Difference between revisions of "Team:Technion Israel/Description"

Line 7: Line 7:
 
     <meta charset="utf-8">
 
     <meta charset="utf-8">
 
     <meta name="navbar" content="width=device-width, initial-scale=1">
 
     <meta name="navbar" content="width=device-width, initial-scale=1">
 
 
<style>/* inline page CSS */
 
 
body {
 
}
 
 
/* ==========Background and effects ========== */
 
/*Make sure the div is unuiqe to each page*/
 
.desk_wrapper {
 
position: relative;
 
 
background: white; /* For browsers that do not support gradients */
 
background: -webkit-linear-gradient(white, #ecf7fb, white); /* For Safari 5.1 to 6.0 */
 
background: -o-linear-gradient(white, #ecf7fb, white); /* For Opera 11.1 to 12.0 */
 
background: -moz-linear-gradient(white, #ecf7fb, white); /* For Firefox 3.6 to 15 */
 
background: linear-gradient(white, #ecf7fb, white); /* Standard syntax */
 
/*background-image:url('addres');
 
background-size:cover;
 
filter: blur(5px) grayscale(80%) opacity(10%);*/
 
}
 
/* ========== END: and effects ========== */
 
 
 
/*
 
Object in external CSS sheet:
 
 
nav-tabs, cont_tabs:
 
Open diffrent tabs, we uses imgs.
 
 
back-to-top:
 
go back to top. Apears only when going down the page.
 
 
cont_box:
 
The containers (box) which hold the texts and imgs in the page.
 
 
img_cont:
 
Every in-content-page img needs to have this class of img.
 
 
no-title-col:
 
Every in-content-page img needs to have this class of col.
 
*/
 
.referances {
 
  font-size: 16px;
 
outline: 1px solid black;
 
padding: 20px;
 
}
 
 
/*canceling wiki bug (inlarge imgs stuck the page)*/
 
.modal-backdrop {
 
position: relative;
 
}
 
</style>
 
 
 
<script>
 
 
//up arrow:
 
$(document).ready(function(){
 
$(window).scroll(function () {
 
if ($(this).scrollTop() > 350) {
 
$('#back-to-top').fadeIn();
 
} else {
 
$('#back-to-top').fadeOut();
 
}
 
});
 
// scroll body to 0px on click
 
$('#back-to-top').click(function () {
 
$('#back-to-top').tooltip('hide');
 
$('body,html').animate({
 
scrollTop: 0
 
}, 800);
 
return false;
 
});
 
 
$('#back-to-top').tooltip('show');
 
 
});
 
////////////////////////
 
//Code: inlarge img on click:
 
$(function() {
 
$('.pop').on('click', function() {
 
$('.imagepreview').attr('src', $(this).find('img').attr('src'));
 
$('#imagemodal').modal('show'); 
 
});
 
});
 
//////////////////////
 
///pop-ups:
 
$(document).ready(function(){
 
$('[data-toggle="popover"]').popover();
 
});
 
 
$(function () {
 
$('button').popover();
 
});
 
</script>
 
 
</head>
 
  
  
Line 131: Line 33:
 
<div class="cont_box">
 
<div class="cont_box">
 
<div class="row">
 
<div class="row">
<a id="guidance"></a>
 
<div class="col-sm-12">
 
 
<div class="col-md-12 col-sm-12">
 
<h1 class="text-center"><u>Project description</u></h1><!--Headline-->
 
<br>
 
  
<h2>Chemotaxis</h2>
+
<div class="col-md-12 col-sm-12">
<p class="text-justify">
+
<h1 class="text-center"><u>Project description</u></h1>
Chemotaxis is the movement of an organism in response to an external chemical stimulus. Many single-cell and
+
</div>
multicellular organisms use chemotaxis to navigate their immediate environment.<br>
+
 
 +
<div class="col-md-12 col-sm-12">
 +
<h2>Chemotaxis</h2>
 +
</div>
 +
 
 +
<br>
 +
<br>
 +
 
 +
<div class="col-md-12 col-sm-12">
 +
<div class="col-md-6 col-sm-12">
 
<br>
 
<br>
The E. coli chemotaxis system is considered a model system that illustrates some of the core principles of
+
<p class="text-justify">
chemotactic movement <b>(1)</b>. It allows the cell to sense and quickly respond to nearby nutrients – attractants,  
+
Chemotaxis is the movement of an organism in response to an external chemical stimulus. Many single-cell
and dangerous chemicals – repellents. <br>
+
and multicellular organisms use chemotaxis to navigate their immediate environment.<br>
 +
<br>
 +
The <I>E. coli</I> chemotaxis system is considered a model system that illustrates some of the core principles  
 +
of chemotactic movement <b>(1)</b>. It allows the cell to sense and quickly respond to nearby nutrients  
 +
– attractants, and dangerous chemicals – repellents.<br>
 +
<br>
 +
A detailed explanation on the chemotaxis system and the intercellular processes involved can be
 +
found <a href=""><b>here</b></a>. <b>@#$%^&</b> add link to chemotaxis page!
 
