Difference between revisions of "Team:BNU-China/Protocol"

 
(57 intermediate revisions by 8 users not shown)
Line 1: Line 1:
 
{{BNU-CHINA/partials/header}}
 
{{BNU-CHINA/partials/header}}
 
{{BNU-CHINA/partials/nav | TEAM=focus}}
 
{{BNU-CHINA/partials/nav | TEAM=focus}}
 +
{{BNU-CHINA/article/theme | color=#660000}}
 +
 
<html>
 
<html>
<div class="main-container">
+
    <div class="main-container">
    <div id="page-heading" class="container-fluid page-heading" style="background-image: url(https://static.igem.org/mediawiki/2016/9/96/T--BNU-China--team.jpg);">
+
        <div id="page-heading" class="container-fluid page-heading"
        <h3> PROTOCOL </h3>
+
                              style="background-image: url(https://static.igem.org/mediawiki/2016/a/a8/T--BNU-China--hand.jpg);">
    </div>
+
            <h3> Protocol </h3>
    <div style="background-image: url(https://static.igem.org/mediawiki/2016/e/e5/T--BNU-China--landingImage.jpg); background-size: 100%;">
+
        </div>
        <div class="container page-story" >
+
        <div>
            <article id="modeling" class="col-lg-10 col-lg-offset-1 col-md-12 col-md-offset-0 col-sm-offset-0 col-sm-12">
+
            <div class="page-story">
                <header class="page-header">
+
                <article id="modeling"
                    <h1>Protocol</h1>
+
                        class="col-lg-10 col-lg-offset-1 col-md-12 col-md-offset-0 col-sm-offset-0 col-sm-12">
                     <small id="secondary-page-header">This is our Modeling Design</small>
+
                    <header class="page-header">
                </header>
+
                        <h1>Protocol</h1>
                <h2>Cloning</h2>
+
                     </header>
                <h3>PCR</h3>
+
                    <h2>Cloning</h2>
                <h4>Reaction system:</h4>
+
                    <h3>PCR</h3>
                <br />
+
                    <h4>Reaction system:</h4>
                <h5>1. </h5>
+
                    <table class="table">
                <p>\(H_2 O\ \  2\mu L\)</p>
+
                        <tr>
                <p>\(10\mathrm{x}\ \ Taq \ \ buffer \ \  5\mu\mathrm{L}\)</p>
+
                            <th style="text-align: center" colspan="6">Universal DNA polymerase TransGen</th>
                <p>\(2.5mM \ \ dNTP \ \  1\mu\mathrm{L}\)</p>
+
                        </tr>
                <p>\(R+F-Primer \ \  10\mu\mathrm{L}\)</p>
+
                        <tr>
                <p>\(Template \ \  10\mu\mathrm{L}\)</p>
+
                            <td align="center">ddH<sub>2</sub>O</td>
                <p>\(Taq \ \  2.5\mu\mathrm{L}\)</p>
+
                            <td align="center">10x Taq Buffer</td>
                <p>\(Universal \ \ DNA \ \  polymerase \ \  TransGen\)</p>
+
                            <td align="center">2.5 mM dNTP</td>
                <br />
+
                            <td align="center">R+F-Primer</td>
                <h5>2. </h5>
+
                            <td align="center">Template</td>
                <p>\(H_2 O\ \  20\mu\mathrm{L}\)</p>
+
                            <td align="center">Taq</td>
                <p>\(5\mathrm{x}\ \ Taq\ \ buffer\ \  10\mu\mathrm{L}\)</p>
+
                        </tr>
                <p>\(2.5mM\ \ dNTP\ \  5\mu\mathrm{L}\)</p>
+
                        <tr>
                <p>\(R+F-Primer\ \  44\mu\mathrm{L}\)</p>
+
                            <td align="center">21.5 μL</td>
                <p>\(Template\ \  10\mu\mathrm{L}\)</p>
+
                            <td align="center">5 μL</td>
                <p>\(Taq\ \  1\mu\mathrm{L}\)</p>
+
                            <td align="center">1 μL</td>
                <br />
+
                            <td align="center">10 μL</td>
                <h5>3. </h5>
+
                            <td align="center">10 μL</td>
                <p>\(primeSTAR\ \ from\ \ Takara\)</p>
+
                            <td align="center">2.5 μL</td>
                <p>\(H_2 O\ \  21\mu\mathrm{L}\)</p>
+
                        </tr>
                <p>\(2\mathrm{x}\ \ primeSTAR\ \  25m\mathrm{L}\)</p>
+
                    </table>
                <p>\(R+F-Primer\ \  2\mu\mathrm{L}\)</p>
+
                    <table class="table">
                <p>\(Template\ \  2\mu\mathrm{L}\)</p>
+
                        <tr>
                <h4>Process:</h4>
+
                            <th style="text-align: center" colspan="6"><em>TaKaRa Taq</em><sup>TM</sup></th>
                <p>98&#176;C 2min </p>
+
                        </tr>
                <p> \( \begin{equation} \left. \begin{array}{lcl} {98&#176;C\ 10s} \\ {56&#176;C\ 15s} \\{72&#176;C\ 30s} \end{array} \right \} Cycle\ 35 \end{equation} \) </p>
+
                        <tr>
                <p>72&#176;C 5min </p>
+
                            <td align="center">ddH<sub>2</sub>O</td>
                <p>4&#176;C --- </p>
+
                            <td align="center">5x Taq Buffer</td>
                <p>98&#176;C 2min </p>
+
                            <td align="center">2.5 mM dNTP</td>
                <p>\(\begin{equation}\left. \begin{array}{lcl} {98&#176;C\ 10s} \\ {55&#176;C\ 5s} \\{72&#176;C\ 8s} \end{array} \right\}Cycle\ 35\end{equation}\)</p>
+
                            <td align="center">R+F-Primer</td>
                <p>72&#176;C 5min </p>
+
                            <td align="center">Template</td>
                <p>15&#176;C --- </p>
+
                            <td align="center">Taq</td>
                <h5>Fusion PCR:</h5>
+
                        </tr>
                <ol>
+
                        <tr>
                    <li> basic PCR </li>
+
                            <td align="center">20 μL</td>
                    <li> using the PCR product of step 1 as template does PCR </li>
+
                            <td align="center">10 μL</td>
                    <li> using the PCR product of step 2 as template does PCR,but first five cycles don’t add primer, after first five cycles, the sixth cycle adds primer and continue PCR. </li>
+
                            <td align="center">5 μL</td>
                </ol>
+
                            <td align="center">4 μL</td>
                <h5> The system of step 2: </h5>
+
                            <td align="center">10 μL</td>
                <p>\(H_2 O\ \ 21\mu\mathrm{L}\)</p>
+
                            <td align="center">1 μL</td>
                <p>\(2\mathrm{x}\ \ primeSTAR\ \  25Μl\)</p>
+
                        </tr>
                <p>\(R+F-Primer\ \  2\mu\mathrm{L}\)</p>
+
                    </table>
                <p>\(Template①\ \  1\mu\mathrm{L}\)</p>
+
                    <table class="table">
                <p>\(Template②\ \  1\mu\mathrm{L}\)</p>
+
                        <tr>
 +
                            <th style="text-align: center" colspan="4">primeSTAR from <em>TaKaRa</em><sup>TM</sup></th>
 +
                        </tr>
 +
                        <tr>
 +
                            <td align="center">ddH<sub>2</sub>O</td>
 +
                            <td align="center">2x primeSTAR</td>
 +
                            <td align="center">R+F-Primer</td>
 +
                            <td align="center">Template</td>
 +
                        </tr>
 +
                        <tr>
 +
                            <td align="center">21 μL</td>
 +
                            <td align="center">25 mL</td>
 +
                            <td align="center">2 μL</td>
 +
                            <td align="center">2 μL</td>
 +
                        </tr>
 +
                    </table>
  
