Line 180: | Line 180: | ||
<div class="col-sm-12 col-sm-12"><!-- 8/12 --> | <div class="col-sm-12 col-sm-12"><!-- 8/12 --> | ||
− | <h2> | + | <h2>Introduction</h2> |
</div> | </div> | ||
Line 189: | Line 189: | ||
<p class="text-justify"> | <p class="text-justify"> | ||
− | Imagine if you could direct | + | Imagine if you could direct bacterial populations towards a specific location. This ability could have amazing applications, |
− | + | such as research, bioremediation, substance detection and much more!<br><br> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
</p> | </p> | ||
</div> | </div> | ||
− | + | ||
− | + | ||
</div> | </div> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
</div> | </div> | ||
+ | <br><br> | ||
− | + | ||
− | + | <div class="row"> | |
− | + | ||
<div class="col-md-12 col-sm-12"> | <div class="col-md-12 col-sm-12"> | ||
− | <h2> | + | <h2>Nature provide a tremendous toolbox</h2> |
</div> | </div> | ||
Line 236: | Line 215: | ||
<br> | <br> | ||
<p class="text-justify"> | <p class="text-justify"> | ||
− | + | Bacteria are able to sense the external environment, and move in response to a chemical stimulus (Fig. 1). | |
− | This | + | This phenomenon is called <b>chemotaxis</b>.<br><br> |
− | + | The bacteria sense the environment using receptor proteins (chemoreceptors). | |
− | + | These are transmembrane proteins, that contain a periplasmic ligand binding domain (sensing region) and a conservative cytoplasmic domain (signaling region).<br> | |
− | + | A detailed explanation on the chemotaxis system can be found <a href="https://2016.igem.org/Team:Technion_Israel/Chemotaxis">here</a>.<br><br> | |
− | <br> | + | The variety of chemoreceptors existing in nature is limited, |
− | A detailed explanation on the chemotaxis system | + | and most of them are comprise of relatively the same structure. The main difference being their ligand binding domains. |
− | + | ||
</p> | </p> | ||
</div> | </div> | ||
Line 249: | Line 227: | ||
<div class="col-md-6 col-sm-12"> | <div class="col-md-6 col-sm-12"> | ||
<a class="pop ocenter"> | <a class="pop ocenter"> | ||
− | <img src="https://static.igem.org/mediawiki/2016/thumb/9/95/T--Technion_Israel--repeattbacteria1.png/1200px-T--Technion_Israel--repeattbacteria1.png" class="img-responsive img-center" width=" | + | <img src="https://static.igem.org/mediawiki/2016/thumb/9/95/T--Technion_Israel--repeattbacteria1.png/1200px-T--Technion_Israel--repeattbacteria1.png" class="img-responsive img-center" width="400" style="cursor: pointer;"> |
</a> | </a> | ||
<p class="text-center"><b>Fig. 1:</b> Scheme of chemotaxis concept.</p> | <p class="text-center"><b>Fig. 1:</b> Scheme of chemotaxis concept.</p> | ||
</div> | </div> | ||
+ | |||
+ | <div class="col-md-6 col-sm-12"> | ||
+ | <a class="pop ocenter"> | ||
+ | <img src="https://static.igem.org/mediawiki/2016/a/ab/T--Technion_Israel--TarFig2Description2.png" class="img-responsive img-center img-cont" width="400" height="129" style="cursor: pointer;"> | ||
+ | </a> | ||
+ | <p class="text-center"><b>Fig. 2:</b> Chemoreceptor structure illustration. <b></b></p> | ||
+ | </div> | ||
+ | |||
</div> | </div> | ||
</div> | </div> | ||
+ | |||
− | + | ||
− | + | ||
− | + | <div class="cont_box"> | |
− | + | ||
<div class="row"> | <div class="row"> | ||
<div class="col-md-12 col-sm-12"> | <div class="col-md-12 col-sm-12"> | ||
− | <h2>S.Tar | + | <h2>S.Tar –control of chemotaxis</h2> |
</div> | </div> | ||
Line 272: | Line 258: | ||
<br> | <br> | ||
<p class="text-justify"> | <p class="text-justify"> | ||
