Mass balance of A through the nitrocellulose membrane
\(A\) = Bactericide
\(B\) = Infecting agent
Assumptions:
Steady state
Constant temperature
\(C_A\) is unidimensional
\(C_A = C_A(Z)\)
Low concentration
(Fick's Law)
\(m \) = polymer permeability
Mass balance, flux of A times the area (input minus output):
$$\pi r^2J_A\rvert_{_Z} - \pi r^2J_A\rvert_{_{Z+\Delta Z}} = 0$$
Divided by \(\pi r^2\Delta Z\) (control volume) and limit as \(\Delta Z\) approaches to zero:
$$\lim_{\Delta Z \to 0} \frac{J_A\rvert_{_Z} - J_A\rvert_{_{Z+\Delta Z}}}{\Delta Z} = 0$$
$$-\frac{d J_A}{dZ}=0$$
Fick's Law Equation:
$$J_A = -\partial_{AB}\frac{d C_A}{dZ}$$
Replacing Fick's Law into the previous equation:
$$\partial_{AB}\frac{d^2 C_A}{dZ^2}=0$$
Solving the differential equation:
$$C_A = c_1Z + c_2$$
Boundary conditions:
$$Z = 0 \hspace{1.3cm} C_A = mC_{A_0}$$
$$Z = L \hspace{1.3cm} C_A = mC_{A_L}$$
B.C. 1:
$$C_A = mC_{A_0} = c_2$$
$$C_A = c_1Z + mC_{A_0}$$
B.C. 2:
$$C_A = mC_{A_L} = c_1L + mC_{A_0}$$
$$c_1 = \frac{m(C_{A_L}-C_{A_0})}{L}$$
Final solution:
$$C_A = m(C_{A_L}-C_{A_0})\frac{Z}{L} + mC_{A_0}$$
With this equation it is possible to know the concentration of the bactericide (\(C_A\)) at any point within the nitrocellulose membrane (\(Z\)).
Non-equimolar counter-difussion of A and B
\(A\) = Bactericide
\(B\) = Infecting agent
Assumptions:
Steady state
Constant temperature
\(C_A\) is unidimensional
\(C_A = C_A(Z)\)
Low concentration
(Fick's Law)
\(m \) = polymer permeability
\(C\) = Medium concentration
Total flux of A (diffusion plus convection)
$$N_A = -C\partial_{AB}\frac{d Y_A}{dZ} + Y_A(N_A + N_B)$$
Mass balance, flux of A times the area (input minus output):
$$\pi r^2N_A\rvert_{_Z} - \pi r^2N_A\rvert_{_{Z+\Delta Z}} = 0$$
Divided by \(\pi r^2 \Delta Z\) (control volume) and limit as \(\Delta Z \to 0\)
$$-\frac{dN_A}{dZ} = 0 \rightarrow N_A = constant$$
$$N_A = -C\partial_{AB}\frac{d Y_A}{dZ} + Y_A(N_A + N_B)$$
$$N_B = -nN_A$$
Combining the two equations:
$$N_A = -C\partial_{AB}\frac{dY_A}{dZ} + Y_A(N_A-nN_A)$$
$$N_A - Y_AN_A(1-n) = -C\partial_{AB}\frac{dY_A}{dZ}$$
$$N_A [1 - Y_A(1-n)] = -C\partial_{AB}\frac{dY_A}{dZ}$$
Boundary conditions:
$$Z = 0 \hspace{1.3cm} C_A = mC_{A_0} = mCY_{A_0}$$
$$Z = L \hspace{1.3cm} C_A = mC_{A_L} = mCY_{A_L}$$