                <h3>Electrophoresis---Gel Purification</h3>
+
                    <h4>Process:</h4>
                <h4>Material:</h4>
+
                    <p>98&#176;C 2min </p>
                <p>Agarose gel: 1% agarose dissolved in 1 x TAE + gelstain</p>
+
                    <p> \( \begin{equation} \left. \begin{array}{lcl} {98&#176;C\ 10s} \\ {56&#176;C\ 15s} \\{72&#176;C\
                <h4>Protocol:</h4>
+
                    30s} \end{array} \right \} Cycle\ 35 \end{equation} \) </p>
                <p>We used gelstain to stain the DNA and imaged it in a Transilluminator.</p>
+
                    <p>72&#176;C 5min </p>
                <p>We used the gel extraction kit to get the objective fragment.</p>
+
                    <p>4&#176;C --- </p>
                <p>We used the DNA fragment purification kit to get the objective fragment.</p>
+
                     <p>98&#176;C 2min </p>
                <h3>Digestion</h3>
+
                    <p>\(\begin{equation}\left. \begin{array}{lcl} {98&#176;C\ 10s} \\ {55&#176;C\ 5s} \\{72&#176;C\ 8s}
                <table class="table">
+
                    \end{array} \right\}Cycle\ 35\end{equation}\)</p>
                    <tr>
+
                     <p>72&#176;C 5min </p>
                        <th colspan="6" style="text-align: center">\(50\mu\mathrm{L} \ \ \mathrm{reaction \ \ system}\)</th>
+
                     <p>15&#176;C --- </p>
                    </tr>
+
                     <h4>Fusion PCR:</h4>
                    <tr>
+
                     <ol>
                        <td align="middle">Reagent</td>
+
                         <li> basic PCR</li>
                        <td align="middle">10x \(\ \mathrm{H \ buffer}\)</td>
+
                         <li> use the PCR product of step 1 as template to do PCR</li>
                        <td align="middle">\(Eco\mathrm{R}\ \mathrm{I}\)</td>
+
                         <li> use the PCR product of step 2 as template to do PCR, but first five cycles don’t add primer,
                        <td align="middle">\(Pat\ \mathrm{I}\)</td>
+
                            add primer at the sixth cycle and continue PCR.
                        <td align="middle">\(\mathrm{Plasmid}\)</td>
+
                         </li>
                        <td align="middle">\(\mathrm{H_2 O}\)</td>
+
                     </ol>
                     </tr>
+
                     <h5> The system of step 2: </h5>
                    <tr>
+
                    <p>H<sub>2</sub>O 21μL</p>
                        <td align="middle">Dosage</td>
+
                    <p>2x primeSTAR 25mL</p>
                        <td align="middle">\(5\mu\mathrm{L}\)</td>
+
                    <p>R+F-Primer 2 μL</p>
                        <td align="middle">\(1.5\mu\mathrm{L}\)</td>
+
                    <p>Template① 1μL</p>
                        <td align="middle">\(1.5\mu\mathrm{L}\)</td>
+
                     <p>Template② 1μL</p>
                        <td align="middle">\(15\mu\mathrm{L}\)</td>
+
                        <td align="middle">\(27\mu\mathrm{L}\)</td>
+
                     </tr>
+
                     <tr>
+
                        <th colspan="6" style="text-align: center">\(10\mu\mathrm{L} \ \ \mathrm{reaction \ \ system}\)</th>
+
                     </tr>
+
                     <tr>
+
                         <td align="middle">Reagent</td>
+
                         <td align="middle">10x \(\ \mathrm{H \ buffer}\)</td>
+
                         <td align="middle">\(Eco\mathrm{R}\ \mathrm{I}\)</td>
+
                        <td align="middle">\(Pat\ \mathrm{I}\)</td>
+
                         <td align="middle">\(\mathrm{Plasmid}\)</td>
+
                        <td align="middle">\(\mathrm{H_2 O}\)</td>
+
                     </tr>
+
                     <tr>
+
                        <td align="middle">Dosage</td>
+
                        <td align="middle">\(1\mu\mathrm{L}\)</td>
+
                        <td align="middle">\(0.3\mu\mathrm{L}\)</td>
+
                        <td align="middle">\(0.3\mu\mathrm{L}\)</td>
+
                        <td align="middle">\(3\mu\mathrm{L}\)</td>
+
                        <td align="middle">\(5.4\mu\mathrm{L}\)</td>
+
                     </tr>
+
                </table>
+
  
                <h2>Ligation</h2>
+
                    <h3>Electrophoresis---Gel Purification</h3>
                <table class="table">
+
                    <h4>Material:</h4>
                    <tr>
+
                    <p>Agarose gel: 1% agarose dissolved in 1 x TAE + gelstain</p>
                        <th colspan="5" style="text-align: center">Ligation reaction system</th>
+
                    <h4>Protocol:</h4>
                    </tr>
+
                    <p>We used gelstain to stain the DNA and imaged it in a Transilluminator.</p>
                    <tr>
+
                    <p>We used the gel extraction kit to get the objective fragment.</p>
                        <td align="middle">Reagent</td>
+
                    <p>We used the DNA fragment purification kit to get the objective fragment.</p>
                        <td align="middle">DNA</td>
+
                    <h3>Digestion</h3>
                        <td align="middle">Plasmid</td>
+
                    <table class="table">
                        <td align="middle">T4 buffer</td>
+
                        <tr>
                         <td align="middle">T4 ligase</td>
+
                            <th colspan="6" style="text-align: center">50 μL reaction system</th>
                    </tr>
+
                        </tr>
                     <tr>
+
                        <tr>
                         <td align="middle">Dosage</td>
+
                            <td align="center">Reagent</td>
                        <td align="middle">\(7\mu\mathrm{L}\)</td>
+
                            <td align="center">10x \(\ \mathrm{H \ buffer}\)</td>
                        <td align="middle">\(1\mu\mathrm{L}\)</td>
+
                            <td align="center">\(Eco\mathrm{R}\ \mathrm{I}\)</td>
                        <td align="middle">\(1\mu\mathrm{L}\)</td>
+
                            <td align="center">\(Pst\ \mathrm{I}\)</td>
                        <td align="middle">\(1\mu\mathrm{L}\)</td>
+
                            <td align="center">\(\mathrm{Plasmid}\)</td>
                    </tr>
+
                            <td align="center">\(\mathrm{H_2 O}\)</td>
                </table>
+
                         </tr>
 +
                        <tr>
 +
                            <td align="center">Dosage</td>
 +
                            <td align="center">5 μL</td>
 +
                            <td align="center">1.5 μL</td>
 +
                            <td align="center">1.5 μL</td>
 +
                            <td align="center">15 μL</td>
 +
                            <td align="center">27 μL</td>
 +
                        </tr>
 +
                     </table>
 +
                    <table class="table">
 +
                        <tr>
 +
                            <th colspan="6" style="text-align: center">10 μL reaction system</th>
 +
                         </tr>
 +
                        <tr>
 +
                            <td align="center">Reagent</td>
 +
                            <td align="center">10x \(\ \mathrm{H \ buffer}\)</td>
 +
                            <td align="center">\(Eco\mathrm{R}\ \mathrm{I}\)</td>
 +
                            <td align="center">\(Pst\ \mathrm{I}\)</td>
 +
                            <td align="center">\(\mathrm{Plasmid}\)</td>
 +
                            <td align="center">\(\mathrm{H_2 O}\)</td>
 +
                        </tr>
 +
                        <tr>
 +
                            <td align="center">Dosage</td>
 +
                            <td align="center">1 μL</td>
 +
                            <td align="center">0.3 μL</td>
 +
                            <td align="center">0.3 μL</td>
 +
                            <td align="center">3 μL</td>
 +
                            <td align="center">5.4 μL</td>
 +
                        </tr>
 +
                    </table>
  
                <h3>LR reaction</h3>
+
                    <h2>Ligation</h2>
 +
                    <table class="table">
 +
                        <tr>
 +
                            <th colspan="5" style="text-align: center">Ligation reaction system</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <td align="center">Reagent</td>
 +
                            <td align="center">DNA</td>
 +
                            <td align="center">Plasmid</td>
 +
                            <td align="center">T4 buffer</td>
 +
                            <td align="center">T4 ligase</td>
 +
                        </tr>
 +
                        <tr>
 +
                            <td align="center">Dosage</td>
 +
                            <td align="center">7 μL</td>
 +
                            <td align="center">1 μL</td>
 +
                            <td align="center">1 μL</td>
 +
                            <td align="center">1 μL</td>
 +
                        </tr>
 +
                    </table>
  
                <h4>1. Entry linearization</h4>
+
                     <h3>LR reaction</h3>
                <p>β2-TOPO(plasmid concentration 117ng/μL) NotI 37&#176;C enzyme digestion for the night</p>
+
                <p> 50μL Single enzyme system: </p>
+
                <p>
+
                     10x BufferH        5μL
+
                </p>
+
                <p>
+
                    DNA                20μL
+
                </p>
+
                <p>
+
                    ddH<sub>2</sub>O              12.5μL
+
                </p>
+
                <p>
+
                    Enzyme              2.5μL
+
                </p>
+
                <p>
+
                    0.1%BSA            5μL
+
                </p>
+
                <p>
+
                    0.1%Triton X-100    5μL
+
                </p>
+
  
