Team:UT-Tokyo/Sample

iGEM UT-TOkyo 2016


Test page

Article Sample

We aim to create a genetic circuit functional in E.coli which allows the gene expressed to change after each cell division. Specifically, the E. coli will be expressing GFP, RFP, and CFP after subsequent cell divisions and will loop back to expressing GFP again.

           T--UT-Tokyo--headerTeamLogo.png

This will be achieved by the use of the Pnrd promoter to sense to cell division, sigma factor/anti-sigma pairs control transcription, and a toehold switch to create an AND gate required in the circuit.

  • List

  • List

  • List

Our project would be able to exhibit, in E. coli, that despite carrying the same genetic information, different phenotypes can be expressed across generations. Much like the phenomenon seen in epigenetics. Moreover, this technology could potentially be applied in field to carry out certain tasks automatically without the need of external input eg. to make engineered cells automatically carry programmed cell death after a certain number of divisions.


Test page

MISC

  • List

  • List

  • List

  • List

  • List

$$\frac{d[\sigma_A]}{dt} = \alpha\cdot (\frac{R_A+R_{td,A} [taRNA]}{K+[taRNA]})$$-\frac{\ln2}{\mathrm{HL}_{\sigma_A}}\cdot[\sigma_A]\\ \frac{d[\sigma_B]}{dt}&=& \alpha\cdot \left(\frac{R_B+R_{td,B}\cdot [\mathrm{taRNA}]}{K+[\mathrm{taRNA}]}\right)-\frac{\ln2}{\mathrm{HL}_{\sigma_B}}\cdot[\sigma_B]\\ \frac{d[\sigma_C]}{dt}&=& \alpha\cdot \left(\frac{R_C+R_{td,C}\cdot [\mathrm{taRNA}]}{K+[\mathrm{taRNA}]}\right)-\frac{\ln2}{\mathrm{HL}_{\sigma_C}}\cdot[\sigma_C]\\ \\ \frac{d[\sigma_{\rm\mathchar `-A}]}{dt}&=& \alpha\cdot R_{\rm\mathchar `-A}-\frac{\ln2}{\mathrm{HL}_{\sigma_{\rm\mathchar `-A}}}[\sigma_{\rm\mathchar `-A}]\\ \frac{d[\sigma_{\rm\mathchar `-B}]}{dt}&=& \alpha\cdot R_{\rm\mathchar `-B}-\frac{\ln2}{\mathrm{HL}_{\sigma_{\rm\mathchar `-B}}}[\sigma_{\rm\mathchar `-B}]\\ \frac{d[\sigma_{\rm\mathchar `-C}]}{dt}&=& \alpha\cdot R_{\rm\mathchar `-C}-\frac{\ln2}{\mathrm{HL}_{\sigma_{\rm\mathchar `-C}}}[\sigma_{\rm\mathchar `-C}]\\ \\ \frac{dR_A}{dt}&=&k\cdot \mathrm{C}_{low}\cdot [\sigma_A]\cdot\frac{1-\frac{[\sigma_{\rm\mathchar `-A}]}{K'_a+[\sigma_{\rm\mathchar `-A}]}}{K_a+[\sigma_A]\cdot\left(1-\frac{[\sigma_{\rm\mathchar `-A}]}{K'_a+[\sigma_{\rm\mathchar `-A}]}\right)}+1-c_{lacI}\cdot\frac{1-\frac{[\mathrm{IPTG}]}{K'_{lacI}+[\mathrm{IPTG}]}}{K_{lacI}+c_{lacI}\left(1-\frac{[\mathrm{IPTG}]}{K'_{lacI}+[\mathrm{IPTG}]}\right)}-\frac{\ln2}{\mathrm{HL}_{RNA}}\cdot R_A\\ \\ \frac{dR_B}{dt}&=&k\cdot \mathrm{C}_{low}\cdot [\sigma_B]\cdot\frac{1-\frac{[\sigma_{\rm\mathchar `-B}]}{K'_b+[\sigma_{\rm\mathchar `-B}]}}{K_b+[\sigma_B]\cdot\left(1-\frac{[\sigma_{\rm\mathchar `-B}]}{K'_b+[\sigma_{\rm\mathchar `-B}]}\right)}-\frac{\ln2}{\mathrm{HL}_{RNA}}\cdot R_B\\ \frac{dR_C}{dt}&=&k\cdot \mathrm{C}_{low}\cdot [\sigma_C]\cdot\frac{1-\frac{[\sigma_{\rm\mathchar `-C}]}{K'_c+[\sigma_{\rm\mathchar `-C}]}}{K_c+[\sigma_C]\cdot\left(1-\frac{[\sigma_{\rm\mathchar `-C}]}{K'_c+[\sigma_{\rm\mathchar `-C}]}\right)}-\frac{\ln2}{\mathrm{HL}_{RNA}}\cdot R_C\\ \frac{dR_{\rm\mathchar `-A}}{dt}&=&k\cdot \mathrm{C}_{high}\cdot [\sigma_B]\cdot\frac{1-\frac{[\sigma_{\rm\mathchar `-B}]}{K'_b+[\sigma_{\rm\mathchar `-B}]}}{K_b+[\sigma_B]\cdot\left(1-\frac{[\sigma_{\rm\mathchar `-B}]}{K'_b+[\sigma_{\rm\mathchar `-B}]}\right)}-\frac{\ln2}{\mathrm{HL}_{RNA}}\cdot R_{\rm\mathchar `-A}\\ \frac{dR_{\rm\mathchar `-B}}{dt}&=&k\cdot \mathrm{C}_{high}\cdot [\sigma_C]\cdot\frac{1-\frac{[\sigma_{\rm\mathchar `-C}]}{K'_c+[\sigma_{\rm\mathchar `-C}]}}{K_c+[\sigma_C]\cdot\left(1-\frac{[\sigma_{\rm\mathchar `-C}]}{K'_c+[\sigma_{\rm\mathchar `-C}]}\right)}-\frac{\ln2}{\mathrm{HL}_{RNA}}\cdot R_{\rm\mathchar `-B}\\ \\ \frac{dR_{\rm\mathchar `-C}}{dt}&=&k\cdot \mathrm{C}_{high}\cdot [\sigma_A]\cdot\frac{1-\frac{[\sigma_{\rm\mathchar `-A}]}{K'_a+[\sigma_{\rm\mathchar `-A}]}}{K_a+[\sigma_A]\cdot\left(1-\frac{[\sigma_{\rm\mathchar `-A}]}{K'_a+[\sigma_{\rm\mathchar `-A}]}\right)}-\frac{\ln2}{\mathrm{HL}_{RNA}}\cdot R_{\rm\mathchar `-C}\\ \frac{dR_{td,A}}{dt}&=&k\cdot \mathrm{C}_{low}\cdot [\sigma_C]\cdot\frac{1-\frac{[\sigma_{\rm\mathchar `-C}]}{K'_c+[\sigma_{\rm\mathchar `-C}]}}{K_c+[\sigma_C]\cdot\left(1-\frac{[\sigma_{\rm\mathchar `-C}]}{K'_c+[\sigma_{\rm\mathchar `-C}]}\right)}-\frac{\ln2}{\mathrm{HL}_{RNA}}\cdot R_{td,A}\\ \\ \frac{dR_{td,B}}{dt}&=&k\cdot \mathrm{C}_{low}\cdot [\sigma_A]\cdot\frac{1-\frac{[\sigma_{\rm\mathchar `-A}]}{K'_a+[\sigma_{\rm\mathchar `-A}]}}{K_a+[\sigma_A]\cdot\left(1-\frac{[\sigma_{\rm\mathchar `-A}]}{K'_a+[\sigma_{\rm\mathchar `-A}]}\right)}-\frac{\ln2}{\mathrm{HL}_{RNA}}\cdot R_{td,B}\\ \frac{dR_{td,C}}{dt}&=&k\cdot \mathrm{C}_{low}\cdot [\sigma_B]\cdot\frac{1-\frac{[\sigma_{\rm\mathchar `-B}]}{K'_b+[\sigma_{\rm\mathchar `-B}]}}{K_b+[\sigma_B]\cdot\left(1-\frac{[\sigma_{\rm\mathchar `-B}]}{K'_b+[\sigma_{\rm\mathchar `-B}]}\right)}-\frac{\ln2}{\mathrm{HL}_{RNA}}\cdot R_{td,C}\\ \\ \frac{d[\mathrm{taRNA}]}{dt}&=&-\frac{\ln2}{\mathrm{HL}_{RNA}}\cdot [\mathrm{taRNA}]\ \textrm{(when