast");}
 
    }
 
    var scrollTop = document.documentElement.scrollTop || document.body.scrollTop -230;
 
    var windowBottom = $(window).scrollTop() + $(window).innerHeight();
 
    var w = window.innerWidth;
 
   
 
    if(scrollTop < height){ obj.style.position = 'relative';     
 
    }else{
 
        obj.style.position = 'fixed';
 
    }
 
}
 
</script>
 
 
<script type="text/javascript">
 
    window.onload = function(){
 
        menuFixed('sidebar');
 
    }
 
</script>
 
<script>
 
function naver(id){
 
  var obj=document.getElementById(id);
 
  var oPos=obj.offsetTop;
 
  return window.scrollTo(0,oPos+250);
 
}
 
</script>
 
<!--sidebar 引用 end ==============================================================================-->
 
<!--panel 引用==================================================================================-->
 
<style type="text/css">
 
.panel-default .panel-heading a{
 
        text-decoration: none;
 
        display:block;
 
        padding:10px;
 
    }
 
.panel-heading.panel-title{
 
    text-decoration: none;
 
    padding-top:0px;
 
    padding-bottom:0px;
 
    padding-left:0px;
 
    padding-right:0px;
 
    text-align:center;
 
    font-size:19px;
 
   
 
}
 
a[aria-expanded="true"] {
 
    background-color:rgba(70, 73, 76, 0.95);
 
    text-decoration: none;
 
    color:white;
 
}
 
 
.panel-default .panel-heading a[aria-expanded="false"]{
 
    -o-transition: background-color 1s linear;
 
    -moz-transition: background-color 1s linear;
 
    -khtml-transition: background-color 1s linear;
 
    -webkit-transition: background-color 1s linear;
 
    -ms-transition: background-color 1s linear;
 
    transition: background-color 1s linear;
 
}
 
.panel-default .panel-heading a[aria-expanded="false"]:hover{
 
    background-color:rgba(70, 73, 76, 0.95);
 
    text-decoration: none;
 
    color:white;
 
}
 
.panel-default .panel-heading a[aria-expanded="true"]{
 
    -o-transition: opacity 1s linear;
 
    -moz-transition: opacity 1s linear;
 
    -khtml-transition: opacity 1s linear;
 
    -webkit-transition: opacity 1s linear;
 
    -ms-transition: opacity 1s linear;
 
    transition: opacity 0.7s linear;
 
}
 
.panel-default .panel-heading a[aria-expanded="true"]:hover{
 
    opacity:0.7;
 
}
 
</style>
 
 
<script type="text/javascript">
 
    $(document).ready(function(){
 
                      $("#button1").click(function(){
 
                                          $(".panel-collapse").collapse("show");
 
                                          });
 
                      });
 
                      $(document).ready(function(){
 
                                        $("#button2").click(function(){
 
                                                            $(".panel-collapse").collapse("hide");
 
                                                            });
 
                                        });
 
                                        $("#notebook").addClass("navbar-active");
 
</script>
 
<!--panel 引用 end ==================-->
 
 
          
 
          
<!-- Navigation -->
+
        #sidebar {
<div id="navigation" class="navbar navbar-fixed-top">
+
            width: 25%;
    <div class="navbar-inner ">
+
            margin-left: 0px;
         <div class="container no-padding">
+
        }
             <a class="show-menu" data-toggle="collapse" data-target=".nav-collapse"><span class="show-menu-bar"></span>
+
        @media (min-width:1024px){
             </a>
+
            #sidebar{position:relative;top:120px;max-width:200px;}}
             <div id="logo" style="max-width:170px"><a class="" href="https://2016.igem.org/Team:Peking"></a></div>
+
        @media (max-width: 1023px){
 +
            #sidebar{display:none;
 +
            }
 +
            #page-wrap{display:none;}
 +
        }
 +
        </style>
 +
       
 +
       
 +
         <script type="text/javascript">
 +
             function menuFixed(id){
 +
                var obj = document.getElementById(id);
 +
                var _getHeight = obj.offsetTop;
 +
               
 +
                window.onscroll = function(){
 +
                    changePos(id,_getHeight);
 +
                }
 +
             }
 +
        function changePos(id,height){
 +
             var obj = document.getElementById(id);var windowBottom = $(window).scrollTop() + $(window).innerHeight();
 +
            if(w>=1024){
 +
                if($(window).scrollTop() + $(window).height() > $(document).height() - 230){
 +
                    $('#sidebar').fadeOut("fast");}else{$('#sidebar').fadeIn("fast");}
 +
            }
 +
            var scrollTop = document.documentElement.scrollTop || document.body.scrollTop -230;
 +
            var windowBottom = $(window).scrollTop() + $(window).innerHeight();
 +
            var w = window.innerWidth;
 
              
 
              
             <div class="nav-collapse collapse">
+
             if(scrollTop < height){ obj.style.position = 'relative';
                <ul class="nav">
+
            }else{
                    <li class="menu-1"><a class="colapse-menu1" href="https://2016.igem.org/Team:Peking" >Home</a></li>
+
                obj.style.position = 'fixed';
                    <li class="dropdown menu-2"><a class="dropdown-toggle" data-toggle="dropdown" href="#" > Achievements</a>
+
            }
                        <ul class="dropdown-menu">
+
        }
                            <li><a href="https://2016.igem.org/Team:Peking/Demonstrate" >Results</a></li>
+
        </script>
                            <li><a href="https://2016.igem.org/Team:Peking/Basic_Part" >Parts</a></li>
+
       