                <h4>2. LR system (\(4\mu\mathrm{L}\)):</h4>
+
                    <h4>1. Entry linearization</h4>
 +
                    <p>β2-TOPO (plasmid concentration 117 ng/μL)NotI 37&#176;C enzyme digestion for the night</p>
 +
                    <table class="table">
 +
                        <tr>
 +
                            <th style="text-align: center" colspan="2"> 50 μL Single enzyme system</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <td align="center">10x BufferH</td>
 +
                            <td align="center">5 μL</td>
 +
                        </tr>
 +
                        <tr>
 +
                            <td align="center">DNA</td>
 +
                            <td align="center">20 μL</td>
 +
                        </tr>
 +
                        <tr>
 +
                            <td align="center">ddH<sub>2</sub>O</td>
 +
                            <td align="center">12.5 μL</td>
 +
                        </tr>
 +
                        <tr>
 +
                            <td align="center">Enzyme</td>
 +
                            <td align="center">2.5 μL</td>
 +
                        </tr>
 +
                        <tr>
 +
                            <td align="center">0.1%BSA</td>
 +
                            <td align="center">5 μL</td>
 +
                        </tr>
 +
                        <tr>
 +
                            <td align="center">0.1%Triton X-100</td>
 +
                            <td align="center">5 μL</td>
 +
                        </tr>
 +
                    </table>
  
                <h2>Transformation</h2>
+
                    <h4>2. LR system (\(4\mu\mathrm{L}\)):</h4>
                <h3>Material:</h3>
+
                    <p>100 ng/μL linear Entry: 0.5 μL</p>
                <h3>Protocol:</h3>
+
                    <p>destination vector: 1 μL (pCambia1300-nluc / pCambia1300-cluceach one)</p>
 +
                    <p>LR Clonase II enzyme mix: 1 μL</p>
 +
                    <p>ddH<sub>2</sub>O: 0.5 μL</p>
 +
                    <p>mix slightly, water base for 5h at 25&#176;C </p>
 +
                    <p>transform, 4 μL, reactant transform 50 μL competent cells</p>
  
 +
                    <h2>Transformation</h2>
  
 +
                    <h3>Material:</h3>
 +
                    <table class="table">
 +
                        <tr>
 +
                            <th colspan="4" style="text-align: center">LB liquid medium</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <td align="center">Reagent</td>
 +
                            <td align="center">Tryptone</td>
 +
                            <td align="center">Yeast extract powder</td>
 +
                            <td align="center">NaCl</td>
 +
                        </tr>
 +
                        <tr>
 +
                            <td align="center">Dosage</td>
 +
                            <td align="center">10 g/L</td>
 +
                            <td align="center">5 g/L</td>
 +
                            <td align="center">10 μL</td>
 +
                        </tr>
 +
                    </table>
  
 +
                    <h3>Protocol:</h3>
 +
                    <p> Preparation of the competent cells </p>
 +
                    <p> 1 μL ligation product + 50 μL cells </p>
 +
                    <p>Heatshock of Trans5α(42&#176;C, 45s)</p>
 +
                    <p>Put on ice(2min)</p>
 +
                    <p>Add 500 μL LB media and incubate for 1h(37&#176;C, 150rpm)</p>
 +
                    <p>Centrifuge at 4000 rpm for 1min and remove 400 μL supernatant</p>
 +
                    <p>Resuspend the pellets using the left supernatant</p>
 +
                    <p>Spread plates(with Kan;Chl)</p>
 +
                    <p>Incubate for 12~16h(37&#176;C)</p>
  
                <h2>Introduction</h2>
+
                    <h2>Protein expression</h2>
                <p>Microtubule is made up of 13 protofilaments. Now there is an widely accepted feature about the microtubule that microtubule has highly complicated dynamic instability. Under the fixed vitro cultures conditions, on the one hand, subunits will polymerize automatically forming the required structure when the condition is above the critical concentration; on the other hand, the microtubule will depolymerize into subunits when the condition is under the critical concentration. Apart from that, the single microtubule will always in the stage of polymerization and depolymerization.</p>
+
                    <ol>
                <figure class="text-center">
+
                        <li>Inoculated 3 mL LB media including relevant antibiotics with the monoclonal colony of expression
                    <img src="../img/paper/modeling/1.png" alt="this is a pic"  width="60%">
+
                            plasmid, incubate for 12~16h(37&#176;C, 190rpm)
                    <figcaption>
+
                        </li>
                        Fig.1 Our process
+
                        <li>Inoculated 100 mL TM expression media including relevant antibiotics with the 1 mL bacteria
                    </figcaption>
+
                            liquid, incubate for 3h(37&#176;C, 250rpm,OD<sub>600</sub>=0.6~0.8)
                </figure>
+
                         </li>
                <p><i>Tax</i>(Taxol), the efficient anti-cancer medicine, can promote the polymerization of the subunit and restrain the depolymerization of the microtubule, which can make the microtubule be in a stable condition and restrain the mitosis. Therefore, it’s important to study the tax’s mechanism of action during the microtubule’s dynamic assembling process. In order to research tax’s influence on this dynamic procedure from the microcosmic level, we analyze the dynamic procedure and build our mathematical model by four steps.</p>
+
                        <li>Add IPTG into it until its final concentration is 1 mmol/L, incubate for 4~6h(37&#176;C,
                <ol>
+
                            250rpm)
                    <li>
+
                         </li>
                        Expound the theory of the microtubule’s depolymerization
+
                         <li>Centrifuge at 6000 rpm for 10min and remove supernatant</li>
                        <br />
+
                        <li>Gather sediment, cryopreserve at -20&#176;C</li>
                         Visual Simulation
+
                     </ol>
                    </li>
+
                     <p>Material:</p>
                    <li>
+
                     <p>TM expression medium:1000 mL pH=7.4</p>
                        Verify tax’s influence degree about microtubule
+
                         <br />
+
                         Analysis of variance>
+
                    </li>
+
                    <li>
+
                        Tax’s influence on the length of the microtubule
+
                        <br />
+
                        The probability distribution statistic of the Microtubule’s length
+
                     </li>
+
                     <li>
+
                        Simulate tax’s mechanism of action to the microtubule
+
                        <br />
+
                        Differential equation modeling
+
                     </li>
+
                </ol>
+
  
                <h2>One-way analysis of variance</h2>
+
                    <table class="table">
                <h3>1.0 - Theory of the one-way analysis of variance</h3>
+
                        <tr>
                <p>By constructing the F-test statistics, we can use the one-way analysis of variance to study whether classification of the independent variable’s different levels can make significant influence on the variation of the continuous variable. If the levels have a significant influence, we can further give the 95% confidence interval of the dependent variable means under the different levels of the independent variable, and then we can analyze the degree of the different levels. But the precondition is that the data should satisfy the homogeneity of variance, in other words, the variance of the data should be the independent identically distributed. In the next part of the modeling, we will use the one-way analysis of variance to analyze the data, and then deal with the data.</p>
+
                            <td align="center">Reagent</td>
                <h3>2.0 - The homogeneity test of variance</h3>
+
                            <td align="center">tryptone</td>
                <p>We use the SPSS to do the homogeneity test of variance with the data we got, the outcome is shown in the figure below:</p>
+
                            <td align="center">Yeast extract powder</td>
                <figure class="text-center">
+
                            <td align="center">NaCl</td>
                    <img src="../img/paper/modeling/2.png" width="60%">
+
                            <td align="center">glucose</td>
                    <figcaption>
+
                            <td align="center">glycerol</td>
                         Fig.2 The figure of the data’s homogeneity test of variance
+
                         </tr>
                    </figcaption>
+
                        <tr>
                </figure>
+
                            <td align="center">Dosage</td>
                <p>From the figure, we can see the data’s variance is XXX, nearly zero. Therefore, we can think the data meets the requirement about the homogeneity of variance and we can use the one-way analysis of variance to deal with the data.</p>
+
                            <td align="center">1.2 g</td>
                <h3>3.0 - Construct the F-test statistics</h3>
+
                            <td align="center">2.4 g</td>
                <p>The independent variable is a classified variable which values 0 and 1 to describe whether the tax is added into the test tube. The dependent variable is the change of the micrutubule’ length, our modeling is shown below:</p>
+
                            <td align="center">1.0 g</td>
                <p>
+
                            <td align="center">1.0 g</td>
                    $$ y = u_i + \varepsilon_{ij} $$
+
                            <td align="center">0.6 mL</td>
                </p>
+
                        </tr>
                <p>y is the dependent variable, the change of the microtubule’s length. is the j observed value of the independent variable under the i level. is the mean of dependent variable under the I level.  stands for the residual between dependent variable’s value and it’s mean value,  also obey the normal distribution  \(N(0, \sigma_i ^2)\) </p>
+
                     </table>
                <p>Then we construct the F test statistics. First, we define the quadratic sum of the residual:</p>
+
                    <p>Autoclaving 115℃, 20min</p>
                <p>
+
                    $$ SSE = \sum_{i=1}^k \sum_{j=1}^{n_i} (y_{ij}-\overline y_1)^2 $$
+
                </p>
+
                <p>
+
                    And the quadratic sum of the elements:
+
                </p>
+
                <p>
+
                    $$ SSA = \sum_{i=1}^k n_i (\overline y_{1}-\overline y)^2 $$
+
                </p>
+
                <p>SSA reflects the variance between different levels and the difference is made by the different elements; SSE reflects the variance in a certain level and this random difference is due to the selected sample’s random. For example, the measured length of the microtubule will be different when we add the TAX into the test tube.</p>
+
                <p>On the basis of the theory, our F test statistics is:</p>
+
                <p>
+
                     $$ F = \frac{SSA/(n-k)}{SSE/(k-1)} \sim F(n-k, k-1) $$
+
                </p>
+
                <p>The numerator of the equation is a part of the dependent variable which can be explained by the change of the independent variable, while the denominator of the equation can be explained by other random elements except the change of the independent variable. The proportion of the change of independent variable in all change of the dependent variable becomes bigger, in other words, F has a higher value, independent variable influence dependent variable more.</p>
+
  
