Team:SDU-Denmark/Parts

Parts


Coding
BBa_K1088000
The BioBrick contains the coding region of the dxs gene derived from the Gram-positive bacteria Bacillus subtilis. Dxs is the first enzyme in the MEP pathway converting pyruvate and GAP GAPGlyceraldehyde-3-phosphate into DXP. DXP1-Deoxy-D-xylulose 5-phosphate Has been sequenced.

BBa_K1088003
The BioBrick contains the coding region of the HRT2 gene derived from Hevea brasiliensis and codon-optimized for Escherichia coli. HRT2 is the prenyl transferase that polymerizes IPP IPPIsopentenyl pyrophosphate and DMAPP DMAPPDimethylallyl pyrophosphate into rubber. Has been sequenced and HRT2 function characterized by H1-NMR.

BBa_K1088004
The BioBrick contains the coding region of the ispG gene derived from the Gram-negative bacteria Escherichia coli. ispG is the sixth enzyme in the MEP pathway converting MEcPP MEcPP2-C-methyl-D-erythritol 2,4-cyclopyrophosphate into HMB-PP. HMB-PP(E)-4-Hydroxy-3-methyl-but-2-enyl pyrophosphate Has been sequenced.

BBa_K1088005
The BioBrick contains the coding region of the araC gene derived from the Gram-negative bacteria Escherichia coli. AraC is a DNA-binding protein that regulates the transcription of operons involved in arabinose metabolism. With glucose present AraC functions as a repressor, and without glucose and with arabinose present it functions as an activator.

BBa_K1088018
The BioBrick contains the coding region of the lacI gene derived from the Gram-negative bacteria Escherichia coli. LacI is a DNA-binding protein that inhibits the transcription from the lac promoter when allolactose or IPTG IPTGIsopropyl β-D-1-thiogalactopyranoside is absent. Has been sequenced and LacI function characterized by FACS. FACSFluorescence Activated Cell Sorting and growth experiment.
Regulatory devices
BBa_K1088017
Pcon-araC-term: araC is being expressed from a constitutively active promoter. A terminator is put behind the coding region to prevent transcription of genes downstream of the activator. The device was used to check if we could enhance the control of the arabinose promoter. Has been sequenced and AraC function characterized by northern blot.

BBa_K1088019
Pcon-lacI(N)-term: lacI is being expressed from a constitutively active promoter. A terminator is put behind the coding region to prevent transcription of genes downstream of the repressor. The device was used to enable us to control the lactose promoter. This device proved be most effective together for expression control. LacI(N) function characterized by GFP fusion using FACS. FACSFluorescence Activated Cell Sorting and growth experiment.

BBa_K1088020
Pcon-lacI:LVA-term: lacI:LVA (BBa_C0012) is being expressed from a constitutively active promoter. A terminator is put behind the coding region to prevent transcription of genes downstream of the repressor. The LVA-tag is a tag for degradation, and thus there is increased turnover of the protein. The device is meant to enable us to control the lactose promoter. However natural LacI proved to be more effective than the LVA-tagged. Has been sequenced and LacI:LVA function characterized by GFP fusion using FACS and growth experiment.
Reporter fusions
BBa_K1088006
Pcon-dxs (B. subtilis)-amilCP expresses the dxs gene derived from Bacillus subtilis linked to GFP, and is under the control of the lactose promoter. AmilCP proved to be a poor fusion protein for the Dxs protein. Has been sequenced.

BBa_K1088007
Plac-dxs (E. coli)-GFP expresses the dxs gene derived from Escherichia coli linked to GFP, and is under the control of the lactose promoter. The device was used to check the expression level of the E. coli dxs gene under various conditions. Has been sequenced.

BBa_K1088008
Plac-dxs (B. subtilis):GFP expresses the dxs gene derived from Bacillus subtilis linked to GFP, and is under the control of the lactose promoter. The device is was used to check the expression level of the B.subtilis dxs gene under various conditions. Has been sequenced and Plac function characterized by GFP fusion using FACS. FACSFluorescence Activated Cell Sorting and growth experiment.

BBa_K1088009
Pcon-lacI:LVA-Plac-dxs (B. subtilis)-GFP expresses the dxs gene derived from B. subtilis linked to GFP, and is under the control of the lactose promoter. The device to check the expression level of the Bacillus subtilis dxs gene under various conditions. Our LacI:LVA (BBa_K1088020) device (with a constitutive promoter was added to optimize the expression control through the lactose promoter. Natural LacI proved to be more efficient, though. Has been sequenced. LacI and Plac function characterized by GFP fusion using FACS and growth experiment.

BBa_K1088010
Pcon-lacI:LVA-term-Plac-dxs (E. coli)-GFP expresses the dxs gene derived from Escherichia coli linked to GFP, and is under the control of the lactose promoter. The device is meant for us to check the expression level of the dxs gene under various conditions. Our LacI:LVA (BBa_K1088020) device (with a constitutive promoter was added to optimize the expression control through the lactose promoter.

BBa_K1088026
Pcon-lacI(N)-Plac-dxs (B. subtilis)-GFP expresses the dxs gene derived from Bacillus subtilis linked to GFP, and is under the control of the lactose promoter. The device is meant for us to check the expression level of the dxs gene under various conditions. Furthermore the lacI gene with a constitutive promoter has been added to optimize the expression control through the lactose promoter. This device proved to have the most efficient expression control (see results for more detail). Has been sequenced. LacI and Plac function characterized by GFP fusion using FACS and growth experiment.
Constitutively active production devices
BBa_K1088011
Plac-dxs (B. subtilis) expresses the dxs gene derived from B. subtilis, and is under the control of the lactose promoter. The device is meant for us to increase the amount of IPP and DMAPP in the cell. Plac function characterized by GFP fusion using FACS. FACSFluorescence Activated Cell Sorting and growth experiment.

