Line 18: | Line 18: | ||
.desk_wrapper { | .desk_wrapper { | ||
position: relative; | position: relative; | ||
− | + | background: white; /* For browsers that do not support gradients */ | |
background: -webkit-linear-gradient(white, #ecf7fb, white); /* For Safari 5.1 to 6.0 */ | background: -webkit-linear-gradient(white, #ecf7fb, white); /* For Safari 5.1 to 6.0 */ | ||
background: -o-linear-gradient(white, #ecf7fb, white); /* For Opera 11.1 to 12.0 */ | background: -o-linear-gradient(white, #ecf7fb, white); /* For Opera 11.1 to 12.0 */ | ||
Line 48: | Line 48: | ||
Every in-content-page img needs to have this class of col. | Every in-content-page img needs to have this class of col. | ||
*/ | */ | ||
− | . | + | .referances { |
font-size: 16px; | font-size: 16px; | ||
+ | outline: 1px solid black; | ||
padding: 20px; | padding: 20px; | ||
} | } | ||
Line 61: | Line 62: | ||
margin: 0 auto; | margin: 0 auto; | ||
} | } | ||
− | + | ||
− | . | + | .vcenter { |
− | + | display: inline-block; | |
+ | vertical-align: middle; | ||
+ | float: none; | ||
} | } | ||
− | |||
</style> | </style> | ||
Line 126: | Line 128: | ||
<div class="row"> | <div class="row"> | ||
<div class="col-xs-12"> | <div class="col-xs-12"> | ||
− | <img src="https://static.igem.org/mediawiki/2016/4/49/T--Technion_Israel--Proofofconceptcov.jpg" class="img-responsive img-center" width="100%"> | + | <img src="https://static.igem.org/mediawiki/2016/4/49/T--Technion_Israel--Proofofconceptcov.jpg" class="img-responsive img-center cont_cover" width="100%"> |
</div> | </div> | ||
</div> | </div> | ||
Line 132: | Line 134: | ||
− | + | <!-- =========== Content =========== --> | |
− | + | <div class="row"><!--row --> | |
− | + | <div class="col-sm-8 col-sm-offset-2"><!-- 10/12 --> | |
− | + | <!-- ============ Tabs: ============ --> | |
− | + | ||
− | + | ||
− | |||
− | + | <!-- =============== Tabs names: =============== --> | |
− | + | <div class="row"> | |
− | + | <div class="col-md-12"> | |
− | + | ||
− | + | <ul class="nav nav-tabs" role="tablist"> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | <li role="presentation" class="col-sm-6 col-xs-6"> | |
− | + | <a href="#111" aria-controls="111" role="tab" data-toggle="tab"> | |
− | + | <img src="https://static.igem.org/mediawiki/2016/d/db/T--Technion_Israel--icon_intro.png" class="img-responsive img-center cont_tabs" width="75" height="75"> | |
− | + | <br><h4 class="text-center"><b>PctA-Tar</b></h4> | |
− | + | </a> | |
− | + | </li> | |
− | </ | + | |
− | </ | + | |
− | + | ||
+ | <li role="presentation" class="col-sm-6 col-xs-6"> | ||
+ | <a href="#222" aria-controls="222" role="tab" data-toggle="tab"> | ||
+ | <img src="https://static.igem.org/mediawiki/2016/4/49/T--Technion_Israel--icon_lab.png" class="img-responsive img-center cont_tabs" width="75" height="75"> | ||
+ | <br><h4 class="text-center"><b>Histamine-Tar</b></h4> | ||
+ | </a> | ||
+ | </li> | ||
− | + | </ul> | |
− | + | </div> | |
− | + | </div> | |
+ | <!-- ========== End: Tabs panel ========== --> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | <!--=======================================================================================================--> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
+ | <!-- =========== Tabs' content =========== --> | ||
+ | <div class="tab-content"> | ||
+ | |||
+ | |||
+ | <!-- 111111111111111111111111111111111111111111111111111111111 --> | ||
+ | <div role="tabpanel" class="tab-pane fade in active" id="111"> | ||
+ | <div class="cont_box"> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <div class="row"> | ||
