Difference between revisions of "Team:Chalmers Gothenburg"

Line 139: Line 139:
 
          
 
          
  
           <p class="text">It is a well-known fact that our current way of life as a species is greatly affecting our planet in a negative way. With massive emissions of greenhouse gases we’ve started seeing effects such as global warming. One way to greatly reduce greenhouse gas emission is to replace the petroleum platform for chemical synthesis. An alternative considered by many to be the most viable is to use microbial biosynthesis. However, biosynthesis may sound promising but it still has a few question marks to straighten out before we can see it as a perfect solution to our petroleum problems.</p>
+
           <p class="text">It is a well-known fact that our current way of life as a species is greatly affecting our planet in a negative way. With massive emissions of greenhouse gases we’ve started seeing effects such as global warming. One way to greatly reduce greenhouse gas emission is to replace petroleum based chemical synthesis. Microbial biosynthesis is considered by many to be the most viable alternative to the petroleum based platform. </p>
  
<p class="text">Biosynthesis of certain products has a high cost-to-benefit ratio, with substrate comprising a major part of the total costs for industrial fermentation. With this in mind, our idea is to create a self-sustaining microbial system that produces its own substrate using photosynthesis. We want to create a co-culture where a photosynthetic cyanobacterium provides a production organism with the substrate. Thus by using this co-culture we could convert sunlight and carbon dioxide into desired products. By developing multiple production organisms specialized in synthesizing different products, we could create an ease-of-use library enabling quick access to environmental friendly biosynthesis.</p>
+
<p class=text">However, biosynthesis may sound promising but it still has a few question marks to straighten out before we can see it as a perfect solution to our petroleum problems.</p>
 +
 
 +
<p class="text">Biosynthesis of certain products has a high cost-to-benefit ratio, with substrate comprising a major part of the total costs for industrial fermentation. With this in mind, our idea is to create a self-sustaining microbial system that produces its own substrate using photosynthesis. We want to create a co-culture where a photosynthetic cyanobacterium provides a production organism with the carbon substrate. Thus by using this co-culture we could convert sunlight and carbon dioxide into desired products. By developing multiple production organisms specialized in synthesizing different products, we could create an ease-of-use library enabling quick access to environmental friendly biosynthesis.</p>
  
 
<a href="https://2016.igem.org/Team:Chalmers_Gothenburg/Description"><h2>Welcome to the solar-powered future</h2></a>
 
<a href="https://2016.igem.org/Team:Chalmers_Gothenburg/Description"><h2>Welcome to the solar-powered future</h2></a>

Revision as of 09:19, 19 October 2016

Chalmers Gothenburg iGEM 2016

Turning Pollution into a Solution

The project

It is a well-known fact that our current way of life as a species is greatly affecting our planet in a negative way. With massive emissions of greenhouse gases we’ve started seeing effects such as global warming. One way to greatly reduce greenhouse gas emission is to replace petroleum based chemical synthesis. Microbial biosynthesis is considered by many to be the most viable alternative to the petroleum based platform.

However, biosynthesis may sound promising but it still has a few question marks to straighten out before we can see it as a perfect solution to our petroleum problems.

Biosynthesis of certain products has a high cost-to-benefit ratio, with substrate comprising a major part of the total costs for industrial fermentation. With this in mind, our idea is to create a self-sustaining microbial system that produces its own substrate using photosynthesis. We want to create a co-culture where a photosynthetic cyanobacterium provides a production organism with the carbon substrate. Thus by using this co-culture we could convert sunlight and carbon dioxide into desired products. By developing multiple production organisms specialized in synthesizing different products, we could create an ease-of-use library enabling quick access to environmental friendly biosynthesis.

Welcome to the solar-powered future