Difference between revisions of "Team:Austin UTexas/Description"

Line 112: Line 112:
 
<div id="section1" class= "naviSection">
 
<div id="section1" class= "naviSection">
 
<h2> Kombucha Strains </h2>
 
<h2> Kombucha Strains </h2>
<p> One of the earliest goals of our project was to identify a specific set of microbes responsible for the production of kombucha. To do this, samples of store-bought kombucha were plated onto a variety of media with various dilutions to isolate microbes. Then, morphologically different colonies were cultured and saved as a frozen glycerol stock for further use. Once we obtained a collection of microbial isolates, each microbe was sequenced and identified by using polymerase chain reaction (PCR) to amplify a particular ribosomal RNA gene. The 16S gene was selected for bacterial strains, and the ITS gene was amplified for the fungal samples.<sup>1</sup> After the samples were sequenced, we utilized the <a href="http://rdp.cme.msu.edu/seqmatch/seqmatch_intro.jsp">Ribosomal Database Project (RDP) SeqMatch Tool</a> to identify our isolated species of bacteria and yeast. By identifying these kombucha strains, we were able to use our own experimentally-isolated strains for our future kombucha experiments.  
+
<p> One of the earliest goals of our project was to identify a specific set of microbes responsible for the production of kombucha. To do this, samples of store-bought kombucha were plated onto a variety of media with various dilutions to isolate microbes. Then, morphologically different colonies were cultured and frozen in glycerol for further use. Once we obtained a collection of microbial isolates, each microbe was sequenced and identified using polymerase chain reaction (PCR) to amplify a particular ribosomal RNA gene. The 16S gene was selected for bacterial strains, and the ITS gene was amplified for the fungal samples.<sup>1</sup> After the samples were sequenced, we utilized the <a href="http://rdp.cme.msu.edu/seqmatch/seqmatch_intro.jsp">Ribosomal Database Project (RDP) SeqMatch Tool</a> to identify our isolated species of bacteria and yeast. By identifying these kombucha strains, we were able to use our own experimentally isolated strains for our future kombucha experiments.  
 
<h3>References</h3>
 
<h3>References</h3>
 
<ol type="1">
 
<ol type="1">

Revision as of 23:49, 18 October 2016

Project Description


Gold Medal Part Characterization

The characterization of the BioBrick P-atp2 from the BIT-China-2015 team was done to see if P-atp2 could be utilized as a basic pH sensor. The results are found here and on the iGEM Registry page under experience, BBa_K1675021


Our Project

Kombucha is a beverage made when a symbiotic community of bacteria and yeast ferments sugared tea. Although kombucha has been consumed for thousands of years in the East, the drink has enjoyed a recent resurgence in popularity [REFERENCE-HOMEPAGE]. Several kombucha breweries operate in Austin, Texas, our team’s hometown. The role microbes play in the production of the beverage has led our team to wonder if synthetic biology could allow us to create “designer kombucha” with enhanced properties, such as more appealing flavors or additional nutrients. In order to do so, our team attempted to isolate the strains responsible for the fermentation of kombucha, identify them, genetically modify them, and add the individual strains into tea media to recreate the drink. We additionally considered potential applications of the ability to genetically modify the microbial population of kombucha, such as reducing the ethanol content of the beverage and improving taste with brazzein, a sweet-tasting protein. AS PART OF OUR HUMAN PRACTICES WE.... [SOMETHING HERE about GMO concerns and alternative direction(s)?]

Click the images below to learn more about our project!

Kombucha Strains

Conjugation

Recapitulation

Ethanol




Brazzein

pH Sensors