Difference between revisions of "Team:Austin UTexas/Results"

Line 307: Line 307:
 
<h4>CpxA-CpxR</h4>
 
<h4>CpxA-CpxR</h4>
  
</html>
+
<div class="floatright">
[[File:T--Austin_UTexas--Cpx_pH_Culture_Tubes_2.png|thumb|right|549px| <b>Figure 1</b>. Testing the CpxR Construct in pH 6-9. From left to right is control pH 6-9 and then experimental pH 6-9. These are showing the gradient change in expression accordingly with the change of pH due to a pH-dependent promotor compared to consistent expression accordingly with a promoter that is always "on". Credit: Sofia Chinea]]
+
<figure>
<html>
+
  <img src="https://static.igem.org/mediawiki/2016/6/63/T--Austin_UTexas--Cpx_pH_Culture_Tubes_2.png" style="width:550px;display:inline-block">
 +
  <figcaption><b>Figure 1:</b>Testing the CpxR Construct in pH 6-9. From left to right is control pH 6-9 and then experimental pH 6-9. These are showing the gradient change in expression accordingly with the change of pH due to a pH-dependent promotor compared to consistent expression accordingly with a promoter that is always "on". Credit: Sofia Chinea</figcaption>
 +
</figure>
 +
</center>
 +
</div>
 +
 
 
<p>CpxA-CpxR is a two-component mechanism that is activated at pH 7.4 and repressed at pH 6.0. CpxA is an intermembrane protein that autophosphorylates at a certain external pH, CpxR (a kinase) then gets phosphorylated by CpxA and acts as a transcription factor. This system originally is a transcription factor for the virF gene, but virF was replaced with a reporter. The original sequence was found in <i>Shigella sonnei</i>, but <i>E. coli</i> has a homolog of these proteins so all that is required on the construct is the appropriate prefix/suffix and CpxR binding site (Nakayama and Watanabe, 1995; Nakayama and Watanabe, 1998).
 
<p>CpxA-CpxR is a two-component mechanism that is activated at pH 7.4 and repressed at pH 6.0. CpxA is an intermembrane protein that autophosphorylates at a certain external pH, CpxR (a kinase) then gets phosphorylated by CpxA and acts as a transcription factor. This system originally is a transcription factor for the virF gene, but virF was replaced with a reporter. The original sequence was found in <i>Shigella sonnei</i>, but <i>E. coli</i> has a homolog of these proteins so all that is required on the construct is the appropriate prefix/suffix and CpxR binding site (Nakayama and Watanabe, 1995; Nakayama and Watanabe, 1998).
</html>
+
 
[[File:T--Austin_UTexas--YGCPtube.png|thumb|left|275px|<b>Figure 2</b>. amajLime expressed in <i>E. coli</i> in liquid LB. Credit: Sofia Chinea]]
+
<div class="floatleft">
[[File:T--Austin_UTexas--pH_Dependent_Promoter.jpeg|thumb|right|549px| <b>Figure 3</b>. Normalized fluorescent values from CpxR construct vs control (YGCP). The fluorescence per cell count stayed generally the same throughout the range of pH while the CpxR has a clear increase in fluorescence per cell. Credit: Sofia Chinea]]<html>
+
<figure>
 +
  <img src="https://static.igem.org/mediawiki/2016/4/41/T--Austin_UTexas--YGCPtube.png" style="width:275px;display:inline-block">
 +
  <figcaption><b>Figure 2:</b>amajLime expressed in <i>E. coli</i> in liquid LB. Credit: Sofia Chinea</figcaption>
 +
</figure>
 +
<figure>
 +
  <img src="https://static.igem.org/mediawiki/2016/a/ad/T--Austin_UTexas--pH_Dependent_Promoter.jpeg" style="width:550px;display:inline-block">
 +
  <figcaption><b>Figure 3:</b> Normalized fluorescent values from CpxR construct vs control (YGCP). The fluorescence per cell count stayed generally the same throughout the range of pH while the CpxR has a clear increase in fluorescence per cell. Credit: Sofia Chinea</figcaption>
 +
</figure>
 +
</div>
 +
 
 +
 
 
<p>The order from left to right in <b>figure 1</b> is control pH 6-9 and then Experimental pH 6-9. These are showing the gradient change in expression accordingly with the change of pH due to a pH-dependent promotor compared to consistent expression accordingly with a promoter that is always "on". The main point is that the control at pH 6 has more expression of the yellow-green chromoprotein than the Experimental at pH 6. The pH-dependent promoter of the experimental group is down-regulated at pH 6 whereas the control is not. Also, there is an increase in YGCP expression between the experiment pH 7 and pH 8 that is not seen in the control between pH 7 and pH 8. The normalized data in <b>figure 3</b> shows the relative expression of YGCP. The CpxA-CpxR construct can be found on the iGEM registry as: <a href=“http://parts.igem.org/Part:Bba_K2097000”>BBa_K2097000</a>, while the construct utilized as a control can be found on the iGEM registry as <a href="http://parts.igem.org/Part:BBa_2097002">BBa_K2097002</a> as well as in <b>figure 2</b>.</p>
 
