Difference between revisions of "Team:TAS Taipei/Design"

Line 3: Line 3:
  
 
<head>
 
<head>
<title>Model - TAS Taipei iGEM Wiki</title>
+
<title>Applied Design - TAS Taipei iGEM Wiki</title>
 
  <style type='text/css'>
 
  <style type='text/css'>
 
       #top_title, #sideMenu{
 
       #top_title, #sideMenu{
Line 158: Line 158:
 
</li>
 
</li>
 
<li class="dropdown">
 
<li class="dropdown">
<a href="https://2016.igem.org/Team:TAS_Taipei/Safety"><h4 class='dropdown-toggle disabled' data-toggle="dropdown"><b>BIOSAFETY</b></h4></a>
+
<a href="https://2016.igem.org/Team:TAS_Taipei/Safety"><h4 class='dropdown-toggle disabled' data-toggle="dropdown"><b>SAFETY</b></h4></a>
 
<div class="dropdown-menu">
 
<div class="dropdown-menu">
 
<div style='height:100px;'>
 
<div style='height:100px;'>
Line 258: Line 258:
 
<h1>Applied Design</h1>
 
<h1>Applied Design</h1>
 
                                      
 
                                      
                  <div class = "row">
+
                  <div class = "row">
 
              <div class="col-sm-12">
 
              <div class="col-sm-12">
        <h2 id = 'construct'>Research</h2>
+
                <p>A main obstacle for protein delivery into the eye is that the cornea acts as a barrier and blocks materials from entering the eye. To increase the amount of proteins that reach the lens, we made biodegradable chitosan nanoparticles that can package and deliver proteins. According to literature research, chitosan nanoparticles can embed in the cornea, where the encapsulated proteins can be released as the particles degrade. This is a better solution than commercially available eye drops (since more proteins can be delivered through the cornea) and surgery (because it is non-invasive). In addition, the nanoparticles do not affect vision or the normal protective functions of the cornea. We show that our nanoparticles successfully encapsulated proteins. Proteins remain inside nanoparticles at 4℃, which allows for storage, but can be released at body temperature. Finally, we envision using these nanoparticles in eye drops or contact lenses.</p>
                            <div class="row">
+
                          <h3><u>Packaging in Nanoparticles</u></h3>
 +
                          <div class="row">
 
                                  
 
                                  
 
                                 <div class="col-sm-12">
 
                                 <div class="col-sm-12">
                                <h3 id="ConstructPrevention"></h3>
 
                                    <br>
 
                                <h3>Professional Help</h3>
 
 
                                 <p>
 
                                 <p>
                                     In order to improve how we develop our prototype we needed to get in contact with experts in the fields of eye surgery and cataracts research. Our first step was to contact eye doctors to discuss any problems associated with current cataracts treatment. Finally, while developing our project we realized that cataracts is a major issue in pets and other animals as well as people. As a result, we contacted local veterinarians to discuss what pet owners do when their pets contract cataracts. As our project developed, we needed more specific information regarding our genes of interest, cataracts development, and our delivery mechanism. We contacted scientists doing research similar to our own to get their opinion on our projects progress.
+
                                     The cornea is the outermost layer of the eye and protects the eye from foreign materials, but also prevents drugs from reaching the lens (Gaudana et al., 2010). Scientists have developed several methods to penetrate the cornea and deliver drugs to the lens, but many are invasive, such as implants (Patel et al., 2013). The most promising method is using nanoparticles as drug carriers (Cholkar et al., 2013). so we chose to use nanoparticles to deliver our proteins to the lens.
 +
                                </p>
 +
                                </div>
 +
                              <div class="col-sm-12">
 +
                                <p>
 +
                                    Nanoparticles can be made from a variety of materials, but we selected chitosan for several reasons. Researchers have used chitosan nanoparticles in the eye; its low toxicity to somatic cells makes it safe and it does not affect the anatomy of the eye (Enriquez de Salamanca et al., 2006).  We also learned that chitosan nanoparticles can embed in the cornea, and its biodegradability allows the drug to be released continuously into the eye (figure 3.3) (Enriquez de Salamanca et al., 2006; Campos et al., 2005). Therefore, we want to load our purified proteins into chitosan nanoparticles (figure 3.4).  
 