                <h3>4.0 - The F-test on the data</h3>
+
                    <h2>Detection</h2>
                <p>The numerator of the equation is a part of the dependent variable which can be explained by the change of the independent variable, while the denominator of the equation can be explained by other random elements except the change of the independent variable. The proportion of the change of independent variable in all change of the dependent variable becomes bigger, in other words, F has a higher value, independent variable influence dependent variable more.</p>
+
                    <h3>SDS-PAGE</h3>
                <p>
+
                    <h4>Materials</h4>
 +
                    <table class="table">
 +
                        <tr>
 +
                            <th style="text-align: center">Gel</th>
 +
                            <th style="text-align: center">Tris-HCl</th>
 +
                            <th style="text-align: center">Acr/Bis 30%</th>
 +
                            <th style="text-align: center">SDS 10%</th>
 +
                            <th style="text-align: center">ddH<sub>2</sub>O</th>
 +
                            <th style="text-align: center">TEMED</th>
 +
                            <th style="text-align: center">AP 10%</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <td align="center">Stacking Gel(4%)</td>
 +
                            <td align="center">pH=6.8 500 μL</td>
 +
                            <td align="center">500 μL</td>
 +
                            <td align="center">25 μL</td>
 +
                            <td align="center">1350 μL</td>
 +
                            <td align="center">2.5 μL</td>
 +
                            <td align="center">12.5 μL</td>
 +
                        </tr>
 +
                        <tr>
 +
                            <td align="center">Running Gel(12%)</td>
 +
                            <td align="center">pH=8.8 1250 μL</td>
 +
                            <td align="center">2000 μL</td>
 +
                            <td align="center">50 μL</td>
 +
                            <td align="center">1675 μL</td>
 +
                            <td align="center">2.5 μL</td>
 +
                            <td align="center">25 μL</td>
 +
                        </tr>
 +
                        <tr>
 +
                            <td align="center">Running Gel(18%)</td>
 +
                            <td align="center">pH=8.8 1250 μL</td>
 +
                            <td align="center">3000 μL</td>
 +
                            <td align="center">50 μL</td>
 +
                            <td align="center">675 μL</td>
 +
                            <td align="center">2.5 μL</td>
 +
                            <td align="center">25 μL</td>
 +
                        </tr>
 +
                    </table>
 +
                    <table class="table">
 +
                        <tr>
 +
                            <th colspan="4" style="text-align: center">Running Buffer</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <td align="center">Reagent</td>
 +
                            <td align="center">Tris-HCl</td>
 +
                            <td align="center">Glycine</td>
 +
                            <td align="center">(w/v) SDS</td>
 +
                        </tr>
 +
                        <tr>
 +
                            <td align="center">Dosage</td>
 +
                            <td align="center">25 mmol/L</td>
 +
                            <td align="center">0.192 mol/L</td>
 +
                            <td align="center">0.1%</td>
 +
                        </tr>
 +
                    </table>
 +
                    <h4>Protocol</h4>
 +
                    <p>The SDS polyacrylamide gels are prepared in the so-called PerfectBlue™ Twin Double Gel System.</p>
 +
                    <p>After ensuring that the equipment is waterproof, the 12% (or 18%) running gel is mixed and filled
 +
                    into the chamber. Pipetting about 1 ml of H<sub>2</sub>O on top of the running gel to seal the gel.
 +
                    </p>
 +
                    <p>After polymerization, the remaining H<sub>2</sub>O is removed and the 12% stacking gel is filled on
 +
                    top. Insert
 +
                    a comb to create sample pockets.</p>
 +
                    <p>After the stacking gel also polymerized, 1 x running buffer is used to run the Double Gel System via
 +
                    the SDS gel. </p>
 +
                    <p>After loading the generated pockets with the samples, the stacking gel is run at 100 V and then
 +
                    running gel at 120 V. </p>
  
                </p>
+
                    <h3>Western Blot</h3>
                <p>stands for that different values of the independent variable( whether the TAX is added into the tube or not) make no difference to the mean value of the dependent variable(microtubule’s length), in other words, the independent is not important to the dependent variable. Then we use \(R\) software to conduct F-test, the outcome is shown below:</p>
+
                    <h4>System</h4>
                <figure class="text-center">
+
                    <table class="table">
                    <img src="../img/paper/modeling/5.png" width="60%">
+
                        <tr>
                    <figcaption>
+
                            <th colspan="6" style="text-align: center"> PBST:1000 mL(pH=7.4)</th>
                        Fig.3 Outcome of the F-test about the data
+
                        </tr>
                    </figcaption>
+
                        <tr>
                </figure>
+
                            <td align="center">Reagent</td>
 +
                            <td align="center">NaCl(137mM)</td>
 +
                            <td align="center">KCl(2.7mM)</td>
 +
                            <td align="center">Na<sub>2</sub>HPO<sub>4</sub>(10mM)</td>
 +
                            <td align="center">K<sub>2</sub>HPO<sub>4</sub>(2mM)</td>
 +
                            <td align="center">Tween-20</td>
 +
                        </tr>
 +
                        <tr>
 +
                            <td align="center">Dosage</td>
 +
                            <td align="center">8 g</td>
 +
                            <td align="center">0.2 g</td>
 +
                            <td align="center">1.44 g</td>
 +
                            <td align="center">0.24 g</td>
 +
                            <td align="center">0.5 mL</td>
 +
                        </tr>
  
                <h2>Visual Simulation</h2>
+
                     </table>
                <p>We applied to programing visualization in this complex process based on certain laws of Microtubule dynamic instability.</p>
+
                <p>Tubulin is made up of two tubulin monomers which are nearly the same as each other. These two tubulin monomers are named α tubulin monomer and β tubulin monomer. Microtubule is made up of 13 protofilaments polymerized by tubulin dimers end to end. And microtubule can be the hollow tube with 13 protofilaments coiled into helix with each other, water in hollow part. The tube wall is 4~5nm thick.</p>
+
                <p>Tubulin dimers are incorporated into the growing lattice in the GTP-bound form and stochastically hydrolyze to GDP-tubulin, thus forming a GTP-cap. It is thought that the switching from growth to shrinkage occurs due to the loss of the GTP-cap.</p>
+
                <p>Caplow M<sup><a href="#ref-1">[1]</a></sup> research shows that when the cap structure of microtubule plus end subunit containing GDP- beta tubulin instead of GTP- beta tubulin, microtubule becomes unstable and will quickly depolymerize.</p>
+
                <figure class="text-center">
+
                     <img src="../img/paper/modeling/3.png" width="60%">
+
                    <figcaption>Fig.3 Microtubule dynamic instability</figcaption>
+
                </figure>
+
                <p>
+
                    As is shown in the figure, there are two kinds of Dimer, called GDP and GTP, with blue and red two connected to the circular. These dimers have close relationship with each other, and there are three important modes of their action:
+
                </p>
+
                <ol>
+
                    <li>
+
                        GTP-tubulin dimer in endpoint can aggregate new GTP to make the single protofilament grow, and microtubules extend.
+
                    </li>
+
                    <li>
+
                        At the same time, the endpoint GTP may also be made off, thereby protofilaments shorter.
+
                    </li>
+
                    <li>
+
                        Any place of GTP (in addition to the right endpoints of the GTP) made made random hydrolyzed to GDP have a chance.
+
                    </li>
+
                </ol>
+
                <p>
+
                    We built a simple GUI interface to simulate the Microtubule dynamic instability. As for a tubulin, we can adjust the parameters of K, R, h, GDP and GTP to display number and length of tubulin in real time. Among them, K, h, R is the number obeying certain distributions.
+
                </p>
+
                <p>
+
                    According to above principles, we built the simulation process of the visual program in MATLAB@, Fig 2 is the schematic diagram of the principle of GTP hydrolysis. Among them  means GTP, D means GDP, R means the probability of endpoint GTP polymerizing with new GTP, K means the probability of endpoint falling off, h means the probability of GTP hydrolysis into GDP. It should be noted that once GTP is transferred to GDP, it will not have polymerization, fall off, or hydrolysis, and will become stable state.
+
                </p>
+
                <figure class="text-center">
+
                    <img src="../img/paper/modeling/4.png" width="60%">
+
                    <figcaption>Fig.4 Parameters of GTP-tubulin dimer hydrolysis</figcaption>
+
                </figure>
+
            </article>
+
        </div>
+
  
