Difference between revisions of "Team:Technion Israel/Description"

Line 46: Line 46:
 
<p class="text-justify">
 
<p class="text-justify">
 
Chemotaxis is the movement of an organism in response to an external chemical stimulus. Many single-cell  
 
Chemotaxis is the movement of an organism in response to an external chemical stimulus. Many single-cell  
and multicellular organisms use chemotaxis to navigate their immediate environment.<br>
+
and multicellular organisms use chemotaxis to navigate through their immediate environment.<br>
 
<br>
 
<br>
 
The <I>E. coli</I> chemotaxis system is considered a model system that illustrates some of the core principles  
 
The <I>E. coli</I> chemotaxis system is considered a model system that illustrates some of the core principles  
Line 117: Line 117:
 
Project Super Tar - <b>S.Tar</b> in short, is designed to be a novel platform for controlled chemotaxis.  
 
Project Super Tar - <b>S.Tar</b> in short, is designed to be a novel platform for controlled chemotaxis.  
 
The base of our project is the E. coli Tar chemoreceptor or more specifically, its ligand binding  
 
The base of our project is the E. coli Tar chemoreceptor or more specifically, its ligand binding  
domain (LBD). At the start of our work we improved the Tar chemoreceptor BioBrick found in the iGEM  
+
domain (LBD). We started by improving the Tar chemoreceptor BioBrick found in the iGEM  
 
kit (designed by team Goettingen 2014). <br>
 
kit (designed by team Goettingen 2014). <br>
We show that by mutating the native Tar LBD <b>(2)</b> or by interchanging it with that of other  
+
Moreover, we show that by mutating the native Tar LBD <b>(2)</b> or by interchanging it with that of other  
 
receptors <b>(3)</b>, the E. coli chemotaxis system can be programmed to respond to completely new ligands.<br>
 
receptors <b>(3)</b>, the E. coli chemotaxis system can be programmed to respond to completely new ligands.<br>
 
</p>
 
</p>
Line 135: Line 135:
 
<p class="text-justify">
 
<p class="text-justify">
 
<br>
 
<br>
To demonstrate the potential of our system, we performed two experiments:<br>
+
To demonstrate the potential of our system, we performed two experiments <u> maybe: we followed to approaches </u>:<br>
 
<b>1.</b> We replaced the Tar LBD with that of the PctA (link to the chimeras page) chemoreceptor and demonstrated <b>(link to PctA results)</b>  
 
<b>1.</b> We replaced the Tar LBD with that of the PctA (link to the chimeras page) chemoreceptor and demonstrated <b>(link to PctA results)</b>  
 
a chemotactic response to its repellent – PEC, a substance which the native Tar cannot recognize.<br>
 
a chemotactic response to its repellent – PEC, a substance which the native Tar cannot recognize.<br>
Line 142: Line 142:
 
<br>
 
<br>
 
Using S.Tar, scientists will be able to control the movement of bacteria and direct them towards or away  
 
Using S.Tar, scientists will be able to control the movement of bacteria and direct them towards or away  
from a target material. This system can have vast applications in bioremediation and, as we show in our  
+
from a target material. This system can potentially have vast applications in bioremediation and, as we show in our  
 
project, detection.
 
project, detection.
 
</p>
 
</p>

Revision as of 09:20, 16 October 2016

S.tar, by iGEM Technion 2016

S.tar, by iGEM Technion 2016

Chemotaxis




Chemotaxis is the movement of an organism in response to an external chemical stimulus. Many single-cell and multicellular organisms use chemotaxis to navigate through their immediate environment.

The E. coli chemotaxis system is considered a model system that illustrates some of the core principles of chemotactic movement (1). It allows the cell to sense and quickly respond to nearby nutrients – attractants, and dangerous chemicals – repellents.

A detailed explanation on the chemotaxis system and the intercellular processes involved can be found here. @#$%^& add link to chemotaxis page!

Fig. 1: Chemotaxis concept (source@#$%^&*).

Chemoreceptors – A bacterial sensor system




Bacterial chemotaxis is mediated by chemoreceptors. The purpose of these membrane proteins is to bind a certain chemoeffector, and transduce the signal to the downstream proteins.

The specificity of a chemoreceptor is determined by its ligand binding domain – the transmembrane region of the receptor. We have chosen this domain as the focus of our project.

Fig. 1: chemoreceptor structure illustration. (source@#$%^&*)

S.Tar – In control of chemotaxis




Project Super Tar - S.Tar in short, is designed to be a novel platform for controlled chemotaxis. The base of our project is the E. coli Tar chemoreceptor or more specifically, its ligand binding domain (LBD). We started by improving the Tar chemoreceptor BioBrick found in the iGEM kit (designed by team Goettingen 2014).
Moreover, we show that by mutating the native Tar LBD (2) or by interchanging it with that of other receptors (3), the E. coli chemotaxis system can be programmed to respond to completely new ligands.

Fig. 1: chemoreceptor structure illustration. (source@#$%^&*)



To demonstrate the potential of our system, we performed two experiments maybe: we followed to approaches :
1. We replaced the Tar LBD with that of the PctA (link to the chimeras page) chemoreceptor and demonstrated (link to PctA results) a chemotactic response to its repellent – PEC, a substance which the native Tar cannot recognize.
2. We used computational biology to redesign the native Tar receptor (link to Rosetta page) to bind Histamine instead of its original ligand. We demonstrated a chemotactic response from the mutated receptor (link to histamine results).

Using S.Tar, scientists will be able to control the movement of bacteria and direct them towards or away from a target material. This system can potentially have vast applications in bioremediation and, as we show in our project, detection.

FlashLab – A S.Tar detector




As a further application of our system we designed an easy-to-use detection system which utilizes the high sensitivity of the chemotactic response. FlashLab (link to flashlab page) is a simple and cheap platform for the detection of any chemoeffector, using S.Tar bacteria.

Fig. 1: chemoreceptor structure illustration. (source@#$%^&*)

Referances

1. Bi, S. and Lai, L., 2015. Bacterial chemoreceptors and chemoeffectors. Cellular and Molecular Life Sciences, 72(4), pp.691-708.

2. Moretti, R., Bender, B.J., Allison, B. and Meiler, J., 2016. Rosetta and the Design of Ligand Binding Sites. Computational Design of Ligand Binding Proteins, pp.47-62.

3. Reyes‐Darias, J.A., Yang, Y., Sourjik, V. and Krell, T., 2015. Correlation between signal input and output in PctA and PctB amino acid chemoreceptor of Pseudomonas aeruginosa. Molecular microbiology, 96(3), pp.513-525.




S.tar, by iGEM Technion 2016