                            <li><a href="https://2016.igem.org/Team:Peking/Collaborations" >Collaborations</a></li>
+
        <script type="text/javascript">
                        </ul>
+
            window.onload = function(){
                    </li>
+
                menuFixed('sidebar');
                    <li class="dropdown menu-3"><a class="dropdown-toggle" data-toggle="dropdown" href="#">Project</a>
+
            }
                        <ul class="dropdown-menu">
+
        </script>
                            <li><a href="https://2016.igem.org/Team:Peking/Description" >Overview</a></li>
+
        <script>
                            <li><a href="https://2016.igem.org/Team:Peking/Design" >Design</a></li>
+
            function naver(id){
                            <li><a href="https://2016.igem.org/Team:Peking/Crosslinking" >Crosslinking</a></li>
+
                var obj=document.getElementById(id);
                            <li><a href="https://2016.igem.org/Team:Peking/Uranyl-adsorption" >Uranyl adsorption</a></li>
+
                var oPos=obj.offsetTop;
                            <li><a href="https://2016.igem.org/Team:Peking/Recovery" >Recovery</a></li>
+
                return window.scrollTo(0,oPos+250);
                            <li><a href="https://2016.igem.org/Team:Peking/Secretion" >Secretion</a></li>
+
            }
                            <li><a href="https://2016.igem.org/Team:Peking/Proof" >Proof and speculation</a></li>
+
        </script>
                        </ul>
+
        <!--sidebar 引用 end ==============================================================================-->
                    </li>
+
        <!--panel 引用==================================================================================-->
                    <li class="dropdown menu-4"><a class="dropdown-toggle" data-toggle="dropdown" href="#" >Modeling</a>
+
        <style type="text/css">
                        <ul class="dropdown-menu">
+
            .panel-default .panel-heading a{
                            <li><a href="https://2016.igem.org/Team:Peking/Model" >Protein polymerization</a></li>
+
                text-decoration: none;
                            <li><a href="https://2016.igem.org/Team:Peking/Software" >Software</a></li>
+
                display:block;
                        </ul>
+
                padding:10px;
                    </li>
+
            }
                    <li class="dropdown menu-5"><a class="dropdown-toggle" data-toggle="dropdown" href="#" >Practices</a>
+
        .panel-heading.panel-title{
                        <ul class="dropdown-menu">
+
            text-decoration: none;
                            <li><a href="https://2016.igem.org/Team:Peking/HP/Gold" >Overview</a></li>
+
            padding-top:0px;
                            <li><a href="https://2016.igem.org/Team:Peking/HP/311" >Field research</a></li>
+
            padding-bottom:0px;
                            <li><a href="https://2016.igem.org/Team:Peking/HP/questionnaire" >Questionnaire</a></li>
+
            padding-left:0px;
                            <li><a href="https://2016.igem.org/Team:Peking/HP/consulting" >Consulting</a></li>
+
            padding-right:0px;
                            <li><a href="https://2016.igem.org/Team:Peking/HP/otherHP" >Other work</a></li>
+
            text-align:center;
                        </ul>
+
            font-size:19px;
                    </li>
+
           
                    <li class="menu-6"><a class="colapse-menu1" href="https://2016.igem.org/Team:Peking/Safety" >Safety</a>
+
        }
                        <li class="dropdown menu-7"><a class="dropdown-toggle" data-toggle="dropdown" href="#" >Lab</a>
+
        a[aria-expanded="true"] {
                            <ul class="dropdown-menu">
+
            background-color:rgba(70, 73, 76, 0.95);
                                <li><a class="" href="https://2016.igem.org/Team:Peking/Team" >Team</a></li>
+
            text-decoration: none;
                                <li><a class="" href="https://2016.igem.org/Team:Peking/Attributions" >Attribution</a></li>
+
            color:white;
                                <li><a class="" href="https://2016.igem.org/Team:Peking/Notebook" >Notebook</a></li>
+
        }
                            </ul>
+
       
                        </li>
+
        .panel-default .panel-heading a[aria-expanded="false"]{
                        <li class="menu-8"><a class="colapse-menu1" href="https://2016.igem.org/Team:Peking/Interlab" >Interlab</a>
+
            -o-transition: background-color 1s linear;
                        </li>
+
            -moz-transition: background-color 1s linear;
 +
            -khtml-transition: background-color 1s linear;
 +
            -webkit-transition: background-color 1s linear;
 +
            -ms-transition: background-color 1s linear;
 +
            transition: background-color 1s linear;
 +
        }
 +
        .panel-default .panel-heading a[aria-expanded="false"]:hover{
 +
            background-color:rgba(70, 73, 76, 0.95);
 +
            text-decoration: none;
 +
            color:white;
 +
        }
 +
        .panel-default .panel-heading a[aria-expanded="true"]{
 +
            -o-transition: opacity 1s linear;
 +
            -moz-transition: opacity 1s linear;
 +
            -khtml-transition: opacity 1s linear;
 +
            -webkit-transition: opacity 1s linear;
 +
            -ms-transition: opacity 1s linear;
 +
            transition: opacity 0.7s linear;
 +
        }
 +
        .panel-default .panel-heading a[aria-expanded="true"]:hover{
 +
            opacity:0.7;
 +
        }
 +
        </style>
 +
       
 +
        <script type="text/javascript">
 +
            $(document).ready(function(){
 +
                              $("#button1").click(function(){
 +
                                                  $(".panel-collapse").collapse("show");
 +
                                                  });
 +
                              });
 +
                              $(document).ready(function(){
 +
                                                $("#button2").click(function(){
 +
                                                                    $(".panel-collapse").collapse("hide");
 +
                                                                    });
 +
                                                });
 +
                                                $("#notebook").addClass("navbar-active");
 +
            </script>
 +
        <!--panel 引用 end ==================-->
 +
       
 +
<!-- Navigation -->
 +
        <div id="navigation" class="navbar navbar-fixed-top">
 +
            <div class="navbar-inner ">
 +
                <div class="container no-padding">
 +
                    <a class="show-menu" data-toggle="collapse" data-target=".nav-collapse"><span class="show-menu-bar"></span>
 +
                    </a>
 +
                    <div id="logo" style="max-width:170px"><a class="" href="https://2016.igem.org/Team:Peking"></a></div>
 +
                   
