Difference between revisions of "Team:Austin UTexas/Results"

Line 268: Line 268:
 
</div>
 
</div>
  
<hr>
+
<br>
  
 
<div class="naviSection" id="section6">
 
<div class="naviSection" id="section6">
Line 286: Line 286:
 
[[File:T--Austin_UTexas--pH_Dependent_Promoter.jpeg|thumb|right|549px| Figure 2. Normalized fluorescent values from CpxR construct vs control (YGCP). The fluorescence per cell count stayed generally the same throughout the range of pH while the CpxR has a clear increase in fluorescence per cell. Credit: Sofia Chinea]]<html>
 
[[File:T--Austin_UTexas--pH_Dependent_Promoter.jpeg|thumb|right|549px| Figure 2. Normalized fluorescent values from CpxR construct vs control (YGCP). The fluorescence per cell count stayed generally the same throughout the range of pH while the CpxR has a clear increase in fluorescence per cell. Credit: Sofia Chinea]]<html>
 
<p>The order from left to right in figure 1 is control pH 6-9 and then Experimental pH 6-9. These are showing the gradient change in expression accordingly with the change of pH due to a pH-dependent promotor compared to consistent expression accordingly with a promoter that is always "on". The main point is that the control at pH 6 has more expression of the yellow-green chromoprotein than the Experimental at pH 6. The pH-dependent promoter of the experimental group is down-regulated at pH 6 whereas the control is not. Also, there is an increase in YGCP expression between the experiment pH 7 and pH 8 that is not seen in the control between pH 7 and pH 8. The normalized data in figure 2 shows the relative expression of YGCP. The CpxA-CpxR construct can be found on the iGEM registry as: <a href=“http://parts.igem.org/Part:Bba_K2097000”>BBa_K2097000</a>, while the construct utilized as a control can be found on the iGEM registry as <a href="http://parts.igem.org/Part:BBa_2097002">BBa_K2097002</a> as well as in figure 3.</p>
 
<p>The order from left to right in figure 1 is control pH 6-9 and then Experimental pH 6-9. These are showing the gradient change in expression accordingly with the change of pH due to a pH-dependent promotor compared to consistent expression accordingly with a promoter that is always "on". The main point is that the control at pH 6 has more expression of the yellow-green chromoprotein than the Experimental at pH 6. The pH-dependent promoter of the experimental group is down-regulated at pH 6 whereas the control is not. Also, there is an increase in YGCP expression between the experiment pH 7 and pH 8 that is not seen in the control between pH 7 and pH 8. The normalized data in figure 2 shows the relative expression of YGCP. The CpxA-CpxR construct can be found on the iGEM registry as: <a href=“http://parts.igem.org/Part:Bba_K2097000”>BBa_K2097000</a>, while the construct utilized as a control can be found on the iGEM registry as <a href="http://parts.igem.org/Part:BBa_2097002">BBa_K2097002</a> as well as in figure 3.</p>
 +
 
<br>
 
<br>
  
 
<h4>CadC</h4>
 
<h4>CadC</h4>
 
 
<p>The CadC operon is a native pathway in <i>E. coli</i>, involved in the cadaverine synthesis pathway. The protein CadC protein on the operon is produced and activates segments downstream of the operon on the CadBA receptors. The CadC protein is pH sensitive to an external pH 5.5 and below, as well as lysine dependent. A point mutation on codon 265, in which argenine is converted to cystine, causes the CadC protein to become lysine independent.<sup>3</sup></p>
 
<p>The CadC operon is a native pathway in <i>E. coli</i>, involved in the cadaverine synthesis pathway. The protein CadC protein on the operon is produced and activates segments downstream of the operon on the CadBA receptors. The CadC protein is pH sensitive to an external pH 5.5 and below, as well as lysine dependent. A point mutation on codon 265, in which argenine is converted to cystine, causes the CadC protein to become lysine independent.<sup>3</sup></p>
 
<p>Unfortunately, we have been unable to grow the modified CadC operon in <i>E. coli</i> suggesting some form of cell toxicity. Due to this apparent toxicity, no data regarding this mutant CadC could be collected. Alternative candidates are being explored for other pH sensors that sense in the acidic range.</p>
 
