Difference between revisions of "Team:Technion Israel/S.Tar intro"

Line 48: Line 48:
 
Every in-content-page img needs to have this class of col.
 
Every in-content-page img needs to have this class of col.
 
*/
 
*/
.references {
+
.referances {
 
   font-size: 12px;
 
   font-size: 12px;
 
padding: 20px;
 
padding: 20px;
Line 68: Line 68:
 
}
 
}
 
 
 +
 +
.cir_tabs{
 +
/*-webkit-filter: grayscale(0.75);*/
 +
cursor: pointer;
 +
transition: all .5s ease;
 +
margin: 0 auto;
 +
/* border: 2px solid #bbb;
 +
box-shadow: 5px 5px 3px grey;
 +
padding: 15px; */
 +
}
 +
 +
.cir_tabs:hover{
 +
-webkit-filter: grayscale(0);
 +
transform: scale(1.2,1.2);
 +
margin: 0 auto;
 +
/*border: 2px solid #000;
 +
box-shadow: 5px 5px 3px grey;*/
 +
}
 +
 
</style>
 
</style>
  
Line 131: Line 150:
 
</div>
 
</div>
 
<!-- ===== END: Cover photo: ===== -->
 
<!-- ===== END: Cover photo: ===== -->
 +
 +
 +
  
  
Line 139: Line 161:
  
 
<div class="cont_box">
 
<div class="cont_box">
 +
 +
 +
<!-- Mini headline -->
 +
<div class="row">
 +
<div class="col-md-12 col-sm-12">
 +
<h1>S.Tar components</h1>
 +
</div>
 +
</div>
 +
 +
<br>
 +
<br>
 +
 +
<!-- 12 img div -->
 +
<div class="row">
 +
 +
 +
<div class="col-md-4 col-xs-4">
 +
<a href="https://2016.igem.org/Team:Technion_Israel/Tar_improvements">
 +
<img src="https://static.igem.org/mediawiki/2016/4/4d/T--Technion_Israel--basicparticon.png" class="img-responsive img-center cir_tabs" width="75" style="cursor: pointer;">
 +
</a>
 +
<h4 class="text-center">Tar Improvements and Characterization</h4>
 +
</div>
 +
 +
<div class="col-md-4 col-xs-4">
 +
<a href="https://2016.igem.org/Team:Technion_Israel/Proof">
 +
<img src="https://static.igem.org/mediawiki/2016/4/4d/T--Technion_Israel--basicparticon.png" class="img-responsive img-center cir_tabs" width="75" style="cursor: pointer;">
 +
</a>
 +
<h4 class="text-center">PctA-Tar</h4>
 +
</div>
 +
 +
<div class="col-md-4 col-xs-4">
 +
<a href="https://2016.igem.org/Team:Technion_Israel/Modifications/narx" >
 +
<img src="https://static.igem.org/mediawiki/2016/4/4d/T--Technion_Israel--basicparticon.png" class="img-responsive img-center cir_tabs" width="75" style="cursor: pointer;">
 +
</a>
 +
<h4 class="text-center">NarX-Tar</h4>
 +
</div>
 +
</div>
 +
 +
<br>
 +
 +
<div class="row">
 +
 +
<div class="col-md-4 col-xs-4">
 +
<a href="https://2016.igem.org/Team:Technion_Israel/Modifications/Intein" >
 +
<img src="https://static.igem.org/mediawiki/2016/4/4d/T--Technion_Israel--basicparticon.png" class="img-responsive img-center cir_tabs" width="75" style="cursor: pointer;">
 +
</a>
 +
<h4 class="text-center">Intein</h4>
 +
</div>
 +
 +
<div class="col-md-4 col-xs-4">
 +
<a href="https://2016.igem.org/Team:Technion_Israel/Modifications/EstoTar" >
 +
<img src="https://static.igem.org/mediawiki/2016/4/4d/T--Technion_Israel--basicparticon.png" class="img-responsive img-center cir_tabs" width="75" style="cursor: pointer;">
 +
</a>
 +
<h4 class="text-center">hERα-Tar Chimera</h4>
 +
</div>
 +
 +
<div class="col-md-4 col-xs-4">
 +
<a href="https://2016.igem.org/Team:Technion_Israel/Modifications/Rosetta" >
 +
<img src="https://static.igem.org/mediawiki/2016/4/4d/T--Technion_Israel--basicparticon.png" class="img-responsive img-center cir_tabs" width="75" style="cursor: pointer;">
 +
</a>
 +
<h4 class="text-center">Computational Design</h4>
 +
</div>
 +
 +
</div>
 +
 +
<br>
 +
 +
<!-- Mini headline -->
 +
<div class="row">
 +
<div class="col-md-12 col-sm-12">
 +
<h1>S.Tar Introduction</h1>
 +
</div>
 +
</div>
 +
 +
<br>
 +
<br>
 +
  