 +
                    <div class="nav-collapse collapse">
 +
                        <ul class="nav">
 +
                            <li class="menu-1"><a class="colapse-menu1" href="https://2016.igem.org/Team:Peking" >Home</a></li>
 +
                            <li class="dropdown menu-2"><a class="dropdown-toggle" data-toggle="dropdown" href="#" > Achievements</a>
 +
                                <ul class="dropdown-menu">
 +
                                    <li><a href="https://2016.igem.org/Team:Peking/Results" >Results</a></li>
 +
                                    <li><a href="https://2016.igem.org/Team:Peking/Basic_Part" >Parts</a></li>
 +
                                    <li><a href="https://2016.igem.org/Team:Peking/Collaborations" >Collaborations</a></li>
 +
                                </ul>
 +
                            </li>
 +
                            <li class="dropdown menu-3"><a class="dropdown-toggle" data-toggle="dropdown" href="#">Project</a>
 +
                                <ul class="dropdown-menu">
 +
                                    <li><a href="https://2016.igem.org/Team:Peking/Description" >Overview</a></li>
 +
                                    <li><a href="https://2016.igem.org/Team:Peking/Design" >Design</a></li>
 +
                                    <li><a href="https://2016.igem.org/Team:Peking/Crosslinking" >Crosslinking</a></li>
 +
                                    <li><a href="https://2016.igem.org/Team:Peking/Uranyl-adsorption" >Uranyl adsorption</a></li>
 +
                                    <li><a href="https://2016.igem.org/Team:Peking/Clearance" >Clearance</a></li>
 +
                                    <li><a href="https://2016.igem.org/Team:Peking/Secretion" >Secretion</a></li>
 +
                                    <li><a href="https://2016.igem.org/Team:Peking/Demonstrate" >Final Performance</a></li>
 +
                                </ul>
 +
                            </li>
 +
                            <li class="dropdown menu-4"><a class="dropdown-toggle" data-toggle="dropdown" href="#" >Modeling</a>
 +
                                <ul class="dropdown-menu">
 +
                                    <li><a href="https://2016.igem.org/Team:Peking/Model/GelPoint" > Model of Gel Point </a></li>
 +
                                    <li><a href="https://2016.igem.org/Team:Peking/Model/MassDistribution" > Model of Mass Distribution</a></li>
 +
                                    <li><a href="https://2016.igem.org/Team:Peking/Software" >Software</a></li>
 +
                                </ul>
 +
                            </li>
 +
                            <li class="dropdown menu-5"><a class="dropdown-toggle" data-toggle="dropdown" href="#" >Practices</a>
 +
                                <ul class="dropdown-menu">
 +
                                    <li><a href="https://2016.igem.org/Team:Peking/HP/Gold" >Overview</a></li>
 +
                                    <li><a href="https://2016.igem.org/Team:Peking/HP/311" >Field research</a></li>
 +
                                    <li><a href="https://2016.igem.org/Team:Peking/HP/questionnaire" >Questionnaire</a></li>
 +
                                    <li><a href="https://2016.igem.org/Team:Peking/HP/consulting" >Consulting</a></li>
 +
                                    <li><a href="https://2016.igem.org/Team:Peking/HP/otherHP" >Education&nbsp;&amp;&nbsp;Other</a></li>
 +
                                </ul>
 +
                            </li>
 +
                            <li class="menu-6"><a class="colapse-menu1" href="https://2016.igem.org/Team:Peking/Safety" >Safety</a>
 +
                                <li class="dropdown menu-7"><a class="dropdown-toggle" data-toggle="dropdown" href="#" >Lab</a>
 +
                                    <ul class="dropdown-menu">
 +
                                        <li><a class="" href="https://2016.igem.org/Team:Peking/Team" >Team</a></li>
 +
                                        <li><a class="" href="https://2016.igem.org/Team:Peking/Attributions" >Attribution</a></li>
 +
                                        <li><a class="" href="https://2016.igem.org/Team:Peking/Notebook" >Notebook</a></li>
 +
                                    </ul>
 +
                                </li>
 +
                                <li class="menu-8"><a class="colapse-menu1" href="https://2016.igem.org/Team:Peking/Interlab" >Interlab</a>
 +
                                </li>
 +
                                </div>
 +
                </div>
 
             </div>
 
             </div>
 
         </div>
 
         </div>
    </div>
+
        <!--/Navigation -->
</div>
+
 
<!--/Navigation -->
+
 
 +
 
 
          
 
          
 
         <!-- Page Title======================================================================== -->
 
         <!-- Page Title======================================================================== -->
Line 248: Line 252:
 
             <div class="row">
 
             <div class="row">
 
                 <div class="twelve columns centered text-center">
 
                 <div class="twelve columns centered text-center">
                     <h1>Uranyl Adsorption<span>.</span></h1>
+
                     <h1>Uranyl Adsorption</h1>
 
                     <p class="title1" style="text-align:center"></p>
 
                     <p class="title1" style="text-align:center"></p>
 
                 </div>
 
                 </div>
Line 265: Line 269:
 
                          
 
                          
 
                         <div class="three columns">
 
                         <div class="three columns">
                        <div id="page-wrap">
+
                            <div id="page-wrap">
                            <div id="sidebar" style="color:#000000">
+
                                <div id="sidebar" style="color:#000000">
                                <h4><a href="javascript:void(0);" onclick="naver('Background')">Background</a></h4>
+
                                    <h4><a href="javascript:void(0);" onclick="naver('Background')">Background</a></h4>
                                <h4><a href="javascript:void(0);" onclick="naver('Methods')">Methods</a></h4>
+
                                    <h4><a href="javascript:void(0);" onclick="naver('Methods')">Methods</a></h4>
                                <h4><a href="javascript:void(0);" onclick="naver('Results')">Results<a></h4>
+
                                    <h4><a href="javascript:void(0);" onclick="naver('Results')">Results<a></h4>
                                <ul>
+
                                    <ul>
                                    <li><a href="javascript:void(0);" onclick="naver('basic')">Basic&nbsp;Adsorption</a></li>
+
                                        <li><a href="javascript:void(0);" onclick="naver('basic')">Basic&nbsp;Adsorption</a></li>
                                    <li><a href="javascript:void(0);" onclick="naver('ratio')">Ratio&nbsp;Optimization</a></li>
+
                                        <li><a href="javascript:void(0);" onclick="naver('ratio')">Ratio&nbsp;Optimization</a></li>
                                    <li><a href="javascript:void(0);" onclick="naver('conditions')">Different&nbsp;Conditions</a></li>
+
                                        <li><a href="javascript:void(0);" onclick="naver('conditions')">Different&nbsp;Conditions</a></li>
                                    <li><a href="javascript:void(0);" onclick="naver('low')">Low&nbsp;Uranyl&nbsp;Concentration</a></li>
+
                                        <li><a href="javascript:void(0);" onclick="naver('low')">Low&nbsp;Uranyl&nbsp;Concentration</a></li>
                                </ul>
+
                                    </ul>
                                <h4><a href="javascript:void(0);" onclick="naver('discussion')">Discussion</a></h4>
+
                                    <h4><a href="javascript:void(0);" onclick="naver('discussion')">Discussion</a></h4>
                                <h4><a href="javascript:void(0);" onclick="naver('references')">References</a></h4>
+
                                    <h4><a href="javascript:void(0);" onclick="naver('references')">References</a></h4>
 +
                                </div>
 
                             </div>
 
                             </div>
                        </div>
 
 
                         </div>
 
                         </div>
 
                          
 
                          
Line 287: Line 291:
 
                         <div class="nine columns">
 
                         <div class="nine columns">
 
                              
 
                              
            <a id="Background"></a>
+
                            <a id="Background"></a>
 
                             <div class="texttitle">Background</div>
 
                             <div class="texttitle">Background</div>
                             <p>Uranium is a key element used in nuclear energy production and is crucial in many other applications. The most stable and relevant uranium ion in aerobic environments is the uranyl cation. Super Uranyl-binding Protein(SUP) has been rationally designed via structural calculations and functional modification to specifically bind uranyl cations. According to the researchers’ results, SUP is thermodynamically stable and offers very high affinity and selectivity for uranyl with a Kd of 7.4 fM and &gt;10,000-fold selectivity over other metal ions<sup>1</sup>. The binding features of SUP are described later in more detail (Fig.1).</p>
+
                             <p>Uranium is a key element used in nuclear energy production and is crucial in many other applications. The most stable and relevant uranium ion in aerobic environments is the uranyl cation. Super Uranyl-binding Protein (SUP) has been rationally designed via structural calculations and functional modification to specifically bind uranyl cations. According to the researchers’ results, SUP is thermodynamically stable and offers very high affinity and selectivity for uranyl with a K<SUB>d</SUB> of 7.4 fM and &gt;10,000-fold selectivity over other metal ions<sup>1</sup>. The binding features of SUP are described later in more detail (Fig. 1.).</p>
 