<p>Unfortunately, we have been unable to grow the modified CadC operon in <i>E. coli</i> suggesting some form of cell toxicity. Due to this apparent toxicity, no data regarding this mutant CadC could be collected. Alternative candidates are being explored for other pH sensors that sense in the acidic range.</p>
 +
 +
<br>
  
 
<h4>P-atp2</h4>
 
<h4>P-atp2</h4>
Line 300: Line 302:
 
<p>The P-atp2 promoter, native to the bacterium <i>Corynebacterium glutamicum</i> is reportedly induced at pH 7, to pH 9 (<a href="https://2015.igem.org/Team:BIT-China/Parts">BIT-China-2015</a> and <a href="http://parts.igem.org/Part:BBa_K1675021">BBa_K1675021</a>).<sup>1</sup> Utilizing the blue chromoprotein (<a href="http://partsregistry.org/Part:BBa_K592009">BBa_K592009</a>), a test was designed in which a plasmid containing the P-atp2 promoter with the blue chromoprotein was grown alongside an <i>E. coli</i> line that contained a plasmid with just the blue chromoprotein. We expected to see constant blue chromoprotein production in the control series (those that lacked P-atp2) and a visual increase in blue chromoprotein as the pH was raised from 6 to 9 in the cells that contained the P-atp2 construct. The construct utilized as a control can be found on the iGEM registry <a href="http://parts.igem.org/Part:BBa_2097001">BBa_K2097001</a> as as in figure 5.</p>
 
<p>The P-atp2 promoter, native to the bacterium <i>Corynebacterium glutamicum</i> is reportedly induced at pH 7, to pH 9 (<a href="https://2015.igem.org/Team:BIT-China/Parts">BIT-China-2015</a> and <a href="http://parts.igem.org/Part:BBa_K1675021">BBa_K1675021</a>).<sup>1</sup> Utilizing the blue chromoprotein (<a href="http://partsregistry.org/Part:BBa_K592009">BBa_K592009</a>), a test was designed in which a plasmid containing the P-atp2 promoter with the blue chromoprotein was grown alongside an <i>E. coli</i> line that contained a plasmid with just the blue chromoprotein. We expected to see constant blue chromoprotein production in the control series (those that lacked P-atp2) and a visual increase in blue chromoprotein as the pH was raised from 6 to 9 in the cells that contained the P-atp2 construct. The construct utilized as a control can be found on the iGEM registry <a href="http://parts.igem.org/Part:BBa_2097001">BBa_K2097001</a> as as in figure 5.</p>
 
<p>However, as seen in figure 4, no clear change in color expression appears in the experimental trials, suggesting a lack of sensitivity of the P-atp2 promoter.</p>
 
<p>However, as seen in figure 4, no clear change in color expression appears in the experimental trials, suggesting a lack of sensitivity of the P-atp2 promoter.</p>
 +
 
<br>
 
<br>
 +
 
<h4>GOX Sequences as Putative Promoters</h4>
 
<h4>GOX Sequences as Putative Promoters</h4>
 
<p>Three endogenous upstream regions of loci on the <i>Gluconobacter oxydans</i>  chromosome were reported to show increased mRNA synthesis as pH decreased, were isolated and obtained, as seen in table 1.<sup>2</sup> Using Golden Gate assembly, these putative promoters have been placed on the Golden Gate entry vector pYTK001 for later use. By utilizing these pH-sensitive promoters with different reporters and transforming them into multiple organisms in kombucha, the visualization of the microbes and their location in kombucha would be possible.<sup>4</sup> This will serve as a stepping stone into further understanding how the microbiome of kombucha changes as it brews as well as determining organism concentration specific times during the brewing process.</p>
 
<p>Three endogenous upstream regions of loci on the <i>Gluconobacter oxydans</i>  chromosome were reported to show increased mRNA synthesis as pH decreased, were isolated and obtained, as seen in table 1.<sup>2</sup> Using Golden Gate assembly, these putative promoters have been placed on the Golden Gate entry vector pYTK001 for later use. By utilizing these pH-sensitive promoters with different reporters and transforming them into multiple organisms in kombucha, the visualization of the microbes and their location in kombucha would be possible.<sup>4</sup> This will serve as a stepping stone into further understanding how the microbiome of kombucha changes as it brews as well as determining organism concentration specific times during the brewing process.</p>

Revision as of 00:07, 19 October 2016

Austin_UTexas

Results


Click on one of the images below to learn more about our results!