    </div>
+
                    <table class="table">
</div>
+
                        <tr>
 +
                            <th colspan="4" style="text-align: center">Imprint buffer:2000 mL (pH=8.3) Transfer Buffer</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <td align="center">Reagent</td>
 +
                            <td align="center">Tris</td>
 +
                            <td align="center">Gly</td>
 +
                            <td align="center">Methanol</td>
 +
                        </tr>
 +
                        <tr>
 +
                            <td align="center">Dosage</td>
 +
                            <td align="center">6.06 g</td>
 +
                            <td align="center">28.8 g</td>
 +
                            <td align="center">400 mL</td>
 +
                        </tr>
 +
                    </table>
  
 +
                    <h4>Protocol</h4>
 +
                    <p>Transfer (Prepare transfer Buffer just before glue leaking, and precool at -20℃).</p>
 +
                    <ol>
 +
                        <li>Put the transfer Buffer and the black subface of transfer splint downword, and lay a sponge in
 +
                            it. Several filter paper(three pieces of filter paper), glue(except Stacking Gel).
 +
                        </li>
 +
                        <li>Activation PVDF membrane in advance with anhydrous ethanol, and put it on the membrane.</li>
 +
                        <li>Three layers of filter paper, sponge, Squeeze out of the bubbles, turn tight.</li>
 +
                        <li>The black subface electric rotary groove stick to each other, put in ice.</li>
 +
                        <li>110V, 120min.</li>
 +
                        <li>5% skim milk powder (prepared by PBST), block for a night.</li>
 +
                        <li>Dilute Primary antibody at the proportion of 1:2000 with 3% skim milk powder(add 0.02% sodium
 +
                            azide ), incubate 1h at the room temperature.
 +
                        </li>
 +
                        <li>PBST elute, wash with shocking for 5min , three times.</li>
 +
                        <li>Dilute Secondary antibody at the proportion of 1:2000 with 3% skim milk powder, incubate 1h at
 +
                            the room temperature.
 +
                        </li>
 +
                        <li>PBST elute, wash with shocking for 5min, three times.</li>
 +
                        <li>Color development.</li>
 +
                    </ol>
 +
 +
                    <h2>Ni-beads protein purification</h2>
 +
 +
 +
                    <table class="table">
 +
                        <tr>
 +
                            <th style="text-align: center" colspan="4"> NPI-10 buffer(1L) pH=8.0 filtration sterilization
 +
                            </th>
 +
                        </tr>
 +
                        <tr>
 +
                            <td align="center">Reagent</td>
 +
                            <td align="center">NaH<sub>2</sub>PO<sub>4</sub>·H<sub>2</sub>O</td>
 +
                            <td align="center">NaCl</td>
 +
                            <td align="center">imidazole</td>
 +
                        </tr>
 +
                        <tr>
 +
                            <td align="center">Dosage</td>
 +
                            <td align="center">6.9</td>
 +
                            <td align="center">17.54</td>
 +
                            <td align="center">0.68</td>
 +
                        </tr>
 +
                    </table>
 +
 +
                    <table class="table">
 +
                        <tr>
 +
                            <th style="text-align: center" colspan="4">NPI-20 buffer(1L) pH=8.0 filtration sterilization</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <td align="center">Reagent</td>
 +
                            <td align="center">NaH<sub>2</sub>PO<sub>4</sub>·H<sub>2</sub>O</td>
 +
                            <td align="center">NaCl</td>
 +
                            <td align="center">imidazole</td>
 +
                        </tr>
 +
                        <tr>
 +
                            <td align="center">Dosage(g)</td>
 +
                            <td align="center">6.9</td>
 +
                            <td align="center">17.54</td>
 +
                            <td align="center">1.36</td>
 +
                        </tr>
 +
                    </table>
 +
 +
                    <table class="table">
 +
                        <tr>
 +
                            <th style="text-align: center" colspan="4">NPI-250 buffer(1L) pH=8.0 filtration sterilization
 +
                            </th>
 +
                        </tr>
 +
                        <tr>
 +
                            <td align="center">Reagent</td>
 +
                            <td align="center">NaH<sub>2</sub>PO<sub>4</sub>·H<sub>2</sub>O</td>
 +
                            <td align="center">NaCl</td>
 +
                            <td align="center">imidazole</td>
 +
                        </tr>
 +
                        <tr>
 +
                            <td align="center">Dosage (g)</td>
 +
                            <td align="center">6.9</td>
 +
                            <td align="center">17.54</td>
 +
                            <td align="center">17.0</td>
 +
                        </tr>
 +
                    </table>
 +
 +
                    <h4>Protocol</h4>
 +
                    <ol>
 +
                        <li>Cut tips. Add 30 μL Ni 6 fast flow Beads into 1.5 mL EP.</li>
 +
                        <li>Add 1 mL NPI-10 buffer, mixing wash, sedimentate at low speed and wash 3 times.</li>
 +
                        <li>Centrifuge and absorb supernatant into buffer. 4℃ binding 3h, rotate and mix.</li>
 +
                        <li>After binding, Put on ice(5min), Centrifuge at 2000rpm for 1min.</li>
 +
                        <li>Absorb 80μL supernatant as control and remove the other supernatant, add 1 mL NPI-20 washing,
 +
                            upside and down to mix, still standing, Centrifuge at 2000 rpm for 1min(4℃), wash 3~5 times.
 +
                        </li>
 +
                        <li>Add 500μL NPI-250 into Beads, rotate and mix for 15min, gather supernatant, add 500 μL NPI-250 ,
 +
                            rotate and mix for 15min, gather supernatant again.
 +
                        </li>
 +
                    </ol>
 +
 +
                    <h2>Renaturation of the inclusion bodies</h2>
 +
 +
                    <table class="table">
 +
                        <tr>
 +
                            <th style="text-align: center" colspan="4">Binding buffer(1L) pH=8.0</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <td align="center">Reagent</td>
 +
                            <td align="center">NaCl(500 mmol/L)</td>
 +
                            <td align="center">Na<sub>3</sub>PO<sub>4</sub>·12H<sub>2</sub>O(20 mmol/L)</td>
 +
                            <td align="center">imidazole (20 mmol/L)</td>
 +
                        </tr>
 +
                        <tr>
 +
                            <td align="center">Dosage(g)</td>
 +
                            <td align="center">29.22</td>
 +
                            <td align="center">7.6</td>
 +
                            <td align="center">1.36</td>
 +
                        </tr>
 +
                    </table>
 +
                    <p>After cell disruption, sediment dissolves in binding buffer(8 mol/L urea)</p>
 +
                    <table class="table">
 +
                        <tr>
 +
                            <th style="text-align: center" colspan="5">Washing buffer(1 L)</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <td align="center">Reagent</td>
 +
                            <td align="center">Tris-HCl(50 mmol/L)</td>
 +
                            <td align="center">EDTA(5 mmol/L)</td>
 +
                            <td align="center">NaCl(100 mmol/L)</td>
 +
                            <td align="center">Triton X-100(1%)</td>
 +
                        </tr>
 +
                        <tr>
 +
                            <td align="center">Dosage</td>
 +
                            <td align="center">100 mL</td>
 +
                            <td align="center">1.8612 g</td>
 +
                            <td align="center">5.844 g</td>
 +
                            <td align="center">10 mL</td>
 +
                        </tr>
 +
                    </table>
 +
 +
                    <ol>
 +
                        <li>Induced expression</li>
 +
                        <li>Collect sediment after ultrasonication, use washing buffer including 2, 3 mol/L urea to wash
 +
                            sediment in turn. Finally, use washing buffer including 8 mol/L urea to dissolve. Centrifuge and
 +
                            absorb supernatant, measure protein concentration and make it keep about 1 mg/mL. Dialyze these
 +
                            supernatant using binding buffer including concentration gradient urea(6,5,4,3,2,1,0.5 and
 +
                            0 mol/L).
 +
                        </li>
 +
                    </ol>
 +
 +
 +
                    <h2>Extracting tubulin from porcine brains</h2>
 +
                    <ol>
 +
                        <li>Pick up 20 porcine brains from Beijing No.5 Meat Processing. For tubulin extraction
 +
                            experiment, the brains should be as fresh as possible. Take an ice box to store the brains.
 +
                            Avoid contact between the brains.
 +
                        </li>
 +
                        <li>While getting the brains, another student should stay in the lab and prepared the centrifuge
 +
                            (set one at 4℃ and another at 37℃, also pre-warm the rotor). Put electronic balance, grinder, a
 +
                            graduated cylinder in refrigerator and pre-warm the glycerol and PEM in 37℃. prepare the fresh
 +
                            ATP and GTP buffer in the morning.
 +
                        </li>
 +
                        <li>Clean the brain by tearing off the meninges and blood clots using kim wipes or by hand.</li>
 +
                        <li>After cleaning, weigh the brains, put the brains in the blender, then add the same volume buffer
 +
                            PEM(with 1 mM DTT) in it accordingly.
 +
                        </li>
 +
                        <li>Homogenate the brain for 3s, 10 times, time interval between two homogenate is 5s, in order to
 +
                            avoid destroy the tubulin because of high thermos.
 +
                        </li>
 +
                        <li>Pour the homogenate into a flask, incubate in 4℃ for 30 min to depolymerize microtubules.</li>
 +
                        <li>Pour the homogenate into tubes for Type 45Ti rotor and balance each tube.</li>
 +
                        <li>Centrifuge at 8000 rpm for 40min at 4℃. Filter the supernatant with 4 gauzes. Then centrifuge
 +
                            the filtrate at 40000 g for 40min at 4℃.
 +
                        </li>
 +
                        <li>Add 1/2 volume of warmed glycerol drop-wise with continuous shaking, mix gently but thoroughly.
 +
                            Add GTP (final concentration 0.1 mmol/L), MgCl<sub>2</sub> (final concentration 3 mmol/L), and
 +
                            EGTA (final
 +
                            concentration 1 mmol/L). Incubate in a 37℃ water bath for 1h, shake gently and occasionally.
 +
                        </li>
 +
                        <li>Balance each tube and centrifuge at 100000 g for 40 min at 35℃.Discard supernatant, the pellet
 +
                            is crude extracts. Split charge them into 50 mL centrifuge tubes, each tube contains 5 g. Snap
 +
                            freeze the tubulin in 15 μL aliquots in liquid nitrogen and further stored at -80℃.
 +
                        </li>
 +
                        <li>When going to do refined depuration, melt the freezing crude extract at 4℃ refrigerator on ice
 +
                            over night. Pop out 1 g of the pellet out of the tubes with a spatula. Put the pellets in the
 +
                            Dounce grinder, then add cold PEM in the tube to wash off residual pellets.
 +
                        </li>
 +
                        <li>Re-suspend the pellets with grinder, keep the grinder on ice, and grinding occasionally. After
 +
                            30min, pour out the solution and rinse the grinder with cold PEM. Total re-suspended volume is
 +
                            5 mL.
 +
                        </li>
 +
                        <li>Add GTP (final concentration 0.1 mmol/L). Place it on ice for 1h to depolymerize. Shake it
 +
                            occasionally.
 +
                        </li>
 +
                        <li>Centrifuge the depolymerized tubulin at 100000 g for 40 min at 4℃.</li>
 +
                        <li>Recover the supernatant and pour it into a flask. Add equal volume of warmed PIPES( pH =6.9 ),
 +
                            DMSO(final concentration 10%), GTP (final concentration 0.1 mmol/L), MgCl<sub>2</sub> (final
 +
                            concentration
 +
                            1 mmol/L) and EGTA (final concentration 1 mmol/L). Mix gently but thoroughly.
 +
                        </li>
 +
                        <li>Incubate in a 37℃ water bath for 1 h. the solution would look cloudy.</li>
 +
                        <li>Balance each tube and centrifuge at 100000 g for 1h at 35℃.</li>
 +
                        <li>Discard the supernatant. Risen the pellet briefly with cold PEM, add GTP (final concentration
 +
                            0.1 mmol/L). Place it on ice for 1h to depolymerize. Shake it occasionally.
 +
                        </li>
 +
                        <li>Centrifuge the depolymerized tubulin at 100000 g for 40min at 4 ℃.</li>
 +
                        <li>Recover the supernatant and pour it into a flask. Add equal volume of warmed PIPES ( pH= 6.9 ),
 +
                            DMSO(final concentration 10%), GTP (final concentration 0.1 mmol/L), MgCl<sub>2</sub> (final