− | Project Super Tar - <a href="https://2016.igem.org/Team:Technion_Israel/S.Tar_intro">S.Tar</a> in short, is designed to be a novel broadband platform for controlled chemotaxis. | + | Project Super Tar - <a href="https://2016.igem.org/Team:Technion_Israel/S.Tar_intro">S.Tar</a> in short, is designed to be a novel broadband platform for controlled chemotaxis. Our project focuses on expanding the repertoire of chemoreceptors found in nature. |
− | The | + | The base of our project is the <i> E. coli </i> Tar chemoreceptor or more specifically, its ligand binding domain (LBD). <br>We show that by mutating the native Tar LBD <b>(2)</b> or by interchanging it with that of other receptors <b>(3)</b>, the <i> E. coli </i> chemotaxis system can be programmed to respond to completely new ligands.<br> |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
</p> | </p> | ||
</div> | </div> | ||
− | + | ||
+ | |||
<div class="col-md-6 col-sm-12"> | <div class="col-md-6 col-sm-12"> | ||
<a class="pop ocenter"> | <a class="pop ocenter"> | ||
Line 288: | Line 270: | ||
<p class="text-center"><b>Fig. 2:</b> S.Tar project - Programming the chemoreceptors to respond to new ligands by modifying the ligand binding domain. | <p class="text-center"><b>Fig. 2:</b> S.Tar project - Programming the chemoreceptors to respond to new ligands by modifying the ligand binding domain. | ||
</div> | </div> | ||
+ | |||
+ | |||
+ | <div class="col-md-12 col-sm-12"> | ||
+ | <br> | ||
+ | <p class="text-justify"> | ||
+ | We were successful in generating two new functional chemoreceptors:<br><br> | ||
+ | <b>1. </b> <a href="https://2016.igem.org/Team:Technion_Israel/Proof" >PctA-Tar </a>, a chimera created by replacing the Tar LBD with that of the <i>Pseudomonas</i> receptor PctA.<br> | ||
+ | <b>2.</b><ahref="https://2016.igem.org/Team:Technion_Israel/Modifications/Rosetta" >Histamine-Tar</a>, a receptor created with the help of computational design - using 'Rosetta' bioinformatics software suite to design mutations in the Tar receptor. | ||
+ | Using S.Tar, scientists will be able to control the movement of bacteria, and direct them towards or away from a target material. | ||
+ | </p> | ||
+ | </div> | ||
+ | |||
+ | |||
+ | |||
+ | |||
Line 293: | Line 290: | ||
</div> | </div> | ||
</div> | </div> | ||
− | + | ||
− | + | ||
+ | <div class="cont_box"> | ||
<div class="row"> | <div class="row"> | ||
<div class="col-md-12 col-sm-12"> | <div class="col-md-12 col-sm-12"> | ||
Line 307: | Line 305: | ||
<br> | <br> | ||
<p class="text justify"> | <p class="text justify"> | ||
− | As an application of our system, we have designed <a href="https://2016.igem.org/Team:Technion_Israel/Design">FlashLab</a> - a user friendly fluidic chip, which utilizes the high sensitivity of the chemotactic response. FlashLab is a simple and low cost platform for the detection of any chemoeffector, using S.Tar bacteria. | + | As an application of our system, we have designed <a href="https://2016.igem.org/Team:Technion_Israel/Design">FlashLab</a> - |
− | + | a user friendly fluidic chip, which utilizes the high sensitivity of the chemotactic response. FlashLab is a simple and low | |
+ | cost platform for the detection of any chemoeffector, using S.Tar bacteria. | ||
</p> | </p> | ||
</div> | </div> | ||
Line 323: | Line 322: | ||
</div> | </div> | ||
+ | |||
+ | |||
+ | |||
+ | <div class="row"> | ||
+ | |||
+ | <div class="col-sm-12 col-sm-12"><!-- 8/12 --> | ||
+ | |||
+ | <h2>Our vision</h2> | ||
+ | </div> | ||
+ | |||
+ | |||
+ | |||
+ | <div class="col-md-12 col-sm-12"> | ||
+ | <div class="col-md-12 col-sm-12"> | ||
+ | |||
+ | <p class="text-justify"> | ||
+ | Project S.Tar aims to give the iGEM community the ability to control bacterial chemotaxis, with the hope that | ||
+ | future teams may utilize it and find it useful. | ||