+ | <div class="col-md-12 col-sm-12"> | ||
+ | <h2>PctA-Tar chimera Introduction</h2> | ||
</div> | </div> | ||
− | + | </div> | |
− | + | <br> | |
− | + | <br> | |
− | + | ||
− | + | <!--6 text - 6 img div--> | |
− | + | <div class="row"> | |
− | + | <div class="col-md-6 col-sm-12 vcenter"><!--6 text--> | |
− | + | <p class="text-justify"> | |
− | + | One of S.Tars sub projects focused on altering and changing the LBD of the Tar | |
− | + | chemoreceptor in order to design new hybrid chimeras. These changes were made | |
− | + | by replacing the LBD of the original Tar chemoreceptor with a new one, from a | |
− | + | different source, while keeping the signaling region of Tar untouched. As a | |
− | + | proof of concept for the newly designed Tar chimeras and the S.Tar project, | |
− | + | we focused on testing the PctA-Tar hybrid. | |
+ | </p> | ||
+ | </div><!-- | ||
+ | --><div class="col-md-6 col-sm-12 vcenter"><!--6 img div--> | ||
+ | <a class="pop ocenter"> | ||
+ | <img src="https://static.igem.org/mediawiki/2016/thumb/7/7d/T--Technion_Israel--Tar_pctA.png/800px-T--Technion_Israel--Tar_pctA.png" class="img-responsive img-center img-cont" width="450"> | ||
+ | </a> | ||
+ | <p class="text-center"><b>Fig. 1:</b> Scheme of native Tar chemoreceptor, native PctA receptor and PctA-Tar chimera. Adapted from <b> (1) </b></p> | ||
+ | </div> | ||
+ | </div> | ||
− | + | <br> | |
− | <a | + | <br> |
− | < | + | |
− | + | <div class="row"> | |
− | + | <div class="col-md-12 col-sm-12"> | |
− | </ | + | <div class="col-md-12 col-sm-12"> |
+ | <p class="text-justify"> | ||
+ | PctA is a chemoreceptor found in the <i> Pseudomonas Aeruginosa </i> bacterium, it mediates | ||
+ | chemotaxis towards amino acids and away from organic compounds. It can sense all | ||
+ | amino acids except for Aspartate <b>(1)</b>. | ||
+ | <br>To construct this chimera, the LBD sequence of the PctA was obtained from the <a href="http://www.pseudomonas.com/"target="_blank"><i> Pseudomonas </i> genome database</a>, | ||
+ | while the signaling region of Tar was obtained from the iGEM parts catalog | ||
+ | <a href="http://parts.igem.org/Part:BBa_K777000" target="_blank">(K777000)</a>. Using these two sequences, we built a Biobrick device <a href="http://parts.igem.org/Part:BBa_K1992007" target="_blank">(K1992007)</a> | ||
+ | which was then transformed to bacteria that lacks chemoreceptors - <a data-toggle="popover" data-trigger="click" data-original-title="Info:" data-html="true" | ||
+ | data-content="An E.coli derivative, which lacks chemoreceptors genes, means this strain does not obtain chemotaxis ability (Parkinson J S, University of Utah)."> | ||
+ | UU1250<i class="entypo-check"></i></button></a> | ||
+ | , to be extensively tested. It is important | ||
+ | to note that this chimera has been constructed before in the literature <b>(1)</b>. | ||
+ | </p> | ||
</div> | </div> | ||
− | + | ||
− | < | + | <div class="col-sm-6 col-sm-offset-3"> |
− | <!--6 text - 6 img div--> | + | <a class="pop ocenter"> |
+ | <img src="https://static.igem.org/mediawiki/2016/thumb/3/30/T--Technion_Israel--pctacircute.png/800px-T--Technion_Israel--pctacircute.png" class="img-responsive img-center" width="500" style="cursor: pointer;"> | ||
+ | </a> | ||
+ | <p><b>Fig. 2:</b> Biobrick device of the PctA-Tar chimera.</p> | ||
+ | </div> | ||
+ | |||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | |||
+ | <div class="row"> | ||
+ | <div class="col-md-12 col-sm-12"> | ||