                             <figure>
 
                             <figure>
                                 <img class="featurette-image" src="" style="width:100%;" alt=""/>
+
                                 <p style="text-align:center;"><img style="width: 100% ;" src="https://static.igem.org/mediawiki/2016/7/76/T--Peking--images_uo2_fig1.png" alt=""/></p>
                                    <figcaption>Fig. 1. Uranyl-binding affinity and selectivity of SUP. (A) Competition assay of SUP versus total carbonate for uranyl revealing a Kd of 7.4 fM at pH 8.9. (B) Binding selectivity of SUP for uranyl over various other metal ions.
+
                                <figcaption style="text-align:left;">
                                    </figcaption>
+
                                    Fig. 1. Uranyl-binding affinity and selectivity of SUP. (A) Competition assay of SUP versus total carbonate for uranyl revealing a K<SUB>d</SUB> of 7.4 fM at pH 8.9. (B) Binding selectivity of SUP for uranyl over various other metal ions.
 +
                                </figcaption>
 
                             </figure>
 
                             </figure>
                             <p>It was found that UO22+ is coordinated by five carboxylate oxygen atoms from four amino acid residues in SUP. The hydrogen bonds between the amino acid residues coordinating UO22+ and residues in its second coordination sphere also affects the protein’s uranyl binding ability (Fig.2) <sup>2</sup>.</p>
+
                             <p>It was found that UO<sub>2</sub><sup>2+</sup> is coordinated by five carboxylate oxygen atoms from four amino acid residues in SUP. The hydrogen bonds between the amino acid residues coordinating UO<sub>2</sub><sup>2+</sup> and residues in its second coordination sphere also affects the protein’s uranyl binding ability (Fig. 2.) <sup>2</sup>.</p>
 
                             <figure>
 
                             <figure>
                                 <img class="featurette-image" src="" style="width:100%;" alt=""/>
+
                                 <p style="text-align:center;"><img style="width:45% ;" src="https://static.igem.org/mediawiki/2016/7/72/T--Peking--images_uranyl_adsorption_fig2.png" alt=""/></p>
                                    <figcaption>Fig. 2. Coordination Environment of UO2<sup>2+</sup> in SUP. UO2<sup>2+</sup> is coordinated by five carboxylate oxygen atoms from four amino acid residues of SUP.
+
                                <figcaption style="text-align:left;">
                                    </figcaption>
+
                                    Fig. 2. Coordination Environment of UO<sub>2</sub><sup>2+</sup> in SUP. UO<sub>2</sub><sup>2+</sup> is coordinated by five carboxylate oxygen atoms from four amino acid residues of SUP.
 +
                                </figcaption>
 
                             </figure>
 
                             </figure>
                             <p>As mentioned above, we fused SUP to three SpyTags in order to construct the 3A-SUP monomer, so the function of SUP might be affected by these additional modules. To make sure that 3A-SUP could still function when bound in the hydrogel, we tested its ability to adsorb UO22+ in various environments.</p>
+
                             <p>As mentioned above, we fused SUP to three SpyTags in order to construct the 3A-SUP monomer, so the function of SUP might be affected by these additional modules. To make sure that 3A-SUP could still function when bound in the polymer network, we tested its ability to adsorb UO<sub>2</sub><sup>2+</sup> in various environments.</p>
 
                              
 
                              
 
                              
 
                              
Line 309: Line 315:
 
                              
 
                              
 
                              
 
                              
            <a id="Methods"></a>
+
                            <a id="Methods"></a>
 
                             <div class="texttitle">Methods</div>
 
                             <div class="texttitle">Methods</div>
                             <p>Appropriate volumes of 3/4/6A-SUP and 3B were mixed and incubated for 1 hour. Subsequently, a uranyl solution in TBS buffer was prepared and its pH value adjusted appropriately. After complete cross-linking, the uranyl solution was contacted with the pre-incubated proteins and mixed thoroughly by vortexing (Fig.3).</p>
+
                             <p>Appropriate volume of 3/4/6A-SUP and 3B were mixed and incubated for 1 hour. Subsequently, a uranyl solution in TBS buffer was prepared and its pH value adjusted appropriately. After complete cross-linking, the uranyl solution was contacted with the pre-incubated proteins and mixed thoroughly by vortexing (Fig. 3.).</p>
 
                             <figure>
 
                             <figure>
                                 <img class="featurette-image" src="" style="width:100%;" alt=""/>
+
                                 <img class="featurette-image" src="https://static.igem.org/mediawiki/2016/d/dc/T--Peking--images_uranyl_adsorption_fig3.png" style="width:100%;" alt=""/>
                                    <figcaption>Fig. 3. Schematic diagram of uranyl adsorption.
+
                                <figcaption style="text-align:center;">Fig. 3. Schematic diagram of uranyl adsorption.
                                    </figcaption>
+
                                </figcaption>
 
                             </figure>
 
                             </figure>
                             <p>The adsorption reaction was allowed to continue for 1 min, after which the mixture was immediately transferred into 10kDa cutoff centrifuge filters and centrifuged for 10 min at 14000g to exclude non-specific protein interference by removing proteins (Fig.4). Finally, 100μL aliquots of the filtrate were collected for further analysis.</p>
+
                             <p>The adsorption reaction was allowed to continue for 1 min, after which the mixture was immediately transferred into 10kDa cutoff centrifuge filters and centrifuged for 10 min at 14000g to exclude non-specific protein interference by removing proteins (Fig. 4.). Finally, 100μL aliquots of the filtrate were collected for further analysis.</p>
 
                             <figure>
 
                             <figure>
                                 <img class="featurette-image" src="" style="width:100%;" alt=""/>
+
                                 <p style="text-align:center;"><img style="width: 70% ;" src=" https://static.igem.org/mediawiki/2016/f/f9/T--Peking--images_uranyl_adsorption_fig4.png" alt=""/></p>
                                    <figcaption>Fig. 4. 10kDa cutoff centrifugal filters. The reaction mixtures were immediately transferred into 10kDa cutoff centrifugal filters and centrifuged for 10 min at 14000g to exclude protein interference.
+
                                <figcaption style="text-align:left;">
                                    </figcaption>
+
                                    Fig. 4. 10kDa cutoff centrifugal filters. The reaction mixtures were immediately transferred into 10kDa cutoff centrifugal filters and centrifuged for 10 min at 14000g to exclude protein interference.
 +
                                </figcaption>
 