$$C_A = Y_AC$$
$$Y_A = \frac{C_A}{C}$$
$$N_A = -\frac{C\partial_{AB}}{1-Y_A(1-n)}\frac{dY_A}{dZ}$$
$$N_AdZ = -\frac{C\partial_{AB}}{1-Y_A(1-n)}dY_A = -\frac{C\partial_{AB}}{1-Y_A(1-n)}d\left(\frac{C_A}{C}\right)$$
$$1-Y_A(1-n) = 1 - \frac{C_A}{C}(1-n) = \frac{C-C_A(1-n)}{C}$$
$$\int_0^L N_A dZ = - \frac{\partial_{AB}}{\frac{C-C_A(1-n)}{C}}dC_A = \int_{mC_{A_0}}^{mC_{A_L}} -\frac{C\partial_{AB}}{C-C_A(1-n)} dC_A$$
$$N_A L = -C\partial_{AB} \int_{mC_{A_0}}^{mC_{A_L}} \frac{dC_A}{C-C_A(1-n)}$$
Integration by substitution:
\(u = C-C_A(1-n)\)
\(du = -(1-n)dC_A\)
\( = \int \frac{du}{u} = -\ln u\)
$$N_A L = C\partial_{AB} \ln \left[ \frac{C-mC_{A_L}(1-n)}{C-mC_{A_0}(1-n)} \right]$$
$$N_A = \frac{C\partial_{AB}}{L} \ln \left[ \frac{C-mC_{A_L}(1-n)}{C-mC_{A_0}(1-n)} \right]$$
$$N_A = \frac{-C\partial_{AB}}{\frac{C-C_A(1-n)}{C}} \frac{d\left( \frac{C_A}{C} \right)}{dZ}$$
$$N_A = \frac{-C\partial_{AB}}{C-C_A(1-n)} \frac{dC_A}{dZ} = c_1 $$
$$\frac{-C\partial_{AB}}{C-C_A(1-n)}dC_A = c_1 dZ$$
$$C\partial_{AB} \ln [C-C_A(1-n)] = c_1Z + c_2$$
B. C.
$$Z = 0 \hspace{1.3cm} C_A = mC_{A_0}$$
$$Z = L \hspace{1.3cm} C_A = mC_{A_L}$$
B. C. 1:
$$C\partial_{AB} \ln [C-mC_{A_0}(1-n)] = c_2$$
$$C\partial_{AB} \ln [C-mC_A(1-n)] = c_1Z + C\partial_{AB} \ln [C-\ln C_{A_0}(1-n)]$$
B. C. 2:
$$C\partial_{AB} \ln [C-mC_{A_L}(1-n)] = c_1L + C\partial_{AB} \ln [C-\ln C_{A_0}(1-n)]$$
$$c_1 = \frac{C\partial_{AB}}{L}\ln \left[ \frac{C-mC_{A_L}(1-n)}{C-mC_{A_0}(1-n)} \right]$$
Replacing:
$$C\partial_{AB} \ln [C-C_A(1-n)] = C\partial_{AB}\left( \frac{Z}{L}\right) \ln \left[ \frac{C-mC_{A_L}(1-n)}{C-mC_{A_0}(1-n)} \right] + C\partial_{AB} \ln [C-mC_{A_0}(1-n)]$$
Doing the respective mathematical analysis:
$$\ln \left[ \frac{C-C_A(1-n)}{C-mC_{A_0}(1-n)} \right] = \ln \left[ \frac{C-mC_{A_L}(1-n)}{C-mC_{A_0}(1-n)} \right]^{Z/L}$$
Then:
$$\frac{C-C_A(1-n)}{C-mC_{A_0}(1-n)} = \left[ \frac{C-mC_{A_L}(1-n)}{C-mC_{A_0}(1-n)} \right]^{Z/L}$$
Later on:
$$C-C_A(1-n) = [C-mC_{A_0}(1-n)]\left[ \frac{C-mC_{A_L}(1-n)}{C-mC_{A_0}(1-n)} \right]^{Z/L}$$
Finally:
$$C_A = \frac{C - [C-mC_{A_0}(1-n)]\left[ \frac{C-mC_{A_L}(1-n)}{C-mC_{A_0}(1-n)} \right]^{Z/L}}{1-n}$$
With this equation we can calculate the concentration of bactericine (\(C_A\)) at any point within the nitrocellulose membrane (\(Z\))