 
<!--6 text - 6 img div-->
 
<!--6 text - 6 img div-->
Line 144: Line 243:
 
<div class="col-md-6 col-sm-12 vcenter"><!--6 text-->
 
<div class="col-md-6 col-sm-12 vcenter"><!--6 text-->
 
<p class="text-justify">
 
<p class="text-justify">
<a href="https://2016.igem.org/Team:Technion_Israel/Chemotaxis"><b>Chemotaxis</b></a>
+
<a href="https://2016.igem.org/Team:Technion_Israel/Chemotaxis" target="_blank"><b>Chemotaxis</b></a>
 
is the movement of an organism in response to an external chemical stimulus The bacterial
 
is the movement of an organism in response to an external chemical stimulus The bacterial
 
chemotaxis system is characterized by specific responses, high sensitivity and a dynamic  
 
chemotaxis system is characterized by specific responses, high sensitivity and a dynamic  
Line 181: Line 280:
 
response- controlled chemotaxis. The base of our project and the source of our name is the Tar chemoreceptor,  
 
response- controlled chemotaxis. The base of our project and the source of our name is the Tar chemoreceptor,  
 
one of four E. coli receptors. By changing Tar’s ligand binding domain to that of other  
 
one of four E. coli receptors. By changing Tar’s ligand binding domain to that of other  
receptors from various sources or by mutating it we show that E. coli can be engineered to respond to completely  
+
receptors or by mutating it we show that E. coli can be engineered to respond to completely  
 
new materials.
 
new materials.
 
</p>
 
</p>
Line 198: Line 297:
 
<p class="text-justify">
 
<p class="text-justify">
 
As a proof of concept we present two receptors:<br>
 
As a proof of concept we present two receptors:<br>
<b>1. </b> <a href="https://2016.igem.org/Team:Technion_Israel/Proof"><b>PctA-Tar </b></a>,  
+
<b>1. </b> <a href="https://2016.igem.org/Team:Technion_Israel/Proof" target="_blank"><b>PctA-Tar </b></a>,  
a chimera constructed by replacing the Tar LBD with that of the Pseudomonas receptor PctA.<br>
+
a chimera created by replacing the Tar LBD with that of the Pseudomonas receptor PctA.<br>
<b>2.</b> <a href="https://2016.igem.org/Team:Technion_Israel/Modifications/Rosetta"><b>Histamine-Tar</b></a>,  
+
<b>2.</b> <a href="https://2016.igem.org/Team:Technion_Israel/Modifications/Rosetta" target="_blank"><b>Histamine-Tar</b></a>,  
a receptor designed with the help of computational design - using 'Rosetta' bioinformatics  
+
a receptor created with the help of computational design - using 'Rosetta' bioinformatics  
 
software suite to design mutations in the Tar receptor.
 
software suite to design mutations in the Tar receptor.
 
</p>
 
</p>
Line 213: Line 312:
 
Our attempts did not end here, we also present two bold attempts to fuse a ligand binding  
 
Our attempts did not end here, we also present two bold attempts to fuse a ligand binding  
 
domain of human origin to Tar in order to induce chemotaxis towards  
 
domain of human origin to Tar in order to induce chemotaxis towards  
<a href="https://2016.igem.org/Team:Technion_Israel/Modifications/EstoTar"><b>Estrogen hormone</b></a>  
+
<a href="https://2016.igem.org/Team:Technion_Israel/Modifications/EstoTar" target="_blank"><b>Estrogen hormone</b></a>  
 
and a novel lock and key system relies on
 
and a novel lock and key system relies on
<a href="https://2016.igem.org/Team:Technion_Israel/Modifications/Intein"><b>intein proteins</b></a>  
+
<a href="https://2016.igem.org/Team:Technion_Israel/Modifications/Intein" target="_blank"><b>intein proteins</b></a>  
 
. The purpose of these proteins is to disable chemotaxis until a specific substance “unlocks the door” - or in more scientific way: induces  
 
. The purpose of these proteins is to disable chemotaxis until a specific substance “unlocks the door” - or in more scientific way: induces  
 
intein splicing and enables chemotaxis.<br>
 
intein splicing and enables chemotaxis.<br>
Line 225: Line 324:
 