<p>The order from left to right in <b>figure 1</b> is control pH 6-9 and then Experimental pH 6-9. These are showing the gradient change in expression accordingly with the change of pH due to a pH-dependent promotor compared to consistent expression accordingly with a promoter that is always "on". The main point is that the control at pH 6 has more expression of the yellow-green chromoprotein than the Experimental at pH 6. The pH-dependent promoter of the experimental group is down-regulated at pH 6 whereas the control is not. Also, there is an increase in YGCP expression between the experiment pH 7 and pH 8 that is not seen in the control between pH 7 and pH 8. The normalized data in <b>figure 3</b> shows the relative expression of YGCP. The CpxA-CpxR construct can be found on the iGEM registry as: <a href=“http://parts.igem.org/Part:Bba_K2097000”>BBa_K2097000</a>, while the construct utilized as a control can be found on the iGEM registry as <a href="http://parts.igem.org/Part:BBa_2097002">BBa_K2097002</a> as well as in <b>figure 2</b>.</p>
  

Revision as of 01:59, 20 October 2016

Results


Click on one of the images below to learn more about our results!







GOX Sequences as Putative Promoters

Three endogenous upstream regions of loci on the Gluconobacter oxydans chromosome were reported to show increased mRNA synthesis as pH decreased, were isolated and obtained, as seen in table 1 (Hanke, et al., 2012). Using Golden Gate assembly, these putative promoters have been placed on the Golden Gate entry vector pYTK001 for later use. By utilizing these pH-sensitive promoters with different reporters and transforming them into multiple organisms in kombucha, the visualization of the microbes and their location in kombucha would be possible (Lee, et al., 2015). This will serve as a stepping stone into further understanding how the microbiome of kombucha changes as it brews as well as determining organism concentration specific times during the brewing process.

Table 1:The Three Endogenous GOX Sequences
Locus Tag Predicted Functions mRNA ratio pH4/pH6
GOX0647 Putative exporter protein, ArAE family 12.91
GOX0890 Hypothetical protein GOX0890 4.93
GOX1841 Hypothetical protein GOX1841 3.36

Back to Top




References

  1. The Barrick Lab Conjugation Protocol
  2. Abbot, J. Komagataeibacter xylinus isolate ATCC53582 genome assembly, contig: ATCC53582_Chromosome, whole genome shotgun sequence. 2015. Accessed from NCBI website.
  3. BIT-China-2015
  4. Calloway, Ewen. (2015) Lab staple agar hit by seaweed shortage. Nature.
  5. Christensen, Emma. "How To Make Kombucha Tea at Home - Cooking Lessons from The Kitchn." The Kitchn. AT Media, 05 Apr. 2015. Web. 06 Oct. 201
  6. Dufresne, C., and E. Farnworth. "Tea, Kombucha, and Health: A Review." Food Research International. Elsevier, 1 Dec. 1999. Web. 14 Sept. 2016
  7. Hanke, T., Richhardt, J., Polen, T., Sahm, H., Bringer, S., and Bott, M. (2012) Influence of oxygen limitation, absence of the cytochrome bc1 complex and low pH on global gene expression in Gluconobacter oxydans 621H using DNA microarray technology. Journal of Biotechnology 157, 359–372.
  8. Imperial. "Project." Aqualose. Imperial College London, 2014. Web. 06 Oct. 201
  9. Ioannis Giavasis et al. (2000) Gellan Gum Critical Reviews in Biotechnology., 20.3: 177-211
  10. Kang, Kenneth S. et al. (1982) Agar-Like Polysaccharide Produced by a Pseudomonas Species: Production and Basic Properties. Applied and Environmental Microbiology., 1086-1091
  11. Kuper, C., and Jung, K. (2005) CadC-mediated activation of the cadBA promoter in Escherichia coli. Journal of Molecular and Microbiological Biotechnology 1, 26–39.
  12. Lee ME, DeLoache, WC A, Cervantes B, Dueber, JE. (2015) A Highly-characterized Yeast Toolkit for Modular, Multi-part Assembly. ACS Synthetic Biology 4 975-986
  13. Mamlouk, Y. and M. Gullo. Acetic Acid Bacteria: Physiology and carbon sources oxidation. 2013. Indian Journal of Microbiology 53 (4): 337-384.
  14. Marsh, Alan, Orla O’Sullivan, R. Ross, and Paul Cotter. "Sequence-based Analysis of the Bacterial and Fungal Compositions Ofmultiple Kombucha (tea Fungus) Samples." Elsevier (2013): 171-78. Food Microbiology. Web. 15 Sept. 2016.
  15. Nakayama, S.-I., and Watanabe, H. (1998) Identification of cpxR as a Positive Regulator Essential for Expression of the Shigella sonnei virF Gene. Journal of Bacteriology 180, 3522–3528.
  16. Nakayama, S.-I., and Watanabe, H. (1995) Involvement of cpxA, a Sensor of a Two-Component Regulatory System, in the pH-Dependent Regulation of Expression of Shigella sonnei virF Gene. Journal of Bacteriology 177, 5062–5069.
  17. Robillard, R. A microbial breathalyzer: design of a colorimetric assay for the detection and quantification of ethanol production in microbes. 2007. Major qualifying project for a B.S. degree from Worcester Polytechnic Institute.
  18. Wang, Xia, et al. (2006) Modeling for Gellan Gum Production by Sphingomonas paucimobilis ATCC 31461 in a Simplified Medium. Applied and Environmental Microbiology, 3367-3374
  19. Wu et. al. (2014) Yellow pigments generation deficient Sphingomonas strain and application thereof in Gellan Gum. US Patent 8,685,698.
  20. Back to Top