 +
                            concentration 1 mmol/L) and EGTA (final concentration 1 mmol/L). Mix gently but thoroughly.
 +
                        </li>
 +
                        <li>Incubate in a 37℃ water bath for 1 h. the solution would look cloudy.</li>
 +
                        <li>Balance each tube and centrifuge at 100000 g for 1h at 35℃.</li>
 +
                        <li>Discard the supernatant. Risen the pellet briefly with cold PEM, add GTP (final concentration
 +
                            0.1 mmol/L). Place it on ice for 1 h to depolymerize. Shake it occasionally.
 +
                        </li>
 +
                        <li>Centrifuge the depolymerized tubulin at 100000 g for 40 min at 4℃.</li>
 +
                        <li>Recover the supernatant, add equal volume polymerize buffer (containing 100 mmol/L PIPES-KOH, 2
 +
                            mmol/L EGTA, 2 mmol/L MgCl<sub>2</sub>, 2 mmol/L GTP and 60% glycerol).
 +
                        </li>
 +
                        <li>Incubate in a 37℃ water bath for 1 h. Adding a series concentrations of taxol.</li>
 +
                        <li>Balance each tube and centrifuge at 100000 g for 1 h at 35℃. The pellet is fine purified
 +
                            product.
 +
                        </li>
 +
                    </ol>
 +
 +
                    <h3>Preparing STM samples</h3>
 +
                    <ol>
 +
                        <li>Use 200 # copper mesh to prepare the samples. This procedure was done in Institute of
 +
                            Biophysics, Chinese Academy of Science. Pretreat the copper mesh with Varian Plasma Cleaner PDC-32G.</li>
 +
                        <li>Add protein solution on copper mesh. Keep still for 1 min.</li>
 +
                        <li>Add 3 drops of uranyl acetate on parafilm. Mix the protein binding side with uranyl acetate
 +
                            thoroughly.
 +
                        </li>
 +
                        <li>Store the sample carefully. Observe by transmission electron microscopy in Beijing Normal
 +
                            University.
 +
                        </li>
 +
                    </ol>
 +
 +
                    <h3> OD<sub>350</sub> test </h3>
 +
                    <ol>
 +
                        <li> Take out the tubulin monomer solution after precision purification from -80℃, and melt on the ice.
 +
                        </li>
 +
                        <li>Prepare 10 um tubulin monomer solution with the same concentration, and add isopyknic
 +
                            polymerization buffer (the formula is the same as the polymerization buffer used in precision
 +
                            purification). This step finished on the ice in order to avoid the influence of the
 +
                            Spontaneous tubulin polymerization because of the high room temperature.
 +
                        </li>
 +
                        <li> Prepare a series concentration gradient of taxol solution and add the
 +
                            tubulin polymerization system.
 +
                        </li>
 +
                        <li> Incubate for 1h at 37℃.</li>
 +
                        <li> Use Nanodrop UV-IS to determinate absorbance value, and set measurement parameters 280 nm, 350
 +
                            nm and 750 nm, but we only read at 350 nm.
 +
                        </li>
 +
                        <li> Use isopyknic mixed solution of polymerization buffer and PEM buffer to calibrate baseline,
 +
                            each group of samples detect three times in parallel.
 +
                        </li>
 +
                    </ol>
 +
 +
                    <h2>Improvement</h2>
 +
                    <h3>Culture and collection</h3>
 +
                    <ol>
 +
                        <li>Use LB medium to preculture transformed media 5 ml for 12h, 200 rpm/ 37℃.</li>
 +
                        <li>
 +
                            Culture 5 mL preculture media into 100 mL TB medium for about 3h until OD<sub>600</sub>=0.4~0.6, 200 rpm/
 +
                            37℃.
 +
                        </li>
 +
                        <li>Add arabinose or turn to 42℃ to induce P(3HB) expression for 72h, 220 rpm.</li>
 +
                        <li>Collect cells and centrifuge for 3min, 5,000 rpm.</li>
 +
                        <li>Remove supernatant and suspend with pure water.</li>
 +
                        <li>Centrifuge again for 3min, 5,000 rpm and remove its supernatant.</li>
 +
                    </ol>
 +
 +
 +
                    <h3>Extract PHB<sup>1</sup></h3>
 +
                    <ul>
 +
                        <li>Centrifuge settings: 4000RPM, 10mins.</li>
 +
                        <li> Scale as appropriate.</li>
 +
                        <li> After each centrifuge step the supernatant should be poured off.</li>
 +
                    </ul>
 +
                    <ol>
 +
                        <li>Resuspend precipitation in 10 mL Triton X-100(1% v/v in PBS) for 30mins at room temp.</li>
 +
                        <li>Centrifuge, resuspend in 10 mL PBS.</li>
 +
                        <li>Centrifuge, add 10 mL sodium hyperchlorite solution and incubate at 30˚C for 1 hour.</li>
 +
                        <li>Centrifuge, wash with 10 mL 70% EtOH.</li>
 +
                        <li>Allow powder to dry.</li>
 +
                    </ol>
 +
                    <p style="color: #5c5c5c;font-size: 12px;">[1]: Shahryar Shakeri, Comparison of intracellular
 +
                    polyhydroxybutyrate granules formation between different bacterial cell subpopulations by flow
 +
                    cytometry, Jundishapur Journal of Microbiology 2011.</p>
 +
                    <h3>Agents formula</h3>
 +
                    <table class="table">
 +
                        <tr>
 +
                            <th style="text-align: center" colspan="7">TB medium (1 L)</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <td align="center">yeast extract</td>
 +
                            <td align="center">tryptone</td>
 +
                            <td align="center">K<sub>2</sub>HPO<sub>4</sub></td>
 +
                            <td align="center">KH<sub>2</sub>PO<sub>4</sub></td>
 +
                            <td align="center">Glycerol</td>
 +
                            <td align="center">Glucose</td>
 +
                            <td align="center">ddH<sub>2</sub>O</td>
 +
                        </tr>
 +
                        <tr>
 +
                            <td align="center">24 g</td>
 +
                            <td align="center">12 g</td>
 +
                            <td align="center">72 mM</td>
 +
                            <td align="center">17 mM</td>
 +
                            <td align="center">8 mL</td>
 +
                            <td align="center">2%</td>
 +
                            <td align="center">add to 1 L</td>
 +
                        </tr>
 +
                    </table>
 +
 +
                    <table class="table">
 +
                        <tr>
 +
                            <th style="text-align: center" colspan="6">PBS (1 L)</th>
 +
                        </tr>
 +
                        <tr>
 +
                            <td align="center">NaCl</td>
 +
                            <td align="center">KCl</td>
 +
                            <td align="center">Na<sub>2</sub>HPO<sub>4</sub>·12H<sub>2</sub>O</td>
 +
                            <td align="center">KH<sub>2</sub>PO<sub>4</sub>·3H<sub>2</sub>O</td>
 +
                            <td align="center">pH</td>
 +
                            <td align="center">ddH<sub>2</sub>O</td>
 +
                        </tr>
 +
                        <tr>
 +
                            <td align="center">8 g</td>
 +
                            <td align="center">0.2 g</td>
 +
                            <td align="center">3.63 g</td>
 +
                            <td align="center">0.31 g</td>
 +
                            <td align="center">adjust to 7.4</td>
 +
                            <td align="center">add to 1 L</td>
 +
                        </tr>
 +
                    </table>
 +
                    <br />
 +
 +
                    <h2>Fluorescence Detection</h2>
 +
                    <h3>Protein functional Test</h3>
 +
                    <ol>
 +
                        <li> Bacteria culturing and inducing for expression. </li>
 +
                        <li> Collect supernatant after ultrasonication. </li>
 +
                        <li>
 +
                            Concentrate the supernatant via ultra-filtering
 +
                            <table class="table">
 +
                                <tbody>
 +
                                    <tr>
 +
                                        <th style="text-align: center">Protein samples</th>
 +
                                        <th style="text-align: center">α-Tubulin YNE</th>
 +
                                        <th style="text-align: center">α-tubulin-YCE</th>
 +
                                        <th style="text-align: center">β-tubulin</th>
 +
                                        <th style="text-align: center">Aggregation buffer</th>
 +
                                    </tr>
 +
                                    <tr>
 +
                                        <td align="center">Dosage</td>
 +
                                        <td align="center">75 μL</td>
 +
                                        <td align="center">75 μL</td>
 +
                                        <td align="center">150 μL</td>
 +
                                        <td align="center">300 μL</td>
 +
                                    </tr>
 +
                                </tbody>
 +
                            </table>
 +
 +
                            <table class="table">
 +
                                <tbody>
 +
                                    <tr>
 +
                                        <th style="text-align: center">Protein samples</th>
 +
                                        <th style="text-align: center">α-tubulin-YCE</th>
 +
                                        <th style="text-align: center">β-tubulin- YNE</th>
 +
                                        <th style="text-align: center">Aggregation buffer</th>
 +
                                    </tr>
 +
                                    <tr>
 +
                                        <td align="center">Dosage</td>
 +
                                        <td align="center">150 μL</td>
 +
                                        <td align="center">150 μL</td>
 +
                                        <td align="center">300 μL</td>
 +
                                    </tr>
 +
                                </tbody>
 +
                            </table>
 +
 +
                        </li>
 +
                        <li> Mixed the protein samples and add proper GTP, taxol to 200uM. </li>
 +
                        <li> Use absolute recording spectrofluorometer with 514nm excitation. </li>
 +
                        <li> Record light intensity in 520nm-530nm wavelength emission. </li>
 +
                    </ol>
 +
 +
                    <h3>Taxol-concentration based assay</h3>
 +
 +
                    <ol>
 +
                        <li> Bacteria culturing and inducing for expression </li>
 +
                        <li> Collect supernatant after ultrasonication </li>
 +
                        <li>
 +
                            Concentrate the supernatant via ultra-filtering
 +
                            <table class="table">
 +
                                <tbody>
 +
                                    <tr>
 +
                                        <th style="text-align: center">Protein samples</th>
 +
                                        <th style="text-align: center">α-Tubulin YNE</th>
 +
                                        <th style="text-align: center">α-tubulin-YCE</th>
 +
                                        <th style="text-align: center">β-tubulin</th>
 +
                                        <th style="text-align: center">Aggregation buffer</th>
 +
                                    </tr>
 +
                                    <tr>
 +
                                        <td align="center">Dosage</td>
 +
                                        <td align="center">75 μL</td>
 +
                                        <td align="center">75 μL</td>
 +
                                        <td align="center">150 μL</td>
 +
                                        <td align="center">300 μL</td>
 +
                                    </tr>
 +
                                </tbody>
 +
                            </table>
 +
                        </li>
 +
                        <li>
 +
                            Mixed the protein samples and add taxol respectively as the following table:
 +
                            <table class="table">
 +
                                <tbody>
 +
                                    <tr>
 +
                                        <td align="center">Taxol concentration (μM)</td>
 +
                                        <td align="center">0</td>
 +
                                        <td align="center">0.5</td>
 +
                                        <td align="center">5</td>
 +
                                        <td align="center">25</td>
 +
                                        <td align="center">50</td>
 +
                                        <td align="center">100</td>
 +
                                        <td align="center">250</td>
 +
                                        <td align="center">500</td>
 +
                                    </tr>
 +
                                </tbody>
 +
                            </table>
 +
                        </li>
 +
                        <li> Use absolute recording spectrofluorometer with 514nm excitation </li>
 +
                        <li> Record light intensity in 520nm-530nm wavelength emission. </li>
 +
                    </ol>
 +
 +
                </article>
 +
            </div>
 +
        </div>
 +
    </div>
 