+ | <h2>Test and results</h2> | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | |||
+ | <div class="row"> | ||
+ | <div class="col-md-12 col-sm-12"> | ||
+ | <p class="text-justify"> | ||
+ | As an initial step, we generated a 3D model of the PctA-Tar chimera, figure 3, using the | ||
+ | Phyre2 Protein Fold Recognition server to assure the correct folding of both the LBD and the signaling regions. | ||
+ | </p> | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | <br> | ||
+ | |||
+ | <div class="row"> | ||
+ | <div class="col-sm-8 col-sm-offset-2"><!-- 8/12 --> | ||
+ | <a class="pop ocenter"> | ||
+ | <img src="https://static.igem.org/mediawiki/2016/6/62/T--Technion_Israel--Proof_fig3.png" class="img-responsive img-center img-cont" width="700" style="cursor: pointer;"> | ||
+ | </a> | ||
+ | <p><b>Fig. 3: </b> PctA-Tar chimera 3D structure. The Tar signaling regions is in gray, the PctA LBD is in red.</p> | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | <br> | ||
+ | <br> | ||
+ | |||
+ | <!--6 text - 6 img div--> | ||
<div class="row"> | <div class="row"> | ||
<div class="col-md-6 col-sm-12 vcenter"><!--6 text--> | <div class="col-md-6 col-sm-12 vcenter"><!--6 text--> | ||
Line 250: | Line 300: | ||
</div> | </div> | ||
</div> | </div> | ||
+ | |||
+ | <br> | ||
+ | <br> | ||
<br> | <br> | ||
− | |||
− | |||
− | + | <div class="row"> | |
− | + | <div class="col-md-4 col-sm-12"> | |
− | + | <p class="text-justify">a.</p> | |
− | + | <a class="pop"> | |
− | + | <img src="https://static.igem.org/mediawiki/2016/thumb/5/52/T--Technion_Israel--pcta_figure1a.JPG/600px-T--Technion_Israel--pcta_figure1a.JPG" class="img-responsive img-center img-cont" width="200" style="cursor: pointer;"><br> | |
− | + | </a> | |
− | + | </div> | |
− | + | <div class="col-md-4 col-sm-12"> | |
− | + | <p class="text-justify">b.</p> | |
− | + | <a class="pop"> | |
− | + | <img src="https://static.igem.org/mediawiki/2016/thumb/6/6a/T--Technion_Israel--pcta_figure1b.JPG/600px-T--Technion_Israel--pcta_figure1b.JPG" class="img-responsive img-center img-cont" width="200" style="cursor: pointer;"><br> | |
− | + | </a> | |
− | + | </div> | |
− | + | <div class="col-md-4 col-sm-12"> | |
− | + | <p class="text-justify">c.</p> | |
− | + | <a class="pop"> | |
− | + | <img src="https://static.igem.org/mediawiki/2016/thumb/d/d2/T--Technion_Israel--pcta_figure1c.JPG/600px-T--Technion_Israel--pcta_figure1c.JPG" class="img-responsive img-center img-cont" width="200" style="cursor: pointer;"><br> | |
− | + | </a> | |
− | + | </div> | |
− | + | <div class="col-md-12 col-sm-12"> | |
− | + | <p class="text-justify"> | |
− | + | <b>Fig. 5:</b> Swarming assay for attractant response of the PctA-Tar chimera. | |
− | + | <b>a.</b> PctA chimera, <b>b.</b> Negative control- UU1250 strain w/o the Tar expression plasmid, <b>c. </b> positive control - ΔZ strain expressing all chemoreceptors. | |
− | + | <br><br><br> | |
− | + | </p> | |
− | + | </div> | |
− | + | </div> | |
− | + | <div class="row"> | |
− | + | <div class="col-md-12 col-sm-12 vcenter"> | |
− | + | <p class="text-justify"> | |
− | + | Next, to prove the correct localization of the chimera on both poles of the bacteria, GFP was fused | |
− | + | to its C-terminus with a short linker sequence <a href="http://parts.igem.org/Part:BBa_K1992010" target="_blank">(K1992010)</a>, figure 6. The results of these tests | |
− | + | as seen in figure 7, prove our assumption of correct localizations. | |
− | + | </p> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | </ | + | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