                                 </p>
 
                                 </p>
 
                                 </div>
 
                                 </div>
 
                                  
 
                                  
 
                             </div>
 
                             </div>
 +
                         
 +
                          <br><br>
 +
                          <div class="row">
 +
                                <figure class = "col-sm-6">
 +
                                    <br><br>
 +
        <img src="https://static.igem.org/mediawiki/2016/4/4e/T--TAS_Taipei--NPAnimation.gif">
 +
                                    <figcaption class='darkblue'><b>Figure 3.3: &nbsp;</b>Nanoparticles containing our proteins embed into the cornea and degrade. The released proteins are then delivered within the eye.</figcaption>
 +
                                </figure>
 +
                                <figure class = "col-sm-6">
 +
        <img src="https://static.igem.org/mediawiki/2016/4/41/T--TAS_Taipei--PurificationAnimation.gif">
 +
                                    <figcaption class='darkblue'><b>Figure 3.4: &nbsp;</b>Purified proteins can be encapsulated in chitosan nanoparticles.</figcaption>
 +
                                </figure>
 +
                            </div>                       
 +
                         
 
                           <br><br>
 
                           <br><br>
 
                             <div class="row">
 
                             <div class="row">
 
                                 <div class="col-sm-12">
 
                                 <div class="col-sm-12">
                                    <h3 id="ConstructPrevention"></h3>
+
                                <p>
                                        <br>
+
                                     Below is a video of our nanoparticle synthesis procedure.
                                     <h4>Contact with Eye Doctors</h4>
+
                                </p>
                                    <p>
+
                                        Eye doctors are on the front lines, delivering cataracts surgery, some privately and others for charity in organizations such as the Himalayan Cataracts Projects. We contacted local Taiwanese Eye Doctors to ask them about cataracts surgery. Here is a list of the doctors we contacted along with the information they provided:
+
                                    </p>
+
 
                                 </div>
 
                                 </div>
 +
                            </div>
 +
                          <div class="row">
 
                                  
 
                                  
                                  
+
                              <figure class = "col-sm-12">
 +
        <img src="https://static.igem.org/mediawiki/2016/4/4e/T--TAS_Taipei--NPAnimation.gif">
 +
                                   
 +
                                 </figure>
 
                             </div>
 
                             </div>
                            <div class="row">
+
                          <br><br>
                                 <div class="col-sm-6">
+
                          <div class="row">
                                    <h3 id="ConstructPrevention"></h3>
+
                                 <div class="col-sm-12">
                                        <br>
+
                                <p>
                                     <p>
+
                                     Following the procedure of Quan and Wang (2007),  we made nanoparticles and imaged them using scanning electron microscopy and atomic force microscopy (figure 3.5). This revealed our nanoparticles to be spherical and at the optimal size of 200-600 nm (figure 3.6 and 3.7).
                                        Dr. Wei-Chi Wu is a retina specialist and an associate professor at Chang Gung memorial hospital in Taiwan. According to Dr. Wu current cataracts surgery methods are efficient and effective, but are not without their issues. Besides the issue of price, there can also be several different post-surgery complications such as infection, hemorrhaging, or secondary glaucoma. In regards to our project, he said one of the biggest issues we would face is non-invasive delivery. Currently, injections and incisions are the only methods for delivery because all current potential methods of noninvasive delivery either lack efficiency or induce with side effects.  
+
                                </p>
                                    </p>
+
 