+ | |||
+ | </p> | ||
+ | </div> | ||
+ | |||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <div class="col-md-6 col-xs-6"> | ||
+ | <a href="https://2016.igem.org/Team:Technion_Israel/S.Tar_intro"> | ||
+ | <img src="https://static.igem.org/mediawiki/2016/f/fb/T--Technion_Israel--starlogoicon.png" class="img-responsive img-center cir_tabs" width="170" style="cursor: pointer;"> | ||
+ | </a> | ||
+ | <h4 class="text-center">S.Tar</h4> | ||
+ | </div> | ||
+ | |||
+ | <div class="col-md-6 col-xs-6"> | ||
+ | <a href="https://2016.igem.org/Team:Technion_Israel/Design"> | ||
+ | <img src="https://static.igem.org/mediawiki/2016/3/3d/T--Technion_Israel--flashlabicon.png" class="img-responsive img-center cir_tabs" width="170" style="cursor: pointer;"> | ||
+ | </a> | ||
+ | <h4 class="text-center">FlashLab</h4> | ||
+ | </div> | ||
+ | |||
+ | </div> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
</div><!-- END: #1 row --> | </div><!-- END: #1 row --> | ||
</div> | </div> |
Revision as of 19:55, 19 October 2016
Introduction
Imagine if you could direct bacterial populations towards a specific location. This ability could have amazing applications,
such as research, bioremediation, substance detection and much more!
Nature provide a tremendous toolbox
Bacteria are able to sense the external environment, and move in response to a chemical stimulus (Fig. 1).
This phenomenon is called chemotaxis.
The bacteria sense the environment using receptor proteins (chemoreceptors).
These are transmembrane proteins, that contain a periplasmic ligand binding domain (sensing region) and a conservative cytoplasmic domain (signaling region).
A detailed explanation on the chemotaxis system can be found here.
The variety of chemoreceptors existing in nature is limited,
and most of them are comprise of relatively the same structure. The main difference being their ligand binding domains.
S.Tar –control of chemotaxis
Project Super Tar - S.Tar in short, is designed to be a novel broadband platform for controlled chemotaxis. Our project focuses on expanding the repertoire of chemoreceptors found in nature.
The base of our project is the E. coli Tar chemoreceptor or more specifically, its ligand binding domain (LBD).
We show that by mutating the native Tar LBD (2) or by interchanging it with that of other receptors (3), the E. coli chemotaxis system can be programmed to respond to completely new ligands.
Fig. 2: S.Tar project - Programming the chemoreceptors to respond to new ligands by modifying the ligand binding domain.
We were successful in generating two new functional chemoreceptors:
1. PctA-Tar , a chimera created by replacing the Tar LBD with that of the Pseudomonas receptor PctA.
2.
FlashLab – A S.Tar detector
As an application of our system, we have designed FlashLab - a user friendly fluidic chip, which utilizes the high sensitivity of the chemotactic response. FlashLab is a simple and low cost platform for the detection of any chemoeffector, using S.Tar bacteria.
Our vision
Project S.Tar aims to give the iGEM community the ability to control bacterial chemotaxis, with the hope that future teams may utilize it and find it useful.
References:
1. Bi, S. and Lai, L., 2015. Bacterial chemoreceptors and chemoeffectors. Cellular and Molecular Life Sciences, 72(4), pp.691-708.
2. Moretti, R., Bender, B.J., Allison, B. and Meiler, J., 2016. Rosetta and the Design of Ligand Binding Sites. Computational Design
of Ligand Binding Proteins, pp.47-62.
3. Reyes‐Darias, J.A., Yang, Y., Sourjik, V. and Krell, T., 2015. Correlation between signal input and output in PctA and PctB amino
acid chemoreceptor of Pseudomonas aeruginosa. Molecular microbiology, 96(3), pp.513-525.