</div> | </div> | ||
− | + | <div class="col-md-6 col-md-offset-3 col-sm-12 vcenter"> | |
− | < | + | <a class="pop ocenter"> |
+ | <img src="https://static.igem.org/mediawiki/2016/thumb/6/6e/T--Technion_Israel--pctaGFPcircute.png/800px-T--Technion_Israel--pctaGFPcircute.png" class="img-responsive img-center " width="500" style="cursor: pointer;"> | ||
+ | </a> | ||
+ | <p><b>Fig. 6:</b> Biobrick device of the PctA-Tar chimera fused to GFP.</p> | ||
+ | </div> | ||
+ | </div> | ||
+ | <br> | ||
+ | <br> | ||
+ | <br> | ||
− | < | + | <div class="row"> |
− | + | <div class="col-sm-8 col-sm-offset-2"> | |
− | + | <a class="pop ocenter"> | |
+ | <img src="https://static.igem.org/mediawiki/2016/thumb/6/6a/T--Technion_Israel--Tar_pctA_flourecent.png/800px-T--Technion_Israel--Tar_pctA_flourecent.png" class="img-responsive img-center img-cont" width="700" style="cursor: pointer;"> | ||
+ | </a> | ||
+ | <p><b>Fig. 7:</b> Results of GFP fusion. <b>(A)</b> Positive control- <i>E.Coli</i> strain expressing GFP protein,<b>(B)</b> Negative control- UU1250 strain expressing Tar chemoreceptor, <b>(C)</b> UU1250 strain expressing Tar-GFP chemoreceptor, <b>(D)</b> UU1250 strain expressing PctA-Tar-GFP Chimera, Flourcense (490nm excitation). | ||
+ | </p> | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | <br> | ||
+ | <br> | ||
+ | <br> | ||
− | + | <div class="row"> | |
− | + | <div class="col-md-12 col-sm-12"> | |
− | + | <p class="text-justify"> | |
− | + | Finally, demonstrated below is a working concept of the FlashLab project - a chip that serves | |
− | + | as a detection tool based on the chemotaxis system of <I>E. coli</I> bacteria - by using a commercial | |
− | + | ibidi chip filled with a suspension of bacteria expressing the chimera and chromoprotein (<a href="http://parts.igem.org/Part:BBa_J23100" target="_blank">J23100</a> + <a href="http://parts.igem.org/Part:BBa_K1357009" target="_blank">K1357009</a>). | |
− | + | A solution of Tetrachloroethylene in concentration of 10<sup>-3</sup>M, the repellent, was added to the chip | |
− | + | and the displacement of the bacteria was monitored and recorded. | |
− | + | </p> | |
− | + | </div> | |
− | + | </div> | |
− | + | ||
+ | <br> | ||
− | + | <div class="row"> | |
− | + | <div class="col-md-12 col-sm-12"> | |
− | + | <br> | |
− | + | <a class="pop ocenter"> | |
− | + | <img src="https://static.igem.org/mediawiki/2016/7/74/T--Technion_Israel--fig1.JPG" class="img-responsive img-center" width="700"> </a> | |
− | + | <p class="text-center"> | |
− | + | <b>Fig. 8:</b> A steps scheme of the FlashLab concept: Add bacteria | |
− | + | expressing the chemoreceptor of your choice and a chromo protein to a fluidic chip . Add the sample in question | |
− | + | to said chip. If the sample contains the substance that is recognized by the chemoreceptor, | |
− | + | a displacement of the bacteria will become visible. If not, then the no displacement will be seen.</p> | |
− | + | </div> | |
− | + | </div> | |
+ | |||
+ | <br> | ||
+ | <br> | ||
+ | |||
+ | <!--6 text - 6 img div--> | ||
<div class="row"> | <div class="row"> | ||
<div class="col-md-6 col-sm-12 vcenter"><!--6 text--> | <div class="col-md-6 col-sm-12 vcenter"><!--6 text--> | ||
− | |||
<p class="text-justify"> | <p class="text-justify"> | ||
− | + | With the supporting evidence of the results presented above, it can be concluded | |
− | + | that both concepts have been proved and work under real life conditions and might | |