                                 </div>
 
                                 </div>
 +
                            </div>
 +
                                                    <br><br>
 +
                          <div class="row">
 +
                              <div class="col-sm-1"></div>
 +
                                <figure class = "col-sm-10">
 +
        <img src="https://static.igem.org/mediawiki/2016/7/7f/T--TAS_Taipei--MakingNP.png">
 +
                                    <figcaption class='darkblue'><b>Figure 3.5: &nbsp;</b> Team members imaging nanoparticles on the scanning electron microscope and atomic force microscope. </figcaption>
 +
                                </figure>
 +
                              <div class="col-sm-1"></div>
 +
                            </div>
 +
                        <br><br>
 +
                          <div class="row">
 +
                                <figure class = "col-sm-4">
 +
        <img src="https://static.igem.org/mediawiki/2016/3/30/T--TAS_Taipei--SEMChitosan%28C%29.png">
 +
                                    <figcaption class='darkblue'><b>Figure 3.6: &nbsp;</b>Scanning electron microscope image of chitosan nanoparticles</figcaption>
 +
                                </figure>
 +
                              <figure class = "col-sm-8">
 +
        <img src="https://static.igem.org/mediawiki/2016/2/27/T--TAS_Taipei--AtomicForceMicroscopeImage%28D%29.png">
 +
                                    <figcaption class='darkblue'><b>Figure 3.7: &nbsp;</b>We imaged chitosan nanoparticles using atomic force microscopy. On the left is the empty silica plate. On the right is an image of the chitosan nanoparticles, which were placed on the silica plate</figcaption>
 +
                                </figure>
 +
                            </div>
 +
                         
 +
                          <br><br>
 +
                          <h3 id="step2i"></h3>
 +
                                    <br>
 +
                          <h3 style="text-transform: none"><i>Protein Encapsulation</i></h3>
 +
                         
 +
                          <div class="row">
 +
                              <div class="col-sm-6">
 +
                                  <p>Next, we wanted to load our purified proteins into the nanoparticles. We first used colored proteins to qualitatively test whether proteins could be successfully encapsulated. To do so, we lysed bacteria expressing green fluorescent protein (GFP), red fluorescent protein (RFP), and green pigment (from pGRN, Bba_K274003). We then add the proteins to the chitosan solution. After nanoparticles were made, our results showed that we successfully encapsulated the colored proteins. When we further viewed the nanoparticles under blue light, the GFP- and RFP-containing pellets glowed (figure 3.8), suggesting that the proteins remain functional. Thus, our nanoparticles can serve as protein carriers to enhance drug delivery. </p>
 +
                              </div>
 
                                 <figure class = "col-sm-6">
 
                                 <figure class = "col-sm-6">
        <img src="https://static.igem.org/mediawiki/2016/6/67/T--TAS_Taipei--GSR_Construct_Experimental.jpg">
+
        <img src="https://static.igem.org/mediawiki/2016/2/21/T--TAS_Taipei--ProteinPellets.png" style="width:100%">
                                     <figcaption class='darkblue'><b>Figure X. </b>Full Construct.</figcaption>
+
                                     <figcaption class='darkblue'><b>Figure 3.8: &nbsp;</b> Proteins were successfully encapsulated into nanoparticles. Figure shows nanoparticle pellets containing no protein, GFP, RFP, and pGRN (left to right) under white light (top) and blue light (bottom). Fluorescence of GFP and RFP-containing pellets shows that proteins are still functional.  </figcaption>
 +
                               
 
                                 </figure>
 
                                 </figure>
                                  
+
                                   
 +
                            </div>
 +
                        <div class="row">
 +
                            <div class="col-sm-12">
 +
                                 <p>In order to quantitatively determine encapsulation efficiency, we measured protein concentration in the supernatant before and after nanoparticle formation. We started with 1 mg/mL of bovine serum albumin (BSA). After nanoparticle formation, we performed a Bradford assay and found that the concentration decreased to 0.28 mg/mL. As shown in figure 3.9, the encapsulation efficiency was 72%.</p>
 
                                  
 
                                  
 