                             </figure>
 
                             </figure>
 
                             <p>What makes these results more reliable is that we set up control groups which contained the same concentration of uranyl as the test groups. We used the uranyl concentration of the filtrates from the control groups as the actual uranyl concentration to account for the adsorption of uranyl on centrifuge filters. Two different methods were applied to determine the uranyl concentrations in the filtrate. For higher concentrations (&gt;1μM), we used a modification of the Arsenazo III method<sup>1</sup>. For lower concentrations (&lt;1μM), ICP-MS was employed. </p>
 
                             <p>What makes these results more reliable is that we set up control groups which contained the same concentration of uranyl as the test groups. We used the uranyl concentration of the filtrates from the control groups as the actual uranyl concentration to account for the adsorption of uranyl on centrifuge filters. Two different methods were applied to determine the uranyl concentrations in the filtrate. For higher concentrations (&gt;1μM), we used a modification of the Arsenazo III method<sup>1</sup>. For lower concentrations (&lt;1μM), ICP-MS was employed. </p>
 
                             <figure>
 
                             <figure>
                                    <img class="featurette-image" src="" style="width:100%;" alt=""/>
+
                                <img class="featurette-image" src="https://static.igem.org/mediawiki/2016/8/80/T--Peking--images_uranyl_adsorption_fig5.png" style="width:100%;" alt=""/>
                                        <figcaption>Fig. 5. Uranyl detection assay with Arsenazo III. (A) Mechanism of chromogenic reaction. (B) Standard curve of uranyl concentration.
+
                                <figcaption>Fig. 5. Uranyl detection assay with Arsenazo III. (A) Mechanism of chromogenic reaction. (B) Standard curve of uranyl concentration.
                                        </figcaption>
+
                                </figcaption>
 
                             </figure>
 
                             </figure>
 
                              
 
                              
 
                             <div class="panel panel-default">
 
                             <div class="panel panel-default">
 
                                 <div class="panel-heading panel-title">
 
                                 <div class="panel-heading panel-title">
                                     <a href="https://2016.igem.org/Team:Peking/Notebook/Protocol:testing_adsorption_capacity_of_protein" aria-expanded="false">Testing Adsorption Capacity of Protein</a>
+
                                     <a href="https://2016.igem.org/Team:Peking/Notebook/Protocol:testing_adsorption_capacity_of_protein" aria-expanded="false">Protocol: Testing Adsorption Capacity of Protein</a>
 
                                 </div>
 
                                 </div>
                                <br/>
 
                            <br/>
 
 
                             </div>
 
                             </div>
 
                              
 
                              
 +
                         
 
                              
 
                              
 
                              
 
                              
 +
                            <br/><br/>
 
                              
 
                              
            <a id="Results"></a>
+
                            <a id="Results"></a>
 
                             <div class="texttitle">Results</div>
 
                             <div class="texttitle">Results</div>
 
                             <div class="col-mid-2">
 
                             <div class="col-mid-2">
Line 351: Line 358:
 
                                     <div class="panel panel-default">
 
                                     <div class="panel panel-default">
 
                                         <div class="panel-heading panel-title" role="tab" id="heading1">
 
                                         <div class="panel-heading panel-title" role="tab" id="heading1">
                                                <a role="button" data-toggle="collapse" href="#collapse1" aria-expanded="false" aria-controls="collapse1">1. Uranyl Adsorption onto Fusion Proteins and the Protein Hydrogel</a>
+
                                            <a role="button" data-toggle="collapse" href="#collapse1" aria-expanded="false" aria-controls="collapse1">1. Uranyl Adsorption onto Fusion Proteins and the Protein Polymer network </a>
                                        </div>
+
                                        </div>
 
                                         <div id="collapse1" class="panel-collapse collapse in" role="tabpanel" aria-labelledby="heading1">
 
                                         <div id="collapse1" class="panel-collapse collapse in" role="tabpanel" aria-labelledby="heading1">
 
                                             <div class="panel-body">
 
                                             <div class="panel-body">
                                                 <p>The adsorption capacities of 10μM proteins and hydrogel were measured in TBS buffer against uranyl in equimolar quantities. In very short time, 3A-SUP alone showed an adsorption capacity of up to 87% and cross-linked 3A-SUP+3B could effectively sequester 96% of the total uranyl (Fig. 6).</p>
+
                                                 <p>The adsorption capacities of 10μM proteins and polymer network were measured in TBS buffer against uranyl in equimolar quantities. In very short time, 3A-SUP alone showed an adsorption capacity of up to 87% and cross-linked 3A-SUP+3B could effectively sequester 96% of the total uranyl (Fig. 6.).</p>
 
                                                 <figure>
 
                                                 <figure>
                                                     <img class="featurette-image" src="" style="width:100%;" alt=""/>
+
                                                     <p style="text-align:center;"><img style="width:80% ;" src="https://static.igem.org/mediawiki/2016/f/f0/T--Peking--images_uranyl_adsorption_fig6.png " alt=""/></p>
                                                     <figcaption>Fig. 6. Adsorption capacities of 3A-SUP and the oligomer mixture 3A-SUP+3B. 3A-SUP alone showed an adsorption capacity of up to 87%. Cross-linked 3A-SUP+3B could effectively sequester 96% of the total uranyl.
+
                                                     <figcaption style="text-align:left;">
 +
                                                        Fig. 6. Adsorption capacities of 3A-SUP and the oligomer mixture 3A-SUP+3B. 3A-SUP alone showed an adsorption capacity of up to 87%. Cross-linked 3A-SUP+3B could effectively sequester 96% of the total uranyl.
 
                                                     </figcaption>
 
                                                     </figcaption>
 
                                                 </figure>
 
                                                 </figure>
                                                 <p>Furthermore, we measured the adsorption capacities of other kinds of fusion constructs and polymers, such as 4A-SUP (84%), 6A-SUP (87%), 4A-SUP+3B (88%), 6A-SUP+3B (63%) (Fig. 7). All of these were less efficient but they also could sequester at least 60% of the total uranyl. The standard deviations were calculated from triplicate experiments (n=3). These results were promising since different kinds of fusion proteins and protein constructs were able to adsorb uranyl with great efficiency. Among these, 3A-SUP+3B (96%) showed the best adsorption capacity and was consequently used for all further experiments.</p>
+
                                                 <p>Furthermore, we measured the adsorption capacities of other kinds of fusion constructs and polymers, such as 4A-SUP (84%), 6A-SUP (87%), 4A-SUP+3B (88%), 6A-SUP+3B (63%) (Fig. 7.). All of these were less efficient but they also could sequester at least 60% of the total uranyl. The standard deviations were calculated from triplicate experiments (n=3). These results were promising since different kinds of fusion proteins and protein constructs were able to adsorb uranyl with great efficiency. Among these, 3A-SUP+3B (96%) showed the best adsorption capacity and was consequently used for all further experiments.</p>
 +
 