− | proved and work under real life conditions and might lead to the detection of various substances in the near future. | + | lead to the detection of various substances in the near future. |
</p> | </p> | ||
</div><!-- | </div><!-- | ||
Line 365: | Line 422: | ||
</p> | </p> | ||
</div> | </div> | ||
− | |||
</div> | </div> | ||
− | + | ||
+ | </div> | ||
+ | </div> | ||
+ | <!--===============--> | ||
+ | <!-- ======================== END: 111 ======================== --> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <!-- 222222222222222222222222222222222222222222222222222222222 --> | ||
+ | <div role="tabpanel" class="tab-pane fade" id="222"> | ||
+ | <div class="cont_box"> | ||
+ | |||
+ | <!-- Mini headline --> | ||
+ | <div class="row"> | ||
+ | <div class="col-md-12 col-sm-12"> | ||
+ | <h2>Histamine-Tar Introduction</h2> | ||
+ | </div> | ||
</div> | </div> | ||
+ | |||
+ | <br> | ||
+ | |||
+ | <!--6 text - 6 img div--> | ||
+ | <div class="row"> | ||
+ | <div class="col-md-6 col-sm-12 vcenter"><!--6 text--> | ||
+ | <p class="text-justify"> | ||
+ | The base of the S.Tar project is the Tar chemoreceptor, one of four E. coli receptors. | ||
+ | Our goal is to create a engineered bacteria which has chemotaxis receptors sensetive | ||
+ | to materials outside it’s existing receptor base.By changing Tar’s ligand binding domain | ||
+ | (LBD) to that of other receptors from various sources or by mutating it we show that E. | ||
+ | coli can be engineered to respond to completely new materials. | ||
+ | </p> | ||
+ | </div><!-- | ||
+ | --><div class="col-md-6 col-sm-12 vcenter"><!--6 img div--> | ||
+ | <a class="pop ocenter"> | ||
+ | <img src="https://static.igem.org/mediawiki/2016/7/72/T--Technion_Israel--His_seq.png" class="img-responsive img-center img-cont" width="450"> | ||
+ | </a> | ||
+ | <p class="text-center"><b>Fig. 1:</b> Sequencing Results. Query describes the native Tar LBD | ||
+ | sequence and Sbjct describes the design mutations sequence. Each mutation regin marked with | ||
+ | another color (blue and red).</p> | ||
</div> | </div> | ||
+ | </div> | ||
+ | |||
+ | <br> | ||
+ | <br> | ||
+ | |||
+ | <!-- 12 text div --> | ||
+ | <div class="row"> | ||
+ | <div class="col-md-12 col-sm-12"> | ||
+ | <p class="text-justify"> | ||
+ | The bacterial world offers a relatively small selection of chemoreceptors in comparison to | ||
+ | the vast number of possible ligands. These receptors evolved specifically to recognize substances | ||
+ | which benefit or harm the organism in some way. On top of that the fact that the majority of known | ||
+ | receptors today are not well characterized meant that we had very few options of creating chimeric | ||
+ | receptors like we initially planned.<br><br> | ||
+ | In light of the above we had to turn to a new path – redesigning the Tar chemoreceptor to bind a | ||
+ | different ligand using computational biology - The Rosetta <a href="https://2016.igem.org/Team:Technion_Israel/Software">software</a>. | ||
+ | Out of the Rosetta’s 870 suggested mutations only 11 variants were eventually cloned into the native Tar ligan-binding domain LBD. | ||
+ | See <a href="https://2016.igem.org/Team:Technion_Israel/Modifications/Rosetta">Computational Design</a> page for more information regarding the design process. | ||
+ | Out of all the tested variants only one was discovered to be attracted to histamine. Sequencing results | ||
+ | showed that the only mutations to occur in this variant were those planned by the Rosetta’s design. | ||
+ | </p> | ||
</div> | </div> | ||
− | < | + | </div> |
− | + | ||
− | + | <div class="row"> | |
