Difference between revisions of "Team:Marburg/description"

(Created page with "{{Marburg/navigation}} <html lang="en"> <head> <!-- Meta tags --> <meta charset="utf-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge">...")
 
Line 44: Line 44:
 
<div class="container">
 
<div class="container">
 
     <div class="heading">
 
     <div class="heading">
         <h2>Safety</h2>
+
         <h2>Description</h2>
 
     </div>
 
     </div>
 
</div>
 
</div>
Line 55: Line 55:
  
 
             <p>
 
             <p>
                In our project we want to establish a new production platform for biofuel production
+
          We modeled the concentration of the toxin under lab conditions and wildlife conditions.
                based on ‘artificial endosymbiosis’. We choose two of the most used and well established
+
Based on that we computed the escape probability for that as well as other kill switch topologies. Finally, we derived generic topology guidlines. That could be used to improve this project.
                model organisms in genetic engineering: <i>Saccharomyces cerevisiae</i> and <i>Escherichia coli</i>.
+
<a href="https://2016.igem.org/Team:Marburg/Modeling/Results">Click here</a>
                By following and extending the guidelines for responsible and safe research, we are able
+
                to ensure minimal risks to experimentator and environment. Here, you can find all important
+
                safety aspects we followed through the course of this summer. Additionally, we focused a
+
                whole side project on safety - we created a complete database of all kill switches ever
+
                designed within the iGEM competition and were able to model four of them in detail.
+
 
             </p>
 
             </p>
 
          
 
          
Line 78: Line 73:
  
 
             <p>
 
             <p>
                 Before starting our lab work, all students received a detailed safety instruction by covering
+
                  
                all important aspects of working safely. This instruction was held by the safety officer of the
+
                Max Planck Institute for terrestrial microbiology Prof. Dr. Brandis-Heep, as well as Volker Vincon.
+
                A lab specific safety instruction was also given by our instructors. This covered for example: 
+
 
             </p>
 
             </p>
 
          
 
          
Line 93: Line 85:
  
 
             <p>
 
             <p>
                 <ul>
+
                  
                    <li>proper behaviour in the lab, S1 safety measures and practices</li>
+
                    <li>documentation of experimental work</li>
+
                    <li>use of personal protective equipment</li>
+
                    <li>waste disposal of biological samples</li>
+
                    <li>chemical handling and hazards</li>
+
                    <li>accident prevention measures</li>
+
                    <li>fire safety regulations and emergency behaviour</li>
+
                </ul>
+
 
             </p>
 
             </p>
 
          
 
          
Line 113: Line 97:
  
 
             <p>
 
             <p>
                 Additionally, each student received an in depth training in every facility and for every instrument
+
                  
                we had to work in or with (e.g. confocal microscope, FACS, HPLC) and was supervised during their measurements.
+
 
             </p>
 
             </p>
 
          
 
          
Line 130: Line 113:
  
 
             <p>
 
             <p>
                 Since our project is meant to work as an industrial scale production, we wanted to keep safety
+
                  
                issues as minimal as possible. Especially concerning our ‘endosymbiosis’ approach, we rejected
+
                several ideas for safety reasons. In the beginning of our project we wanted to use invasin and
+
                listeriolysin as an invasion method for our symbionts - this mechanism originates from
+
                <i>Yersinia pestis</i> and <i>Yersinia tuberculosis</i> and is part of their virulence factors,
+
                which makes them BSL3 and BSL2 organisms, respectively. Therefore, we choose a different and passive
+
                approach,  a polyethylene glycol (PEG)-mediated fusion of vesicle enclosed microorganisms with
+
                yeast spheroplasts, which does not involve any pathogenic factors and therefore is harmless for
+
                humans and environment. During the lab work only BSL1 organisms have been handled, such as
+
                different strains of <i>Saccharomyces cerevisiae</i>, <i>Schizosaccharomyces pombe</i> and
+
                <i>Escherichia coli</i>.
+
 
             </p>
 
             </p>
 
          
 
          
Line 156: Line 129:
  
 
             <p>
 
             <p>
                In Germany there are several important laws and regulations that provide all informations
+
               
                about the handling with chemicals and biological samples. The so called
+
                  
                <a href="http://www.gesetze-im-internet.de/gentg/">Gentechnikgesetz</a>, a law regarding
+
                regulations in genetical engineering, covers all regulations we mentioned in the ‘Lab Safety’
+
                part. Additionally, there is the
+
                <a href="http://www.gesetze-im-internet.de/biostoffv_2013/index.html">Biostoffverordnung</a>,
+
                which covers personal protection when working with biological samples and several chemicals.
+
                A detailed list of all organims and their risk assesments can be found in the
+
                 <a href="http://www.bvl.bund.de/DE/06_Gentechnik/03_Antragsteller/06_Institutionen_fuer_biologische_Sicherheit/01_ZKBS/03_Organismenliste/gentechnik_zkbs_organismenliste_node.html">Organismenliste</a>.
+
 
             </p>
 
             </p>
 
          
 
          
Line 180: Line 146:
  
 
             <p>
 
             <p>
                 As every team in iGEM we think safety, especially concerning biocontainment, is an issue all
+
                  
                of us need to assess. Instead of designing our own killswitch, we took advantage of the numerous
+
                kill switches already implemented in the iGEM database. Using these, we were creating a model
+
                describing their escape rate in terms of evolutionary stability seeing them as a genetic network.
+
                We did so in collaboration with the iGEM team of <a href="https://2016.igem.org/Team:Lethbridge">Lethbridge</a>,
+
                who performed to experimental work for verification of our model. In addition to the modeling of
+
                several kill switches, we included all available kill switches in our <b>Database</b>. This
+
                collection is available for download <a href="https://2016.igem.org/Team:Marburg/Kill_Switch_Database">here</a>.
+
                Hopefully this can help many teams to gain insight in already existing kill switches, their stability
+
                and how to improve the already available kill switches. 
+
 
             </p>
 
             </p>
 
          
 
          
Line 205: Line 162:
  
 
             <p>
 
             <p>
                 For the sending of our parts, we used the provided DNA Submission Kit and follwed the instructions
+
                  
                coming with <a href="http://parts.igem.org/Help:Submission_Kit">it</a>.
+
 
             </p>
 
             </p>
 
          
 
          

Revision as of 03:46, 20 October 2016

Projects :: Syndustry - iGEM Marburg 2016

SynDustry Fuse. Produce. Use.

Description

We modeled the concentration of the toxin under lab conditions and wildlife conditions. Based on that we computed the escape probability for that as well as other kill switch topologies. Finally, we derived generic topology guidlines. That could be used to improve this project. Click here

Lab Safety

Project Safety

Safety Regulations in Germany

Kill Switches and Database

Safe Shipment