 
                                                 <figure>
 
                                                 <figure>
                                                     <img class="featurette-image" src="" style="width:100%;" alt=""/>
+
                                                     <p style="text-align:center;"><img style="width: 86% ;" src="https://static.igem.org/mediawiki/2016/c/c9/T--Peking--images_uo2_fig7.png" alt=""/></p>
                                                     <figcaption>Fig. 7. Statistical analysis of adsorption capacities of several kinds of proteins and protein hydrogel. ****p&lt;0.0001, ***p&lt;0.001. n=3. Error bars indicate standard deviations.
+
                                                     <figcaption style="text-align:left;">
 +
                                                        Fig. 7. Statistical analysis of adsorption capacities of several kinds of proteins and protein polymer network. ****p&lt;0.0001, ***p&lt;0.001. n=3. Error bars indicate standard deviations.
 
                                                     </figcaption>
 
                                                     </figcaption>
 
                                                 </figure>
 
                                                 </figure>
 
                                             </div>
 
                                             </div>
 
                                         </div>
 
                                         </div>
                                  </div>
+
                                    </div>
 
                                      
 
                                      
 
                                     <a id="ratio"></a>
 
                                     <a id="ratio"></a>
Line 379: Line 389:
 
                                             <div class="panel-body">
 
                                             <div class="panel-body">
 
                                                 <p>We next wondered whether the adsorption capacity of 3A-SUP+3B would increase with an increased protein-uranyl ratio. We thus tested the adsorption capacity of 3A-SUP+3B at different protein-uranyl ratios in TBS buffer. In these experiments, the concentration of uranyl ions was kept at 10μM.</p>
 
                                                 <p>We next wondered whether the adsorption capacity of 3A-SUP+3B would increase with an increased protein-uranyl ratio. We thus tested the adsorption capacity of 3A-SUP+3B at different protein-uranyl ratios in TBS buffer. In these experiments, the concentration of uranyl ions was kept at 10μM.</p>
                                                 <p>The 3A-SUP+3B hydrogel could sequester 89% and 93% of the total uranyl when the protein to uranyl ratio was one and ten, respectively (Fig.8). The standard deviations were calculated from triplicate experiments</p>
+
                                                 <p>The 3A-SUP+3B polymer network could sequester 89% and 93% of the total uranyl when the protein to uranyl ratio was one and ten, respectively (Fig. 8.). The standard deviations were calculated from triplicate experiments</p>
 
                                                 <figure>
 
                                                 <figure>
                                                     <img class="featurette-image" src="" style="width:100%;" alt=""/>
+
                                                     <p style="text-align:center;"><img style="width:48% ;" src="https://static.igem.org/mediawiki/2016/9/9a/T--Peking--images_uo2_fig8.png" alt=""/></p>
                                                        <figcaption>Fig. 8. Adsorption capacity of 3A-SUP+3B at protein-uranyl ratios of 1 and 10. ****p&lt;0.0001, ns means no significant difference. n=3. Error bars indicate standard deviations.
+
                                                    <figcaption style="text-align:left;">
                                                        </figcaption>
+
                                                        Fig. 8. Adsorption capacity of 3A-SUP+3B at protein-uranyl ratios of 1 and 10. ****p&lt;0.0001, ns means no significant difference. n=3. Error bars indicate standard deviations.
 +
                                                    </figcaption>
 
                                                 </figure>
 
                                                 </figure>
 
                                                 <p>The results thus showed that when the protein-uranyl ratio was increased tenfold, the adsorption rate increased as well. However, the rate of increase was less than 5% and was furthermore not statistically significant.</p>
 
                                                 <p>The results thus showed that when the protein-uranyl ratio was increased tenfold, the adsorption rate increased as well. However, the rate of increase was less than 5% and was furthermore not statistically significant.</p>
                                                 <p>According to these results, the adsorption rate did not increase significantly when the protein to uranyl ratio was increased to ten. The reason might be that 3A-SUP+3B can sequester almost all of the available uranyl already when the ratio is 1:1, making the increase inconsequential. In conclusion, a protein-uranyl ratio of 1:1 was enough to sequester most uranyl at a concentration of 10μM.</p>
+
                                                 <p>According to these results, the adsorption rate did not increase significantly when the protein to uranyl ratio was increased to ten. The reason might be that 3A-SUP+3B could sequester almost all of the available uranyl already when the ratio is 1:1, making the increase inconsequential. In conclusion, a protein-uranyl ratio of 1:1 was enough to sequester most uranyl at a concentration of 10μM.</p>
 
                                             </div>
 
                                             </div>
 
                                         </div>
 
                                         </div>
Line 400: Line 411:
 
                                             <div class="panel-body">
 
                                             <div class="panel-body">
 
                                                 <p>The protein constructs showed a great uranyl adsorption capacity in TBS buffer, therefore we wondered whether they could work just as well in other conditions. We prepared two experimental scenarios simulated real-life pollution, using fresh water from Weiming Lake on campus and artificial seawater, respectively.</p>
 
                                                 <p>The protein constructs showed a great uranyl adsorption capacity in TBS buffer, therefore we wondered whether they could work just as well in other conditions. We prepared two experimental scenarios simulated real-life pollution, using fresh water from Weiming Lake on campus and artificial seawater, respectively.</p>
                                                 <p>At the protein-uranyl ratio of 10:1, 3A-SUP+3B could sequester 93%, 67% and 83% of total uranyl in TBS buffer, fresh water and artificial seawater, respectively (Fig.9). The standard deviations were calculated from triplicate experiments.</p>
+
                                                 <p>At the protein-uranyl ratio of 10:1, 3A-SUP+3B could sequester 93%, 67% and 83% of total uranyl in TBS buffer, fresh water and artificial seawater, respectively (Fig. 9.). The standard deviations were calculated from triplicate experiments.</p>
 +
 
 
                                                 <figure>
 
                                                 <figure>
                                                     <img class="featurette-image" src="" style="width:100%;" alt=""/>
+
                                                     <p style="text-align:center;"><img style="width:50% ;" src="https://static.igem.org/mediawiki/2016/4/4e/T--Peking--images_uo2_fig9.png" alt=""/></p>
                                                     <figcaption>Fig. 9. Adsorption capacity of 3A-SUP+3B in different conditions. ****p&lt;0.0001, n=3. Error bars indicate standard deviations.
+
                                                     <figcaption style="text-align:left;">
 +
                                                        Fig. 9. Adsorption capacity of 3A-SUP+3B in different conditions. ****p&lt;0.0001, n=3. Error bars indicate standard deviations.
 