</html>
 
</html>

Latest revision as of 02:16, 20 October 2016

Team:BNU-CHINA - 2016.igem.org

Protocol

Cloning

PCR

Reaction system:

Universal DNA polymerase TransGen
ddH2O 10x Taq Buffer 2.5 mM dNTP R+F-Primer Template Taq
21.5 μL 5 μL 1 μL 10 μL 10 μL 2.5 μL
TaKaRa TaqTM
ddH2O 5x Taq Buffer 2.5 mM dNTP R+F-Primer Template Taq
20 μL 10 μL 5 μL 4 μL 10 μL 1 μL
primeSTAR from TaKaRaTM
ddH2O 2x primeSTAR R+F-Primer Template
21 μL 25 mL 2 μL 2 μL

Process:

98°C 2min

\( \begin{equation} \left. \begin{array}{lcl} {98°C\ 10s} \\ {56°C\ 15s} \\{72°C\ 30s} \end{array} \right \} Cycle\ 35 \end{equation} \)

72°C 5min

4°C ---

98°C 2min

\(\begin{equation}\left. \begin{array}{lcl} {98°C\ 10s} \\ {55°C\ 5s} \\{72°C\ 8s} \end{array} \right\}Cycle\ 35\end{equation}\)

72°C 5min

15°C ---

Fusion PCR:

  1. basic PCR
  2. use the PCR product of step 1 as template to do PCR
  3. use the PCR product of step 2 as template to do PCR, but first five cycles don’t add primer, add primer at the sixth cycle and continue PCR.
The system of step 2:

H2O 21μL

2x primeSTAR 25mL

R+F-Primer 2 μL

Template① 1μL

Template② 1μL

Electrophoresis---Gel Purification

Material:

Agarose gel: 1% agarose dissolved in 1 x TAE + gelstain

Protocol:

We used gelstain to stain the DNA and imaged it in a Transilluminator.