− | < | + | <div class="col-md-12 col-sm-12"> |
− | + | <h2>Test and results</h2> | |
− | <div | + | </div> |
+ | |||
+ | <div class="row"> | ||
+ | <div class="col-md-12 col-sm-12"> | ||
+ | <p class="text-justify"> | ||
+ | A microscopic observation was used order to test the bacteria’s response to the attractant, | ||
+ | Histamine. It is evident in figure 1b that roughly 20 minutes after the addition of the | ||
+ | Histamine, the concentration of bacteria in the vicinity of the Histamine is much greater | ||
+ | than in the begining of the experiement as shown in figure 1a. | ||
+ | </p> | ||
+ | </div> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | <!-- 12 img div --> | |
− | + | <div class="row"> | |
− | + | ||
− | + | <div class="row"> | |
− | + | <div class="col-md-6 col-xs-12"> | |
− | + | <p class="text-justify">a.</p> | |
− | + | <a class="pop"> | |
− | </ | + | <img src="https://static.igem.org/mediawiki/2016/9/96/T--Technion_Israel--His0min.png" |
+ | class="img-responsive img-center img-cont" width="220" style="cursor: pointer;"><br> | ||
+ | </a> | ||
+ | </div> | ||
+ | |||
+ | <div class="col-md-6 col-xs-12"> | ||
+ | <p class="text-justify">b.</p> | ||
+ | <a class="pop"> | ||
+ | <img src="https://static.igem.org/mediawiki/2016/5/5f/T--Technion_Israel--His20min.png" class="img-responsive img-center img-cont" width="220" style="cursor: pointer;"><br> | ||
+ | </a> | ||
</div> | </div> | ||
− | + | ||
− | + | <div class="col-md-6 col-xs-12"> | |
− | + | <p class="text-justify">c.</p> | |
− | + | <a class="pop"> | |
− | + | <img src="https://static.igem.org/mediawiki/2016/9/94/T--Technion_Israel--His_control0min.png" class="img-responsive img-center img-cont" width="220" style="cursor: pointer;"><br> | |
− | + | </a> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | </ | + | |
</div> | </div> | ||
− | + | ||
− | <div class="col-md- | + | <div class="col-md-6 col-xs-12"> |
− | + | <p class="text-justify">d.</p> | |
+ | <a class="pop"> | ||
+ | <img src="https://static.igem.org/mediawiki/2016/2/25/T--Technion_Israel--His_control20min.png" class="img-responsive img-center img-cont" width="220" style="cursor: pointer;"><br> | ||
+ | </a> | ||
</div> | </div> | ||
− | + | </div> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | </div> | + | |
− | + | <div class="row"> | |
− | <div class="col-md-12 col-sm-12"> | + | <div class="col-md-12 col-sm-12"> |
− | + | <p class="text-center"><b>Fig. 1:</b> microscope results of chemotaxis activity for variant His_9 with 10mM of Histamine.<b> a.</b> Tar-Histamine after 0 minutes (when the Histamine added).<b> b.</b> Tar-Histamine after 20 minutes.<b> c.</b> Control after 0 minutes (when the Histamine added).<b> d.</b> Control after 20 minutes. | |
− | .</p> | + | </p> |
+ | </div> | ||
</div> | </div> | ||
− | |||
+ | </div> | ||
<br> | <br> | ||
Line 562: | Line 642: | ||
<!--===============--> | <!--===============--> | ||
<!-- =========== END Histamine Content =========== --> | <!-- =========== END Histamine Content =========== --> | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
</div> | </div> | ||
+ | </div> | ||
+ | <!-- ======================== END: 222 ======================== --> | ||
+ | </div><!-- End: tabs --> | ||
+ | </div><!-- End: 10/12 --> | ||
+ | |||
− | + | <!-- Referances --> | |
− | + | <div class="row"> | |
− | + | <div class="col-sm-10 col-sm-offset-1"> | |
− | + | <a href="#intein_referances" data-toggle="collapse">Referances</a> | |
− | + | <div id="intein_referances" class="collapse"> | |
− | + | ||
