These four mechanisms allow for dynamic binding of proteins to their target sequences, despite the fact that these proteins are not present in large concentrations. For example, the number of genes in <i>Escherichia coli</i> is about 5 000 and the number of active RNA polymerases is about 200 per cell, of which 140 only transcribe 2% of the genes leaving 60 polymerases for the other 4995 genes.
These four mechanisms allow for dynamic binding of proteins to their target sequences, despite the fact that these proteins are not present in large concentrations. For example, the number of genes in <i>Escherichia coli</i> is about 5 000 and the number of active RNA polymerases is about 200 per cell, of which 140 only transcribe 2% of the genes leaving 60 polymerases for the other 4995 genes.
−
Thus, there is tight competition between genes to get transcribed: competition between the same σ-factor for several promoters, competition between σ-factors for the rest of the RNA polymerase or competition between a σ-factor and other DNA binding proteins. These competitions are fundamental in the mechanism of transcriptional regulation. They are often allowed or prevented by remodeling of the chromosome topology (Haugen 2008) [Fig. 4].
+
Thus, there is tight competition between genes to get transcribed: competition between the same σ-factor for several promoters, competition between σ-factors for the rest of the RNA polymerase or competition between a σ-factor and other DNA binding proteins. These competitions are fundamental in the mechanism of transcriptional regulation. They are often allowed or prevented by remodeling of the chromosome topology (Haugen 2008) '''[Fig. 4]'''.
This is why the link between genome topology and gene regulation is a major research topic in the subject of transcription. Although the mechanisms of global gene regulation by changes in DNA organization are well established, the fine tuning of transcription is particularly hard to study and not very well understood. Considering this gap in knowledge, new studies have to be conducted without ''a priori'' in order to determine if fine tuning of the DNA topology takes place during transcriptional regulation and if so, how does such regulation work.
This is why the link between genome topology and gene regulation is a major research topic in the subject of transcription. Although the mechanisms of global gene regulation by changes in DNA organization are well established, the fine tuning of transcription is particularly hard to study and not very well understood. Considering this gap in knowledge, new studies have to be conducted without ''a priori'' in order to determine if fine tuning of the DNA topology takes place during transcriptional regulation and if so, how does such regulation work.