<div class="row">
 
<div class="row">
 
<div class="col-md-12 col-sm-12">
 
<div class="col-md-12 col-sm-12">
<h3 class="text-justify">We have generated non-natural chemoreceptors, by modifying Tar’s ligand binding domain.</h3>
+
<h3 class="text-justify">We have created non-natural chemoreceptors, by modifying Tar’s ligand binding domain.</h3>
 
</div>
 
</div>
 
</div>
 
</div>
Line 250: Line 349:
  
  
<!-- References -->
+
<!-- Referances -->
 
<div class="col-sm-8 col-sm-offset-2"><!-- 8/12 -->
 
<div class="col-sm-8 col-sm-offset-2"><!-- 8/12 -->
 
<div class="row">
 
<div class="row">
  
<p class="references">
+
<p class="referances">
 
References:<br>
 
References:<br>
 
1. Bi, S. and Lai, L., 2015. Bacterial chemoreceptors and chemoeffectors. Cellular and Molecular Life Sciences, 72(4), pp.691-708.<br>
 
1. Bi, S. and Lai, L., 2015. Bacterial chemoreceptors and chemoeffectors. Cellular and Molecular Life Sciences, 72(4), pp.691-708.<br>
Line 260: Line 359:
 
2. BI, Shuangyu; LAI, Luhua. Bacterial chemoreceptors and chemoeffectors. Cellular and Molecular Life Sciences, 2015, 72.4: 691-708.‏<br>
 
2. BI, Shuangyu; LAI, Luhua. Bacterial chemoreceptors and chemoeffectors. Cellular and Molecular Life Sciences, 2015, 72.4: 691-708.‏<br>
 
<br>
 
<br>
3. <a href="https://immunology.org/page.aspx?pid=1459">British Society for Immunology</a><br>
+
3. <a href="https://immunology.org/page.aspx?pid=1459" target="_blank">British Society for Immunology</a><br>
 
<br>
 
<br>
 
</p>
 
</p>

Revision as of 17:47, 17 October 2016

S.tar, by iGEM Technion 2016

S.tar, by iGEM Technion 2016

S.Tar components



Tar Improvements and Characterization

PctA-Tar

NarX-Tar


Intein

hERα-Tar Chimera

Computational Design


S.Tar Introduction



Chemotaxis is the movement of an organism in response to an external chemical stimulus The bacterial chemotaxis system is characterized by specific responses, high sensitivity and a dynamic range (1). This system enables bacteria to sense their immediate environment and quickly adapt to its chemical composition changes - thus fleeing from repellents or moving towards attractants. The key to this system and the first link in the chain is the bacterial chemoreceptor - a membrane protein that binds the effector and transduces the signal down the line. Despite its advantages this system is still rather limited, bacterial chemoreceptors have evolved to sense specific materials that either benefit or harm the cell in some way. The specificity of a receptor is determined by its ligand binding domain. This domain is the focus of project S.Tar.

Fig. 1: A bacterial sense of direction.



S.Tar

The S.Tar platform offers the means to decide what substance will trigger a chemotactic response- controlled chemotaxis. The base of our project and the source of our name is the Tar chemoreceptor, one of four E. coli receptors. By changing Tar’s ligand binding domain to that of other receptors or by mutating it we show that E. coli can be engineered to respond to completely new materials.

As a proof of concept we present two receptors:
1. PctA-Tar , a chimera created by replacing the Tar LBD with that of the Pseudomonas receptor PctA.
2. Histamine-Tar, a receptor created with the help of computational design - using 'Rosetta' bioinformatics software suite to design mutations in the Tar receptor.

Our attempts did not end here, we also present two bold attempts to fuse a ligand binding domain of human origin to Tar in order to induce chemotaxis towards Estrogen hormone and a novel lock and key system relies on intein proteins . The purpose of these proteins is to disable chemotaxis until a specific substance “unlocks the door” - or in more scientific way: induces intein splicing and enables chemotaxis.

We have created non-natural chemoreceptors, by modifying Tar’s ligand binding domain.

Fig. 2: Tar chemoreceptor structure. Consists of three main regions: Ligand binding domain (LBD), The HAMP domain and the MH bundle. (2)

References:
1. Bi, S. and Lai, L., 2015. Bacterial chemoreceptors and chemoeffectors. Cellular and Molecular Life Sciences, 72(4), pp.691-708.

2. BI, Shuangyu; LAI, Luhua. Bacterial chemoreceptors and chemoeffectors. Cellular and Molecular Life Sciences, 2015, 72.4: 691-708.‏

3. British Society for Immunology




S.tar, by iGEM Technion 2016