                             </div>
 
                             </div>
 +
                           
 +
                        </div>
 +
                        <br><br>
 +
                        <div class="row">
 +
                            <div class="col-sm-2"></div>
 +
                            <figure class = "col-sm-8">
 +
        <img src="https://static.igem.org/mediawiki/2016/a/ad/T--TAS_Taipei--EncapEfficiency.png" style="width:100%">
 +
                                <figcaption class='darkblue'><b>Figure 3.9: &nbsp;</b>The encapsulation efficiency is 72%. Using a Bradford assay, we created a standard curve of known BSA protein concentrations by measuring absorbance at 595 nm. <b>Top</b>: graph shows absorbance values of the supernatant after nanoparticle formation. <b>Bottom</b>: cuvettes containing standard solutions (left) and the sample solution (right).  </figcaption>
 +
                                </figure>
 +
                            <div class="col-sm-2"></div>
 +
                        </div>
 +
                       
 +
                              <br><br>
 +
                                                         
 +
                               
 +
                       
 +
                          <h3 id="step2ii"></h3>
 +
                                    <br>
 +
                          <h3 style="text-transform: none"><i>Protein Release</i></h3>
 +
                          <div class="row">
 +
                               
 +
                                <figure class = "col-sm-6">
 +
        <img src="https://static.igem.org/mediawiki/2016/1/17/T--TAS_Taipei--BSATempComp.png" style="width:100%">
 +
                                    <figcaption class='darkblue'><b>Figure 3.10: &nbsp;</b>BSA proteins are released from chitosan nanoparticles at 37℃, but almost no change occurred at 4℃. </figcaption>
 +
                                </figure>
 +
                                <div class="col-sm-6">
 +
                                <p>
 +
                                    After proteins are encapsulated, nanoparticles should embed in the cornea and release proteins as they degrade over time. To test whether nanoparticles degrade, we measured the release of proteins. After BSA-containing nanoparticles were made, they were spun down and the solution was replaced with phosphate buffered saline (PBS) (Wilson, 2014). Using a Bradford assay, we could then measure protein concentration in the PBS over a 72-hour period.
 +
                                </p>
 +
                                <p>
 +
                                    Trials were performed at two different temperatures: 4°C and 37°C. Our results show that proteins are released from nanoparticles at 37°C , but almost no change could be detected at 4°C (figure 3.10). This finding suggests that we can store a final functional product (e.g., eye drop) at 4°C without nanoparticle degradation, while the proteins can be released from nanoparticles when the eye drop is applied at body temperature. 
 +
                                </p>
 +
                                </div>
 +
                           
 +
                          </div>
 +
                          <br><br>
 +
                       
 +
                          <h3 id="step3"></h3>
 +
                                    <br>
 +
                          <h3><u>Application (EYE DROP OR CONTACT LENSES)</h3>
 +
                          <div class="row">
 +
                              <div class="col-sm-1"></div>
 +
                                <div class="col-sm-10">
 +
                                    <p>Our goal is to package GSR and CH25H in nanoparticles to deliver these proteins to the lens using a safe and non-invasive method. We have considered two drug delivery mechanisms to administer the nanoparticles: eye drops and contact lenses. </p>
 +
                                    <br>
 +
                                    <b>Eye drops</b>
 +
                                    <p>After packaging our proteins in nanoparticles, the nanoparticles can be spun down and resuspended in saline, since it is commonly used in eye drops (Falsini, 2016). </p>
 +
                                    <br>
 +
                                    <b>Contact Lenses</b>
 +
                                    <p>We found a method to make chitosan nanoparticle-embedded hydrogel contact lenses (Behl, 2016). Following their protocol, we created a polymer solution containing all the necessary components, and then transferred this solution into a 3D-printed mold (figure 3.11, left). After exposure to UV for 40 minutes, we successfully made hydrogel contact lenses (figure 3.11, right). </p>
 +
                                </div>
 +
                                <div class="col-sm-1"></div>
 +
                             
 +
                               
 +
                          </div>
 +
                       
 +
                           
 +
                        <div class="row">
 +
                                <figure class = "col-sm-12">
 +
        <img src="https://static.igem.org/mediawiki/2016/9/9b/T--TAS_Taipei--ContactLensMold.png" style="width:100%">
 +
                                    <figcaption class='darkblue'><b>Figure 3.11: &nbsp;</b>A 3D printed mold (left) used to make hydrogel lenses (right). </figcaption>
 +
                                </figure>
 +
                        </div>
 +
                        <div class="row">
 +
                                <figure class = "col-sm-12">
 +
        <img src="https://static.igem.org/mediawiki/2016/7/79/T--TAS_Taipei--Figure3.12a.jpeg " style="width:100%">
 +
                                    <figcaption class='darkblue'><b>Figure 3.12: &nbsp;</b>Huiru you type the caption in. </figcaption>
 +
                                </figure>
 +
                        </div>
 +
 +
                       