Pnrd is on)}\\ \frac{d[\mathrm{IPTG}]}{dt}&=&-\frac{\ln2}{\mathrm{HL}_{IPTG}}\cdot [\mathrm{IPTG}]\\ \\ \frac{d[\mathrm{imGFP}]}{dt}&=& \alpha\cdot [R_{\mathrm{GFP}}]-\frac{\ln2}{\mathrm{MT}_{GFP}}\cdot [\mathrm{imGFP}]-\frac{\ln2}{\mathrm{HL}_{imGFP}}\cdot [\mathrm{imGFP}]\\ \frac{d[\mathrm{imRFP}]}{dt}&=& \alpha\cdot [R_{\mathrm{RFP}}]-\frac{\ln2}{\mathrm{MT}_{RFP}}\cdot [\mathrm{imRFP}]-\frac{\ln2}{\mathrm{HL}_{imRFP}}\cdot [\mathrm{imRFP}]\\ \frac{d[\mathrm{imCFP}]}{dt}&=& \alpha\cdot [R_{\mathrm{CFP}}]-\frac{\ln2}{\mathrm{MT}_{GFP}}\cdot [R_{\mathrm{CFP}}]-\frac{\ln2}{\mathrm{HL}_{imCFP}}\cdot [\mathrm{imCFP}]\\ \\ \frac{d[\mathrm{GFP}]}{dt}&=&\frac{\ln2}{\mathrm{MT}_{GFP}}\cdot [\mathrm{imGFP}]-\frac{\ln2}{\mathrm{HL}_{GFP}}\cdot [\mathrm{GFP}]\\ \frac{d[\mathrm{RFP}]}{dt}&=&\frac{\ln2}{\mathrm{MT}_{RFP}}\cdot [\mathrm{imRFP}]-\frac{\ln2}{\mathrm{HL}_{RFP}}\cdot [\mathrm{RFP}]\\ \frac{d[\mathrm{CFP}]}{dt}&=&\frac{\ln2}{\mathrm{MT}_{CFP}}\cdot [\mathrm{imCFP}]-\frac{\ln2}{\mathrm{HL}_{CFP}}\cdot [\mathrm{CFP}]\\ \\ \frac{dR_{\mathrm{GFP}}}{dt}&=&k\cdot \mathrm{C}_{low}\cdot [\sigma_A]\cdot\frac{1-\frac{[\sigma_{\rm\mathchar `-A}]}{K'_a+[\sigma_{\rm\mathchar `-A}]}}{K_a+[\sigma_A]\cdot\left(1-\frac{[\sigma_{\rm\mathchar `-A}]}{K'_a+[\sigma_{\rm\mathchar `-A}]}\right)}-\frac{\ln2}{\mathrm{HL}_{RNA}}\cdot R_{\mathrm{GFP}}\\ \frac{dR_{\mathrm{RFP}}}{dt}&=&k\cdot \mathrm{C}_{low}\cdot [\sigma_B]\cdot\frac{1-\frac{[\sigma_{\rm\mathchar `-B}]}{K'_b+[\sigma_{\rm\mathchar `-B}]}}{K_b+[\sigma_B]\cdot\left(1-\frac{[\sigma_{\rm\mathchar `-B}]}{K'_b+[\sigma_{\rm\mathchar `-B}]}\right)}-\frac{\ln2}{\mathrm{HL}_{RNA}}\cdot R_{\mathrm{RFP}}\\ \frac{dR_{\mathrm{CFP}}}{dt}&=&k\cdot \mathrm{C}_{low}\cdot [\sigma_C]\cdot\frac{1-\frac{[\sigma_{\rm\mathchar `-C}]}{K'_c+[\sigma_{\rm\mathchar `-C}]}}{K_c+[\sigma_C]\cdot\left(1-\frac{[\sigma_{\rm\mathchar `-C}]}{K'_c+[\sigma_{\rm\mathchar `-C}]}\right)}-\frac{\ln2}{\mathrm{HL}_{RNA}}\cdot R_{\mathrm{CFP}} $$

Name Type Description Designer Length
http://parts.igem.org/Part:BBa_K1631000 BBa_K1631000 Translational_Unit Translational unit of Barnase Yuto Yamanaka 348
http://parts.igem.org/Part:BBa_K1631001 BBa_K1631001 Composite rbs - Barnase - rbs - GFP(+LVA) - d.term Yuto Yamanaka 1268
http://parts.igem.org/Part:BBa_K1631002 BBa_K1631002 Translational_Unit Translational unit of Colicin-E3 Yuto Yamanaka 1668
http://parts.igem.org/Part:BBa_K1631003 BBa_K1631003 Translational_Unit Tlanslational unit of Colicin Lysis Protein (for colicin-E3) Yuto Yamanaka 156