Based on the input of specifications of experts in the field (entomologists, mosquito control offices), the scientific process of detection (ecosystem of the mosquitoes, state of the samples containing pathogen antigens, safety,…) we were able to generate the 3D coordinates of a trapping device with the help of computation and 3D modeling software. The trap was subsequently generated through the 3D printing process. The prototype model tested for egress of sample of mosquitoes (n=200) showed a 2% rate of escape (98% retention rate). However, capture using the Biogent® pheromone bag was not efficient as no mosquitoes were captured after 24h of exposure. This second aspect needs to be improved, by changing attraction systems including CO2 generation.
The fusion protein we designed contains the silica-binding peptide (Si4), the cellulose-binding domain of cellulose-binding protein A (CBPa), and the B domain of staphylococcal protein A (BpA). It is a 25 kDa protein (Fig. 1).
References:
[1] Characterization of the cellulose-binding domain of the Clostridium cellulovorans cellulose-binding protein A, Golstein MA et al, J. Bacteriol., 1993.