− | + | ||
+ | <p class="referances"> | ||
+ | 1. Reyes-Darias, J.A., Yang, Y., Sourjik, V., and Krell, T. (2015). Correlation between signal input and output in PctA and PctB amino acid chemoreceptor of Pseudomonas aeruginosa. Mol. Microbiol. 96, 513–525.<br> | ||
+ | <br> | ||
+ | </p> | ||
+ | </div> | ||
</div> | </div> | ||
</div> | </div> | ||
− | |||
<br> | <br> | ||
<br> | <br> | ||
<br> | <br> | ||
− | </div> | + | </div><!-- page wrapper --> |
+ | |||
<!--Code: Click on img to enlarge it--> | <!--Code: Click on img to enlarge it--> | ||
<div class="modal fade" id="imagemodal" tabindex="-1" role="dialog" aria-labelledby="myModalLabel" aria-hidden="true"> | <div class="modal fade" id="imagemodal" tabindex="-1" role="dialog" aria-labelledby="myModalLabel" aria-hidden="true"> | ||
− | + | <div class="modal-dialog"> | |
− | + | <div class="modal-content"> | |
− | + | <div class="modal-body"> | |
− | + | <button type="button" class="close" data-dismiss="modal"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button> | |
− | + | <img src="" class="imagepreview" style="width: 100%;" > | |
− | + | </div> | |
− | + | </div> | |
− | + | </div> | |
− | + | ||
− | + | ||
</div> | </div> | ||
− | + | <!--Arrow up --> | |
− | + | <a id="back-to-top" href="#" class="btn btn-lg back-to-top" role="button" title="Up" data-toggle="tooltip" data-placement="left"><img src="https://static.igem.org/mediawiki/2016/5/5a/T--Technion_Israel--up_arrow.png" alt=""></a> | |
Revision as of 17:52, 18 October 2016
PctA-Tar chimera Introduction
One of S.Tars sub projects focused on altering and changing the LBD of the Tar chemoreceptor in order to design new hybrid chimeras. These changes were made by replacing the LBD of the original Tar chemoreceptor with a new one, from a different source, while keeping the signaling region of Tar untouched. As a proof of concept for the newly designed Tar chimeras and the S.Tar project, we focused on testing the PctA-Tar hybrid.
PctA is a chemoreceptor found in the Pseudomonas Aeruginosa bacterium, it mediates
chemotaxis towards amino acids and away from organic compounds. It can sense all
amino acids except for Aspartate (1).
To construct this chimera, the LBD sequence of the PctA was obtained from the Pseudomonas genome database,
while the signaling region of Tar was obtained from the iGEM parts catalog
(K777000). Using these two sequences, we built a Biobrick device (K1992007)
which was then transformed to bacteria that lacks chemoreceptors -
UU1250
, to be extensively tested. It is important
to note that this chimera has been constructed before in the literature (1).
Test and results
As an initial step, we generated a 3D model of the PctA-Tar chimera, figure 3, using the Phyre2 Protein Fold Recognition server to assure the correct folding of both the LBD and the signaling regions.
Following the transformation, a swarming plate assay was performed in order to confirm the functionality of the hybrid receptor. A scheme of the assay is presented below, figure 4. It is important to mention that this assay was performed on BA medium as the original assay on TB medium failed. From the results seen below, figure 5, and compared to the negative control, it is clear that the chimera functions and controls the chemotactic ability of the bacteria and can lead to swarming response.
Fig. 5: Swarming assay for attractant response of the PctA-Tar chimera.
a. PctA chimera, b. Negative control- UU1250 strain w/o the Tar expression plasmid, c. positive control - ΔZ strain expressing all chemoreceptors.