</p>
 
</p>
 
</div>
 
</div>
 +
 
<div class="col-md-6 col-sm-12">
 
<div class="col-md-6 col-sm-12">
<br>
+
<a class="pop ocenter">
 +
<img src="https://static.igem.org/mediawiki/2016/1/19/T--Technion_Israel--description_chemotaxis.png" class="img-responsive img-center" width="500" style="cursor: pointer;">
 +
</a>
 +
<p class="text-center"><b>Fig. 1:</b> Chemotaxis concept <b>(source@#$%^&*)</b>.</p>
 +
</div>
 +
</div>
 +
</div>
 +
</div>
  
<h2>Chemoreceptors – A bacterial sensor system</h2>
+
<div class="cont_box">
 +
<div class="row">
 +
 
 +
<div class="col-md-12 col-sm-12">
 +
<h2>Chemoreceptors – A bacterial sensor system</h2>
 +
</div>
 +
 
 +
<br>
 +
<br>
 +
 
 +
<div class="col-md-12 col-sm-12">
 +
<div class="col-md-6 col-sm-12">
 +
<br>
 
<p class="text-justify">
 
<p class="text-justify">
 
Bacterial chemotaxis is mediated by chemoreceptors. The purpose of these membrane proteins is to bind a certain
 
Bacterial chemotaxis is mediated by chemoreceptors. The purpose of these membrane proteins is to bind a certain
<a data-toggle="popover" data-trigger="click" data-original-title="Info:" data-html="true"  
+
<a data-toggle="popover" data-trigger="click" data-original-title="Info:" data-html="true"  
data-content="A molecule which induces chemotaxis">
+
data-content="A molecule which induces chemotaxis">
chemoeffector<i class="entypo-check"></i></button></a>,  
+
chemoeffector<i class="entypo-check"></i></button></a>,  
and transduce the signal to the downstream proteins.<br>
+
and transduce the signal to the downstream proteins. <br>
 
<br>
 
<br>
 
The specificity of a chemoreceptor is determined by its ligand binding domain – the transmembrane region  
 
The specificity of a chemoreceptor is determined by its ligand binding domain – the transmembrane region  
of the receptor. We have chosen this domain as the focus of our project.<br>
+
of the receptor. We have chosen this domain as the focus of our project.
 
</p>
 
</p>
 
</div>
 
</div>
  
<div class="col-md-6 col-sm-12 new-row no-title-col">
+
<div class="col-md-6 col-sm-12">
<a class="pop">
+
<a class="pop ocenter">
 
<img src="https://static.igem.org/mediawiki/2016/3/32/T--Technion_Israel--description_chemoreceptor2.png" class="img-responsive img-center" width="800" height="129" style="cursor: pointer;">
 
<img src="https://static.igem.org/mediawiki/2016/3/32/T--Technion_Israel--description_chemoreceptor2.png" class="img-responsive img-center" width="800" height="129" style="cursor: pointer;">
 
</a>
 
</a>
<p class="text-center"><b>Fig. 1:</b> chemoreceptor structure illustration.</p>
+
<p class="text-center"><b>Fig. 1:</b> chemoreceptor structure illustration. <b>(source@#$%^&*)</b></p>
</div>
+
 
</div>
 
</div>
 
</div>
 
</div>
 +
</div>
 +
</div>
  
 +
<div class="cont_box">
 
<div class="row">
 
<div class="row">
<div class="col-md-12 col-sm-12 new-row no-title-col">
+
<div class="col-md-12 col-sm-12">
<a class="pop">
+
<h2>S.Tar – In control of chemotaxis</h2>
<img src="https://static.igem.org/mediawiki/2016/1/1c/T--Technion_Israel--description_ChemotaxisPath2.png" class="img-responsive img-center" width="800" height="129" style="cursor: pointer;">
+
</a>
+
<p class="text-center"><b>Fig. 2:</b> when a receptor binds to a chemo effector a signal is being transferred to the flagella.</p>
+
 
