Difference between revisions of "Team:Austin UTexas/Results"

Line 224: Line 224:
 
<p><u>CadC</u></p>
 
<p><u>CadC</u></p>
  
<p>The CadC operon is a native pathway in <i>E. coli</i>, involved in the cadaverine synthesis pathway. The protein CadC protein on the operon is produced and activates segments downstream of the operon on the CadBA receptors. The CadC protein is pH sensitive to an external pH 5.5 and below, as well as lysine dependent. A point mutation on codon 265, in which argenine is converted to cystine, causes the CadC protein to become lysine independent.<sup>1</sup> </p>
+
<p>The CadC operon is a native pathway in <i>E. coli</i>, involved in the cadaverine synthesis pathway. The protein CadC protein on the operon is produced and activates segments downstream of the operon on the CadBA receptors. The CadC protein is pH sensitive to an external pH 5.5 and below, as well as lysine dependent. A point mutation on codon 265, in which argenine is converted to cystine, causes the CadC protein to become lysine independent.<sup>1</sup></p>
 
<p>Unfortunately, we have been unable to grow the modified CadC operon in <i>E. coli</i> suggesting some form of cell toxicity. Due to this apparent toxicity, no data regarding this mutant CadC could be collected. Alternative candidates are being explored for other pH sensors that sense in the acidic range.</p>
 
<p>Unfortunately, we have been unable to grow the modified CadC operon in <i>E. coli</i> suggesting some form of cell toxicity. Due to this apparent toxicity, no data regarding this mutant CadC could be collected. Alternative candidates are being explored for other pH sensors that sense in the acidic range.</p>
  

Revision as of 06:33, 18 October 2016

Austin_UTexas

Results


Click on one of the images below to learn more about our results!




Kombucha Strains

Conjugation

Recapitulation

Ethanol

pH Sensors