                                                     </figcaption>
 
                                                     </figcaption>
 
                                                 </figure>
 
                                                 </figure>
Line 420: Line 433:
 
                                         <div id="collapse4" class="panel-collapse collapse in" role="tabpanel" aria-labelledby="heading1">
 
                                         <div id="collapse4" class="panel-collapse collapse in" role="tabpanel" aria-labelledby="heading1">
 
                                             <div class="panel-body">
 
                                             <div class="panel-body">
                                                 <p>The adsorption capacity of 3A-SUP+3B against 13nM uranyl was tested at a protein-uranyl ratio of 6000:1, and it was able to sequester 48% and 35% of the total uranyl in TBS buffer and artificial seawater, respectively (Fig. 10). That means that the functional hydrogel can not only adsorb uranyl at high concentrations of uranium pollution, but can also bind uranyl at very low concentrations - as low as 13nM - which equals the uranyl concentration in natural seawater.</p>
+
                                                 <p>The adsorption capacity of 3A-SUP+3B against 13nM uranyl was tested at a protein-uranyl ratio of 6000:1, and it was able to sequester 48% and 35% of the total uranyl in TBS buffer and artificial seawater, respectively (Fig. 10.). That means that the functional polymer network could not only adsorb uranyl at high concentrations of uranium pollution, but could also bind uranyl at very low concentrations - as low as 13nM - which equals the uranyl concentration in natural seawater.</p>
 +
 
 
                                                 <figure>
 
                                                 <figure>
                                                     <img class="featurette-image" src="" style="width:100%;" alt=""/>
+
                                                     <p style="text-align:center;"><img style="width:42% ;" src="https://static.igem.org/mediawiki/2016/a/a3/T--Peking--images_uo2_fig10.png" alt=""/></p>
                                                     <figcaption>Fig 10.  Adsorption capacity of 3A-SUP+3B in low uranyl concentration. **p&lt;0.01, n=3. Error bars indicate standard deviations.
+
                                                     <figcaption style="text-align:left;">
 +
                                                        Fig 10.  Adsorption capacity of 3A-SUP+3B in low uranyl concentration. **p&lt;0.01, n=3. Error bars indicate standard deviations.
 
                                                     </figcaption>
 
                                                     </figcaption>
 
                                                 </figure>
 
                                                 </figure>
Line 430: Line 445:
 
                                     </div>
 
                                     </div>
 
                                      
 
                                      
                                    </div>
+
                                </div>
                        <br/>
+
                               
                        <br/>
+
                                <br/>
                        <br/>
+
                                <br/>
                        <br/>
+
                            </div><!-- results end-->
                                </div><!-- results end-->
+
                           
 +
                           
 +
                           
 +
                           
 +
                           
 +
                           
 +
                            <a id="discussion"></a>
 +
                            <div class="texttitle">Discussion</div>
 +
                            <p>Triple SpyTag-SUP (3A-SUP) was able to adsorb uranyl with great efficiency, and the cross-linked product of 3A-SUP+3B showed an even better adsorption capacity. What’s more, 3A-SUP+3B could also perform its function well in contaminated conditions, and could thus be used to detoxify the environment. Furthermore, we confirmed that the biological functional polymer network could indeed adsorb uranyl ions from seawater, and might even be employed to gather uranium directly from seawater in the future. Thus, our biological functional polymer network has broad potential application fields.</p>
 +
                           
 +
                            <a id="references"></a>
 +
                            <div class="references">
 +
                                <h3>References:</h3>
 +
                                <p>[1] Lu, Z. et al. A protein engineered to bind uranyl selectively and with femtomolar affinity. <i>Nature chemistry 1856</i>, <b>236-241</b> (2014).</p>
 +
                                <p>[2] Laura, G, et al. UO<sub>2</sub><sup>2+</sup> Uptake by Proteins: Understanding the Binding Features of the Super Uranyl Binding Protein and Design of a Protein with Higher Affinity. <i>J. Am. Chem. Soc 136</i>, <b>17484−17494</b> (2014).</p>
 +
                            </div>
 +
                           
 
                              
 
                              
                       
 
                       
 
 
                       
 
                       
 
            <a id="discussion"></a>
 
                        <div class="texttitle">Discussion</div>
 
                        <p>Triple SpyTag-SUP (3A-SUP) was able to adsorb uranyl with great efficiency, and the cross-linked product of 3A-SUP+3B showed an even better adsorption capacity. What’s more, 3A-SUP+3B can also perform its function well in contaminated conditions, and can thus be used to detoxify the environment. Furthermore, we confirmed that the biological functional hydrogel could indeed adsorb uranyl ions from seawater, and might even be employed to gather uranium directly from seawater in the future. Thus, our biological functional hydrogel has broad potential application fields.</p>
 
                       
 
            <a id="references"></a>
 
                        <div class="references">
 
                            <h3>References:</h3>
 
                            <p>[1] Lu, Z. et al. A protein engineered to bind uranyl selectively and with femtomolar affinity. Nature chemistry 1856, 236-241 (2014).</p>
 
                            <p>[2] Laura, G, et al. UO22+ Uptake by Proteins: Understanding the Binding Features of the Super Uranyl Binding Protein and Design of a Protein with Higher Affinity. J. Am. Chem. Soc 136, 17484−17494 (2014).</p>
 
                        </div>
 
 
 
 
                         </div><!--9 columns end-->
 
                         </div><!--9 columns end-->
 
                          
 
                          
 
                          
 
                          
 
                          
 
                          
 
+
                       
 
                          
 
                          
 
                          
 
                          

Latest revision as of 03:16, 2 December 2016

Uranyl adsorption

Uranyl Adsorption

Background

Uranium is a key element used in nuclear energy production and is crucial in many other applications. The most stable and relevant uranium ion in aerobic environments is the uranyl cation. Super Uranyl-binding Protein (SUP) has been rationally designed via structural calculations and functional modification to specifically bind uranyl cations. According to the researchers’ results, SUP is thermodynamically stable and offers very high affinity and selectivity for uranyl with a Kd of 7.4 fM and >10,000-fold selectivity over other metal ions1. The binding features of SUP are described later in more detail (Fig. 1.).

Fig. 1. Uranyl-binding affinity and selectivity of SUP. (A) Competition assay of SUP versus total carbonate for uranyl revealing a Kd of 7.4 fM at pH 8.9. (B) Binding selectivity of SUP for uranyl over various other metal ions.

It was found that UO22+ is coordinated by five carboxylate oxygen atoms from four amino acid residues in SUP. The hydrogen bonds between the amino acid residues coordinating UO22+ and residues in its second coordination sphere also affects the protein’s uranyl binding ability (Fig. 2.) 2.

Fig. 2. Coordination Environment of UO22+ in SUP. UO22+ is coordinated by five carboxylate oxygen atoms from four amino acid residues of SUP.