+
 
</div>
 
</div>
</div>
 
  
<div class="row">
+
<br>
<a id="guidance"></a>
+
<br>
<div class="col-sm-12">
+
 
+
<div class="col-md-12 col-sm-12">
<div class="col-md-12 col-sm-12">
+
<div class="col-md-6 col-sm-12">
<h2>S.Tar – In control of chemotaxis</h2>
+
<br>
 
<p class="text-justify">
 
<p class="text-justify">
Project Super Tar - <b>S.Tar</b> in short, is designed to be a novel platform for controlled chemotaxis. The base  
+
Project Super Tar - <b>S.Tar</b> in short, is designed to be a novel platform for controlled chemotaxis.  
of our project is the E. coli Tar chemoreceptor or more specifically, its ligand binding domain (LBD). We show  
+
The base of our project is the E. coli Tar chemoreceptor or more specifically, its ligand binding  
that by mutating the native Tar LBD <b>(2)</b> or by interchanging it with that of other receptors <b>(3)</b>, the E.  
+
domain (LBD). At the start of our work we improved the Tar chemoreceptor BioBrick found in the iGEM
coli chemotaxis system can be programmed to respond to completely new ligands.<br>
+
kit (designed by team Goettingen 2014). <br>
 +
We show that by mutating the native Tar LBD <b>(2)</b> or by interchanging it with that of other  
 +
receptors <b>(3)</b>, the E. coli chemotaxis system can be programmed to respond to completely new ligands.<br>
 +
</p>
 +
</div>
 +
 
 +
<div class="col-md-6 col-sm-12">
 +
<a class="pop ocenter">
 +
<img src="https://static.igem.org/mediawiki/2016/3/32/T--Technion_Israel--description_chemoreceptor2.png" class="img-responsive img-center" width="800" height="129" style="cursor: pointer;">
 +
</a>
 +
<p class="text-center"><b>Fig. 1:</b> chemoreceptor structure illustration. <b>(source@#$%^&*)</b></p>
 +
</div>
 +
 
 +
<div class="col-md-12 col-sm-12">
 
<br>
 
<br>
To demonstrate the potential of our system, we performed two experiments:
+
<p class="text-justify">
1. We replaced the Tar LBD with that of the PctA (link to the chimeras page) chemoreceptor and demonstrated <b>(link to PctA results)</b>  
+
<br>
a chemotactic response to its repellent – PEC, a substance which the native Tar cannot recognize.<br>
+
To demonstrate the potential of our system, we performed two experiments:<br>
2. We used computational biology to redesign the native Tar receptor <b>(link to Rosetta page)</b>  
+
<b>1.</b> We replaced the Tar LBD with that of the PctA (link to the chimeras page) chemoreceptor and demonstrated <b>(link to PctA results)</b>  
to bind Histamine instead of its original ligand. We demonstrated a chemotactic response from the mutated receptor <b>(link to histamine results).</b><br>
+
a chemotactic response to its repellent – PEC, a substance which the native Tar cannot recognize.<br>
Using S.Tar, scientists will be able to control the movement of bacteria and direct them towards or away from a target material.  
+
<b>2.</b> We used computational biology to redesign the native Tar receptor <b>(link to Rosetta page)</b>  
This system can have vast applications in bioremediation and, as we show in our project, detection.
+
to bind Histamine instead of its original ligand. We demonstrated a chemotactic response from the mutated receptor <b>(link to histamine results).</b><br>
 +
<br>
 +
Using S.Tar, scientists will be able to control the movement of bacteria and direct them towards or away  
 +
from a target material. This system can have vast applications in bioremediation and, as we show in our  
 +
project, detection.
 
</p>
 
</p>
 +
</div>
 
</div>
 
</div>
 
</div>
 
</div>
 
</div>
 
</div>
<div class="row">
 
<a id="guidance"></a>
 
<div class="col-sm-12">
 
 
<div class="col-md-12 col-sm-12">
 
<h2>FlashLab – A S.Tar detector</h2>
 
<p class="text-justify">
 
As a further application of our system we designed an easy-to-use detection system which utilizes
 
the high sensitivity of the chemotactic response. FlashLab <b>(link to flashlab page)</b> is a
 
simple and cheap platform for the detection of any chemoeffector, using S.Tar bacteria.
 
