In the laboratory, we focused on the tool used to visualize the interaction between both dCas9s. For that purpose, we designed a biobrick in order to characterize the assembly of the split GFP. This biobrick is composed of one part of the FRB / FKBP12 system fused to the other part of the tripartite split-GFP system (GFP 10 / GFP 11) plus GFP 1.9 in the same plasmid.
In the laboratory, we focused on the tool used to visualize the interaction between both dCas9s. For that purpose, we designed a biobrick in order to characterize the assembly of the split GFP. This biobrick is composed of one part of the FRB / FKBP12 system fused to the other part of the tripartite split-GFP system (GFP 10 / GFP 11) plus GFP 1.9 in the same plasmid.
−
Furthermore, a model was built in order to determine the optimal distance between the two dCas9s proteins for the GFP to fluoresce. This model was based on two devices: the pSB1C3 plasmid composed of the tripatrite split-GFP plus two dCas9s and another plasmid composed of the two target sequences of the dCas9 and the two sgRNAs coding sequence. For this second plasmid, we wanted to test several distances (50 bp, 75 bp, 100 bp and 150 bp) between the two target sequences of the dCas9s, in order to determine the best distance for the tripartite split-GFP to fluoresce, regarding to the established model.
+
Furthermore, a model was built in order to determine the optimal distance between the two dCas9s proteins for the GFP to fluoresce. This model was based on two devices: the pSB1C3 plasmid composed of the tripatrite split GFP plus two dCas9s and another plasmid composed of the two target sequences of the dCas9 and the two sgRNAs coding sequence. For this second plasmid, we wanted to test several distances (50 bp, 75 bp, 100 bp and 150 bp) between the two target sequences of the dCas9s, in order to determine the best distance for the tripartite split-GFP to fluoresce, regarding to the established model.