 
                            
 
                            
 
                     </div>
 
                     </div>
Line 581: Line 706:
 
     <div id="slidecontent">
 
     <div id="slidecontent">
 
         <h3>Prevention</h3>  
 
         <h3>Prevention</h3>  
         <h5>GSR Eyedrop</h5>  
+
         <h5>GSR Eyedrop: Prevents background blurring when on.</h5>  
 
         <label class="switch">
 
         <label class="switch">
 
             <input id="bluebutton" onClick="switchToggleB(); chooseBlur()" type="checkbox">
 
             <input id="bluebutton" onClick="switchToggleB(); chooseBlur()" type="checkbox">
Line 589: Line 714:
  
 
         <h3>Treatment</h3>  
 
         <h3>Treatment</h3>  
         <h5>25HC Eyedrop</h5>  
+
         <h5>25HC Eyedrop: Reduces background blur when on.</h5>  
 
         <label class="switch">
 
         <label class="switch">
 
             <input id="redbutton" onClick="switchToggleR(); chooseBlur()" type="checkbox">
 
             <input id="redbutton" onClick="switchToggleR(); chooseBlur()" type="checkbox">

Revision as of 16:27, 17 October 2016

Applied Design - TAS Taipei iGEM Wiki





Applied Design

A main obstacle for protein delivery into the eye is that the cornea acts as a barrier and blocks materials from entering the eye. To increase the amount of proteins that reach the lens, we made biodegradable chitosan nanoparticles that can package and deliver proteins. According to literature research, chitosan nanoparticles can embed in the cornea, where the encapsulated proteins can be released as the particles degrade. This is a better solution than commercially available eye drops (since more proteins can be delivered through the cornea) and surgery (because it is non-invasive). In addition, the nanoparticles do not affect vision or the normal protective functions of the cornea. We show that our nanoparticles successfully encapsulated proteins. Proteins remain inside nanoparticles at 4℃, which allows for storage, but can be released at body temperature. Finally, we envision using these nanoparticles in eye drops or contact lenses.

Packaging in Nanoparticles

The cornea is the outermost layer of the eye and protects the eye from foreign materials, but also prevents drugs from reaching the lens (Gaudana et al., 2010). Scientists have developed several methods to penetrate the cornea and deliver drugs to the lens, but many are invasive, such as implants (Patel et al., 2013). The most promising method is using nanoparticles as drug carriers (Cholkar et al., 2013). so we chose to use nanoparticles to deliver our proteins to the lens.

Nanoparticles can be made from a variety of materials, but we selected chitosan for several reasons. Researchers have used chitosan nanoparticles in the eye; its low toxicity to somatic cells makes it safe and it does not affect the anatomy of the eye (Enriquez de Salamanca et al., 2006). We also learned that chitosan nanoparticles can embed in the cornea, and its biodegradability allows the drug to be released continuously into the eye (figure 3.3) (Enriquez de Salamanca et al., 2006; Campos et al., 2005). Therefore, we want to load our purified proteins into chitosan nanoparticles (figure 3.4).





Figure 3.3:  Nanoparticles containing our proteins embed into the cornea and degrade. The released proteins are then delivered within the eye.
Figure 3.4:  Purified proteins can be encapsulated in chitosan nanoparticles.


Below is a video of our nanoparticle synthesis procedure.



Following the procedure of Quan and Wang (2007), we made nanoparticles and imaged them using scanning electron microscopy and atomic force microscopy (figure 3.5). This revealed our nanoparticles to be spherical and at the optimal size of 200-600 nm (figure 3.6 and 3.7).