Next, to prove the correct localization of the chimera on both poles of the bacteria, GFP was fused to its C-terminus with a short linker sequence (K1992010), figure 6. The results of these tests as seen in figure 7, prove our assumption of correct localizations.
Finally, demonstrated below is a working concept of the FlashLab project - a chip that serves as a detection tool based on the chemotaxis system of E. coli bacteria - by using a commercial ibidi chip filled with a suspension of bacteria expressing the chimera and chromoprotein (J23100 + K1357009). A solution of Tetrachloroethylene in concentration of 10-3M, the repellent, was added to the chip and the displacement of the bacteria was monitored and recorded.
Fig. 8: A steps scheme of the FlashLab concept: Add bacteria expressing the chemoreceptor of your choice and a chromo protein to a fluidic chip . Add the sample in question to said chip. If the sample contains the substance that is recognized by the chemoreceptor, a displacement of the bacteria will become visible. If not, then the no displacement will be seen.
With the supporting evidence of the results presented above, it can be concluded that both concepts have been proved and work under real life conditions and might lead to the detection of various substances in the near future.
Histamine-Tar Introduction
The base of the S.Tar project is the Tar chemoreceptor, one of four E. coli receptors. Our goal is to create a engineered bacteria which has chemotaxis receptors sensetive to materials outside it’s existing receptor base.By changing Tar’s ligand binding domain (LBD) to that of other receptors from various sources or by mutating it we show that E. coli can be engineered to respond to completely new materials.
The bacterial world offers a relatively small selection of chemoreceptors in comparison to
the vast number of possible ligands. These receptors evolved specifically to recognize substances
which benefit or harm the organism in some way. On top of that the fact that the majority of known
receptors today are not well characterized meant that we had very few options of creating chimeric
receptors like we initially planned.
In light of the above we had to turn to a new path – redesigning the Tar chemoreceptor to bind a
different ligand using computational biology - The Rosetta software.
Out of the Rosetta’s 870 suggested mutations only 11 variants were eventually cloned into the native Tar ligan-binding domain LBD.
See Computational Design page for more information regarding the design process.
Out of all the tested variants only one was discovered to be attracted to histamine. Sequencing results
showed that the only mutations to occur in this variant were those planned by the Rosetta’s design.
Test and results
A microscopic observation was used order to test the bacteria’s response to the attractant, Histamine. It is evident in figure 1b that roughly 20 minutes after the addition of the Histamine, the concentration of bacteria in the vicinity of the Histamine is much greater than in the begining of the experiement as shown in figure 1a.
Fig. 1: microscope results of chemotaxis activity for variant His_9 with 10mM of Histamine. a. Tar-Histamine after 0 minutes (when the Histamine added). b. Tar-Histamine after 20 minutes. c. Control after 0 minutes (when the Histamine added). d. Control after 20 minutes.
To prove the correct localization of the LBD on both poles of the bacteria, GFP was fused to its C-terminus with a short linker sequence (E0040) . The results of these tests as seen in figure 2, prove our assumption of correct localizations.
Fig. 2: Results of GFP fusion. a. White light of Tar-Histamine-GFP b. Flourcense (490nm excitation) of Tar-Histamine-GFP c. White light of normal Tar d. Flourcense (490nm excitation) of normal Tar .
Finally, demonstrated in video 1 is a working concept of the FlashLab project - a chip that serves as a detection tool based on the chemotaxis system of E. coli bacteria - by using a commercial ibidi chip filled with a suspension of bacteria expressing the chemoreceptor and chromoprotein (K1357008). A solution of Histamine in concentration of 10-3M, the attractant, was added to the chip and the displacement of the bacteria was monitored and recorded.
1. Reyes-Darias, J.A., Yang, Y., Sourjik, V., and Krell, T. (2015). Correlation between signal input and output in PctA and PctB amino acid chemoreceptor of Pseudomonas aeruginosa. Mol. Microbiol. 96, 513–525.