BBa_K1088012
Plac-dxs (E. coli) expresses the dxs gene (BBa_K118000) derived from E. coli, and is under the control of the lactose promoter. The device is meant for us to increase the amount of IPP and DMAPP in the cell. Has been sequenced.
Regulable production devices
BBa_K1088013
Pcon-lacI:LVA-term-Plac-dxs (B. subtilis) expresses the dxs gene derived from B. subtilis, and is under the control of the lactose promoter. The device is meant for us to increase the amount of IPP IPPIsopentenyl pyrophosphate and DMAPP DMAPPDimethylallyl pyrophosphate in the cell. Furthermore the lacI:LVA gene with a constitutive promoter was added to optimize the expression control through the lactose promoter. Natural LacI proved to be more efficient, though. Has been sequenced.

BBa_K1088014
Pcon-lacI:LVA-term-Plac-dxs (E. coli) expresses the dxs gene derived from E. coli, and is under the control of the lactose promoter. The device is meant for us to increase the amount of IPP and DMAPP in the cell. Furthermore the lacI-LVA gene with a constitutive promoter has been added to optimize the expression control through the lactose promoter.

BBa_K1088015
Pcon-lacI:LVA-term-Plac-dxs (B. subtilis)-ispG expresses the dxs gene derived from B. subtilis, and is under the control of the lactose promoter. The device was build to increase the amount of IPP and DMAPP in the cell if the first rate limiting step was overcome. Furthermore the lacI:LVA gene with a constitutive promoter has been added to optimize the expression control through the lactose promoter (see results for description LacI-LVA efficiency).

BBa_K1088016
Pcon-araC-term-Para-HRT2-(3xFLAG) expresses the HRT2 gene derived from Hevea brasiliensis, and is under the control of the arabinose promoter. The device was made to enable the bacteria to polymerize IPP and DMAPP into rubber. Furthermore the arabinose promoter regulator AraC has been added to check if it would enhance the expression control of arabinose promoter. It did not seem to improve expression control. Has been sequenced. AraC and Para function characterized by Northern blot and HRT2 function characterized by H1-NMR.

BBa_K1088024
Para-HRT2-(3xFLAG) expresses the HRT2 gene derived from Hevea brasiliensis, and is under the control of the arabinose promoter. The device is meant to enable the bacteria to polymerize IPP and DMAPP into rubber. Has been sequenced. AraC and Para function characterized by Northern blot and HRT2 function characterized by H1-NMR.

BBa_K1088027
Pcon-lacI(N)-Plac-dxs (B. subtilis) expresses the dxs gene derived from B. subtilis, and is under the control of the lactose promoter. The device is meant for us to increase the amount of IPP and DMAPP in the cell. Furthermore the lacI gene with a constitutive promoter was added to optimize the expression control through the lactose promoter. This addition proved to have the most efficient expression control. LacI and Plac function characterized by GFP fusion using FACS. FACSFluorescence Activated Cell Sorting and growth experiment.

Basic

Composite

BBa_K2018010

This part is a functional BioBrick contain the coding region of Laterosporulin, , with promoter, RBS and terminator. Laterosporulin is a bacteriocin produced by Brevibacillus sp. strain, and exhibit a broad spectrum of antibacterial activity against bacterias like: B. subtilis , S. aureus, E. coli, P. aeruginosa,  and L. monocytogenes.

BBa_K2018011

This BioBrick contain the coding region of, Thuricin S, a bacteriocin produced by Bacillus thuringiensis. Thuricin S target a broad spectrum of pathogens, including Pseudonoas aeruginosa and Enterobactoer Cloacae which is often found in correlation to burn and wound infection.

BBa_K2018012

This BioBrick contain the coding region of Lacticin Q, a bacteriocin  produced by Lactococcus lactis QU5  and has shown bactericidal activity against Staphylococcus aureus [http://www.ncbi.nlm.nih.gov/pubmed/22538663]. It function by forming large toroidal pores by distributing membrane lipid organization.

BBa_K2018014

This BioBrick contain the coding region of Laterosporulin-Thuricin S, which is a hybrid bacteriocin with  Laterosporulin and Thuricin S we had designed.  

BBa_K2018015

This BioBrick contain the coding region of Lacticin Q-Lacticin Z, which is a hybrid bacteriocin with Lacticin Q and Lacticin Z we had designed.  

BBa_K2018019

This BioBrick contain the coding region of Pyocin S5, a bacteriocin produced by  a specific strain of P. aeruginosa and elicit its effect against other strains of P. aeruginosa. Pyocin causes the cell membrane of target cells to be permeable and thereby causing leakage of intracellular materials, which cause cell death [http://www.sciencedirect.com/science/article/pii/S0014579310005120].

BBa_K2018024

This BioBrick contains the coding region of our biofused phasin with a hemolysin A tag, so it is recognized for secretion by the type II hemolysin secretion pathway. This biobrick is designed to work with hemolysin B (K2018027) and hemolysin D (K2018029). This BioBrick will simply bid to PHA granules in the cytoplasm  and reduce the size of these.

Existing BioBrick parts