Figure 3.5:   Team members imaging nanoparticles on the scanning electron microscope and atomic force microscope.


Figure 3.6:  Scanning electron microscope image of chitosan nanoparticles
Figure 3.7:  We imaged chitosan nanoparticles using atomic force microscopy. On the left is the empty silica plate. On the right is an image of the chitosan nanoparticles, which were placed on the silica plate



Protein Encapsulation

Next, we wanted to load our purified proteins into the nanoparticles. We first used colored proteins to qualitatively test whether proteins could be successfully encapsulated. To do so, we lysed bacteria expressing green fluorescent protein (GFP), red fluorescent protein (RFP), and green pigment (from pGRN, Bba_K274003). We then add the proteins to the chitosan solution. After nanoparticles were made, our results showed that we successfully encapsulated the colored proteins. When we further viewed the nanoparticles under blue light, the GFP- and RFP-containing pellets glowed (figure 3.8), suggesting that the proteins remain functional. Thus, our nanoparticles can serve as protein carriers to enhance drug delivery.

Figure 3.8:   Proteins were successfully encapsulated into nanoparticles. Figure shows nanoparticle pellets containing no protein, GFP, RFP, and pGRN (left to right) under white light (top) and blue light (bottom). Fluorescence of GFP and RFP-containing pellets shows that proteins are still functional.

In order to quantitatively determine encapsulation efficiency, we measured protein concentration in the supernatant before and after nanoparticle formation. We started with 1 mg/mL of bovine serum albumin (BSA). After nanoparticle formation, we performed a Bradford assay and found that the concentration decreased to 0.28 mg/mL. As shown in figure 3.9, the encapsulation efficiency was 72%.



Figure 3.9:  The encapsulation efficiency is 72%. Using a Bradford assay, we created a standard curve of known BSA protein concentrations by measuring absorbance at 595 nm. Top: graph shows absorbance values of the supernatant after nanoparticle formation. Bottom: cuvettes containing standard solutions (left) and the sample solution (right).



Protein Release

Figure 3.10:  BSA proteins are released from chitosan nanoparticles at 37℃, but almost no change occurred at 4℃.

After proteins are encapsulated, nanoparticles should embed in the cornea and release proteins as they degrade over time. To test whether nanoparticles degrade, we measured the release of proteins. After BSA-containing nanoparticles were made, they were spun down and the solution was replaced with phosphate buffered saline (PBS) (Wilson, 2014). Using a Bradford assay, we could then measure protein concentration in the PBS over a 72-hour period.

Trials were performed at two different temperatures: 4°C and 37°C. Our results show that proteins are released from nanoparticles at 37°C , but almost no change could be detected at 4°C (figure 3.10). This finding suggests that we can store a final functional product (e.g., eye drop) at 4°C without nanoparticle degradation, while the proteins can be released from nanoparticles when the eye drop is applied at body temperature.




Application (EYE DROP OR CONTACT LENSES)

Our goal is to package GSR and CH25H in nanoparticles to deliver these proteins to the lens using a safe and non-invasive method. We have considered two drug delivery mechanisms to administer the nanoparticles: eye drops and contact lenses.


Eye drops

After packaging our proteins in nanoparticles, the nanoparticles can be spun down and resuspended in saline, since it is commonly used in eye drops (Falsini, 2016).


Contact Lenses

We found a method to make chitosan nanoparticle-embedded hydrogel contact lenses (Behl, 2016). Following their protocol, we created a polymer solution containing all the necessary components, and then transferred this solution into a 3D-printed mold (figure 3.11, left). After exposure to UV for 40 minutes, we successfully made hydrogel contact lenses (figure 3.11, right).

Figure 3.11:  A 3D printed mold (left) used to make hydrogel lenses (right).
Figure 3.12:  Huiru you type the caption in.


Citations












Prevention

GSR Eyedrop: Prevents background blurring when on.

Treatment

25HC Eyedrop: Reduces background blur when on.

LOCS: 0      


Eyedrops




× The tutorial is disabled.          
Turn off prevention eyedrops to activate the animation. For a full tutorial, click the question mark.