As mentioned above, we fused SUP to three SpyTags in order to construct the 3A-SUP monomer, so the function of SUP might be affected by these additional modules. To make sure that 3A-SUP could still function when bound in the polymer network, we tested its ability to adsorb UO22+ in various environments.



Methods

Appropriate volume of 3/4/6A-SUP and 3B were mixed and incubated for 1 hour. Subsequently, a uranyl solution in TBS buffer was prepared and its pH value adjusted appropriately. After complete cross-linking, the uranyl solution was contacted with the pre-incubated proteins and mixed thoroughly by vortexing (Fig. 3.).

Fig. 3. Schematic diagram of uranyl adsorption.

The adsorption reaction was allowed to continue for 1 min, after which the mixture was immediately transferred into 10kDa cutoff centrifuge filters and centrifuged for 10 min at 14000g to exclude non-specific protein interference by removing proteins (Fig. 4.). Finally, 100μL aliquots of the filtrate were collected for further analysis.

Fig. 4. 10kDa cutoff centrifugal filters. The reaction mixtures were immediately transferred into 10kDa cutoff centrifugal filters and centrifuged for 10 min at 14000g to exclude protein interference.

What makes these results more reliable is that we set up control groups which contained the same concentration of uranyl as the test groups. We used the uranyl concentration of the filtrates from the control groups as the actual uranyl concentration to account for the adsorption of uranyl on centrifuge filters. Two different methods were applied to determine the uranyl concentrations in the filtrate. For higher concentrations (>1μM), we used a modification of the Arsenazo III method1. For lower concentrations (<1μM), ICP-MS was employed.

Fig. 5. Uranyl detection assay with Arsenazo III. (A) Mechanism of chromogenic reaction. (B) Standard curve of uranyl concentration.


Results

The adsorption capacities of 10μM proteins and polymer network were measured in TBS buffer against uranyl in equimolar quantities. In very short time, 3A-SUP alone showed an adsorption capacity of up to 87% and cross-linked 3A-SUP+3B could effectively sequester 96% of the total uranyl (Fig. 6.).

Fig. 6. Adsorption capacities of 3A-SUP and the oligomer mixture 3A-SUP+3B. 3A-SUP alone showed an adsorption capacity of up to 87%. Cross-linked 3A-SUP+3B could effectively sequester 96% of the total uranyl.

Furthermore, we measured the adsorption capacities of other kinds of fusion constructs and polymers, such as 4A-SUP (84%), 6A-SUP (87%), 4A-SUP+3B (88%), 6A-SUP+3B (63%) (Fig. 7.). All of these were less efficient but they also could sequester at least 60% of the total uranyl. The standard deviations were calculated from triplicate experiments (n=3). These results were promising since different kinds of fusion proteins and protein constructs were able to adsorb uranyl with great efficiency. Among these, 3A-SUP+3B (96%) showed the best adsorption capacity and was consequently used for all further experiments.

Fig. 7. Statistical analysis of adsorption capacities of several kinds of proteins and protein polymer network. ****p<0.0001, ***p<0.001. n=3. Error bars indicate standard deviations.

We next wondered whether the adsorption capacity of 3A-SUP+3B would increase with an increased protein-uranyl ratio. We thus tested the adsorption capacity of 3A-SUP+3B at different protein-uranyl ratios in TBS buffer. In these experiments, the concentration of uranyl ions was kept at 10μM.

The 3A-SUP+3B polymer network could sequester 89% and 93% of the total uranyl when the protein to uranyl ratio was one and ten, respectively (Fig. 8.). The standard deviations were calculated from triplicate experiments

Fig. 8. Adsorption capacity of 3A-SUP+3B at protein-uranyl ratios of 1 and 10. ****p<0.0001, ns means no significant difference. n=3. Error bars indicate standard deviations.

The results thus showed that when the protein-uranyl ratio was increased tenfold, the adsorption rate increased as well. However, the rate of increase was less than 5% and was furthermore not statistically significant.

According to these results, the adsorption rate did not increase significantly when the protein to uranyl ratio was increased to ten. The reason might be that 3A-SUP+3B could sequester almost all of the available uranyl already when the ratio is 1:1, making the increase inconsequential. In conclusion, a protein-uranyl ratio of 1:1 was enough to sequester most uranyl at a concentration of 10μM.

The protein constructs showed a great uranyl adsorption capacity in TBS buffer, therefore we wondered whether they could work just as well in other conditions. We prepared two experimental scenarios simulated real-life pollution, using fresh water from Weiming Lake on campus and artificial seawater, respectively.

At the protein-uranyl ratio of 10:1, 3A-SUP+3B could sequester 93%, 67% and 83% of total uranyl in TBS buffer, fresh water and artificial seawater, respectively (Fig. 9.). The standard deviations were calculated from triplicate experiments.

Fig. 9. Adsorption capacity of 3A-SUP+3B in different conditions. ****p<0.0001, n=3. Error bars indicate standard deviations.

When 3A-SUP+3B was used in fresh water, the adsorption capacity dropped sharply. It is possible that carbonate and other species found in the fresh water might have interfered with 3A-SUP+3B and led to the decrease. It is also possible that the proteins are unstable under low-salt conditions, as opposed to the NaCl-rich environments of TBS buffer or artificial seawater.

The adsorption capacity of 3A-SUP+3B against 13nM uranyl was tested at a protein-uranyl ratio of 6000:1, and it was able to sequester 48% and 35% of the total uranyl in TBS buffer and artificial seawater, respectively (Fig. 10.). That means that the functional polymer network could not only adsorb uranyl at high concentrations of uranium pollution, but could also bind uranyl at very low concentrations - as low as 13nM - which equals the uranyl concentration in natural seawater.

Fig 10. Adsorption capacity of 3A-SUP+3B in low uranyl concentration. **p<0.01, n=3. Error bars indicate standard deviations.


Discussion

Triple SpyTag-SUP (3A-SUP) was able to adsorb uranyl with great efficiency, and the cross-linked product of 3A-SUP+3B showed an even better adsorption capacity. What’s more, 3A-SUP+3B could also perform its function well in contaminated conditions, and could thus be used to detoxify the environment. Furthermore, we confirmed that the biological functional polymer network could indeed adsorb uranyl ions from seawater, and might even be employed to gather uranium directly from seawater in the future. Thus, our biological functional polymer network has broad potential application fields.

References:

[1] Lu, Z. et al. A protein engineered to bind uranyl selectively and with femtomolar affinity. Nature chemistry 1856, 236-241 (2014).

[2] Laura, G, et al. UO22+ Uptake by Proteins: Understanding the Binding Features of the Super Uranyl Binding Protein and Design of a Protein with Higher Affinity. J. Am. Chem. Soc 136, 17484−17494 (2014).