Difference between revisions of "Team:Technion Israel/Measurement"

Line 148: Line 148:
 
Although there is an abundant number of chemotaxis assays available today, most of them were designed  
 
Although there is an abundant number of chemotaxis assays available today, most of them were designed  
 
50 to 60 years ago and almost none provide a real time measurement without the use of fluorescence  
 
50 to 60 years ago and almost none provide a real time measurement without the use of fluorescence  
labeling, for an example FRET test.<br>
+
labeling, for example FRET test.<br>
 
<br>
 
<br>
 
The use of Porous Si (PSi) and oxidized PSi (PSiO2) matrices for biological sensing is on the rise.  
 
The use of Porous Si (PSi) and oxidized PSi (PSiO2) matrices for biological sensing is on the rise.  

Revision as of 15:37, 18 October 2016

S.tar, by iGEM Technion 2016

S.Tar, by iGEM Technion 2016

Introduction


Although there is an abundant number of chemotaxis assays available today, most of them were designed 50 to 60 years ago and almost none provide a real time measurement without the use of fluorescence labeling, for example FRET test.

The use of Porous Si (PSi) and oxidized PSi (PSiO2) matrices for biological sensing is on the rise. So far various analytes such as DNA, proteins and bacteria have been proven to be detectable on such matrices. The common method to monitor the interaction of said analytes within the porous films is reflective interferometric Fourier transform spectroscopy (RIFTS), as it allows a real time measurement and output for the user.

Here we present the results of an early experiment for the detection of chemotactic activity on the porous silicon films initially developed for bacterial detection.

Fig. 1: ???.

References:
1. Reyes-Darias, J.A., Yang, Y., Sourjik, V., and Krell, T. (2015). Correlation between signal input and output in PctA and PctB amino acid chemoreceptor of Pseudomonas aeruginosa. Mol. Microbiol. 96, 513–525.




S.tar, by iGEM Technion 2016