</p>
 
 
  
 +
<div class="cont_box">
 +
<div class="row">
 +
<div class="col-md-12 col-sm-12">
 +
<h2>FlashLab – A S.Tar detector</h2>
 
</div>
 
</div>
</div>
 
</div>
 
  
 +
<br>
 +
<br>
  
 +
<div class="col-md-12 col-sm-12">
 +
<div class="col-md-6 col-sm-12">
 +
<br>
 +
<p class="text-justify">
 +
As a further application of our system we designed an easy-to-use detection system which utilizes
 +
the high sensitivity of the chemotactic response. FlashLab <b>(link to flashlab page)</b> is a
 +
simple and cheap platform for the detection of any chemoeffector, using S.Tar bacteria.
 +
</p>
 +
</div>
  
+
<div class="col-md-6 col-sm-12">
 +
<a class="pop ocenter">
 +
<img src="https://static.igem.org/mediawiki/2016/3/32/T--Technion_Israel--description_chemoreceptor2.png" class="img-responsive img-center" width="800" height="129" style="cursor: pointer;">
 +
</a>
 +
<p class="text-center"><b>Fig. 1:</b> chemoreceptor structure illustration. <b>(source@#$%^&*)</b></p>
 +
</div>
 +
</div>
 +
 
 +
</div>
 +
 
</div>
 
</div>
 
</div><!-- END: #1 row -->
 
</div><!-- END: #1 row -->
 
</div>
 
</div>
 +
  
  

Revision as of 09:59, 14 October 2016

S.tar, by iGEM Technion 2016

S.tar, by iGEM Technion 2016

Project description

Chemotaxis




Chemotaxis is the movement of an organism in response to an external chemical stimulus. Many single-cell and multicellular organisms use chemotaxis to navigate their immediate environment.

The E. coli chemotaxis system is considered a model system that illustrates some of the core principles of chemotactic movement (1). It allows the cell to sense and quickly respond to nearby nutrients – attractants, and dangerous chemicals – repellents.

A detailed explanation on the chemotaxis system and the intercellular processes involved can be found here. @#$%^& add link to chemotaxis page!

Fig. 1: Chemotaxis concept (source@#$%^&*).

Chemoreceptors – A bacterial sensor system




Bacterial chemotaxis is mediated by chemoreceptors. The purpose of these membrane proteins is to bind a certain chemoeffector, and transduce the signal to the downstream proteins.

The specificity of a chemoreceptor is determined by its ligand binding domain – the transmembrane region of the receptor. We have chosen this domain as the focus of our project.

Fig. 1: chemoreceptor structure illustration. (source@#$%^&*)

S.Tar – In control of chemotaxis




Project Super Tar - S.Tar in short, is designed to be a novel platform for controlled chemotaxis. The base of our project is the E. coli Tar chemoreceptor or more specifically, its ligand binding domain (LBD). At the start of our work we improved the Tar chemoreceptor BioBrick found in the iGEM kit (designed by team Goettingen 2014).
We show that by mutating the native Tar LBD (2) or by interchanging it with that of other receptors (3), the E. coli chemotaxis system can be programmed to respond to completely new ligands.

Fig. 1: chemoreceptor structure illustration. (source@#$%^&*)



To demonstrate the potential of our system, we performed two experiments:
1. We replaced the Tar LBD with that of the PctA (link to the chimeras page) chemoreceptor and demonstrated (link to PctA results) a chemotactic response to its repellent – PEC, a substance which the native Tar cannot recognize.
2. We used computational biology to redesign the native Tar receptor (link to Rosetta page) to bind Histamine instead of its original ligand. We demonstrated a chemotactic response from the mutated receptor (link to histamine results).

Using S.Tar, scientists will be able to control the movement of bacteria and direct them towards or away from a target material. This system can have vast applications in bioremediation and, as we show in our project, detection.

FlashLab – A S.Tar detector




As a further application of our system we designed an easy-to-use detection system which utilizes the high sensitivity of the chemotactic response. FlashLab (link to flashlab page) is a simple and cheap platform for the detection of any chemoeffector, using S.Tar bacteria.

Fig. 1: chemoreceptor structure illustration. (source@#$%^&*)

Referances

1. Bi, S. and Lai, L., 2015. Bacterial chemoreceptors and chemoeffectors. Cellular and Molecular Life Sciences, 72(4), pp.691-708.

2. Moretti, R., Bender, B.J., Allison, B. and Meiler, J., 2016. Rosetta and the Design of Ligand Binding Sites. Computational Design of Ligand Binding Proteins, pp.47-62.

3. Reyes‐Darias, J.A., Yang, Y., Sourjik, V. and Krell, T., 2015. Correlation between signal input and output in PctA and PctB amino acid chemoreceptor of Pseudomonas aeruginosa. Molecular microbiology, 96(3), pp.513-525.




S.tar, by iGEM Technion 2016