We used the gel extraction kit to get the objective fragment.

We used the DNA fragment purification kit to get the objective fragment.

Digestion

50 μL reaction system
Reagent 10x \(\ \mathrm{H \ buffer}\) \(Eco\mathrm{R}\ \mathrm{I}\) \(Pst\ \mathrm{I}\) \(\mathrm{Plasmid}\) \(\mathrm{H_2 O}\)
Dosage 5 μL 1.5 μL 1.5 μL 15 μL 27 μL
10 μL reaction system
Reagent 10x \(\ \mathrm{H \ buffer}\) \(Eco\mathrm{R}\ \mathrm{I}\) \(Pst\ \mathrm{I}\) \(\mathrm{Plasmid}\) \(\mathrm{H_2 O}\)
Dosage 1 μL 0.3 μL 0.3 μL 3 μL 5.4 μL

Ligation

Ligation reaction system
Reagent DNA Plasmid T4 buffer T4 ligase
Dosage 7 μL 1 μL 1 μL 1 μL

LR reaction

1. Entry linearization

β2-TOPO (plasmid concentration 117 ng/μL)NotI 37°C enzyme digestion for the night

50 μL Single enzyme system
10x BufferH 5 μL
DNA 20 μL
ddH2O 12.5 μL
Enzyme 2.5 μL
0.1%BSA 5 μL
0.1%Triton X-100 5 μL

2. LR system (\(4\mu\mathrm{L}\)):

100 ng/μL linear Entry: 0.5 μL

destination vector: 1 μL (pCambia1300-nluc / pCambia1300-cluceach one)

LR Clonase II enzyme mix: 1 μL

ddH2O: 0.5 μL

mix slightly, water base for 5h at 25°C 

transform, 4 μL, reactant transform 50 μL competent cells

Transformation

Material:

LB liquid medium
Reagent Tryptone Yeast extract powder NaCl
Dosage 10 g/L 5 g/L 10 μL

Protocol:

Preparation of the competent cells

1 μL ligation product + 50 μL cells

Heatshock of Trans5α(42°C, 45s)

Put on ice(2min)

Add 500 μL LB media and incubate for 1h(37°C, 150rpm)

Centrifuge at 4000 rpm for 1min and remove 400 μL supernatant

Resuspend the pellets using the left supernatant

Spread plates(with Kan;Chl)

Incubate for 12~16h(37°C)

Protein expression

  1. Inoculated 3 mL LB media including relevant antibiotics with the monoclonal colony of expression plasmid, incubate for 12~16h(37°C, 190rpm)
  2. Inoculated 100 mL TM expression media including relevant antibiotics with the 1 mL bacteria liquid, incubate for 3h(37°C, 250rpm,OD600=0.6~0.8)
  3. Add IPTG into it until its final concentration is 1 mmol/L, incubate for 4~6h(37°C, 250rpm)
  4. Centrifuge at 6000 rpm for 10min and remove supernatant
  5. Gather sediment, cryopreserve at -20°C

Material:

TM expression medium:1000 mL pH=7.4

Reagent tryptone Yeast extract powder NaCl glucose glycerol
Dosage 1.2 g 2.4 g 1.0 g 1.0 g 0.6 mL

Autoclaving 115℃, 20min

Detection

SDS-PAGE

Materials

Gel Tris-HCl Acr/Bis 30% SDS 10% ddH2O TEMED AP 10%
Stacking Gel(4%) pH=6.8 500 μL 500 μL 25 μL 1350 μL 2.5 μL 12.5 μL
Running Gel(12%) pH=8.8 1250 μL 2000 μL 50 μL 1675 μL 2.5 μL 25 μL
Running Gel(18%) pH=8.8 1250 μL 3000 μL 50 μL 675 μL 2.5 μL 25 μL
Running Buffer
Reagent Tris-HCl Glycine (w/v) SDS
Dosage 25 mmol/L 0.192 mol/L 0.1%

Protocol

The SDS polyacrylamide gels are prepared in the so-called PerfectBlue™ Twin Double Gel System.

After ensuring that the equipment is waterproof, the 12% (or 18%) running gel is mixed and filled into the chamber. Pipetting about 1 ml of H2O on top of the running gel to seal the gel.

After polymerization, the remaining H2O is removed and the 12% stacking gel is filled on top. Insert a comb to create sample pockets.

After the stacking gel also polymerized, 1 x running buffer is used to run the Double Gel System via the SDS gel.

After loading the generated pockets with the samples, the stacking gel is run at 100 V and then running gel at 120 V.

Western Blot

System

PBST:1000 mL(pH=7.4)
Reagent NaCl(137mM) KCl(2.7mM) Na2HPO4(10mM) K2HPO4(2mM) Tween-20
Dosage 8 g 0.2 g 1.44 g 0.24 g 0.5 mL
Imprint buffer:2000 mL (pH=8.3) Transfer Buffer
Reagent Tris Gly Methanol
Dosage 6.06 g 28.8 g 400 mL

Protocol

Transfer (Prepare transfer Buffer just before glue leaking, and precool at -20℃).

  1. Put the transfer Buffer and the black subface of transfer splint downword, and lay a sponge in it. Several filter paper(three pieces of filter paper), glue(except Stacking Gel).
  2. Activation PVDF membrane in advance with anhydrous ethanol, and put it on the membrane.
  3. Three layers of filter paper, sponge, Squeeze out of the bubbles, turn tight.
  4. The black subface electric rotary groove stick to each other, put in ice.
  5. 110V, 120min.
  6. 5% skim milk powder (prepared by PBST), block for a night.
  7. Dilute Primary antibody at the proportion of 1:2000 with 3% skim milk powder(add 0.02% sodium azide ), incubate 1h at the room temperature.
  8. PBST elute, wash with shocking for 5min , three times.
  9. Dilute Secondary antibody at the proportion of 1:2000 with 3% skim milk powder, incubate 1h at the room temperature.
  10. PBST elute, wash with shocking for 5min, three times.
  11. Color development.

Ni-beads protein purification

NPI-10 buffer(1L) pH=8.0 filtration sterilization
Reagent NaH2PO4·H2O NaCl imidazole
Dosage 6.9 17.54 0.68
NPI-20 buffer(1L) pH=8.0 filtration sterilization
Reagent NaH2PO4·H2O NaCl imidazole
Dosage(g) 6.9 17.54 1.36
NPI-250 buffer(1L) pH=8.0 filtration sterilization
Reagent NaH2PO4·H2O NaCl imidazole
Dosage (g) 6.9 17.54 17.0

Protocol

  1. Cut tips. Add 30 μL Ni 6 fast flow Beads into 1.5 mL EP.
  2. Add 1 mL NPI-10 buffer, mixing wash, sedimentate at low speed and wash 3 times.
  3. Centrifuge and absorb supernatant into buffer. 4℃ binding 3h, rotate and mix.
  4. After binding, Put on ice(5min), Centrifuge at 2000rpm for 1min.
  5. Absorb 80μL supernatant as control and remove the other supernatant, add 1 mL NPI-20 washing, upside and down to mix, still standing, Centrifuge at 2000 rpm for 1min(4℃), wash 3~5 times.
  6. Add 500μL NPI-250 into Beads, rotate and mix for 15min, gather supernatant, add 500 μL NPI-250 , rotate and mix for 15min, gather supernatant again.

Renaturation of the inclusion bodies

Binding buffer(1L) pH=8.0
Reagent NaCl(500 mmol/L) Na3PO4·12H2O(20 mmol/L) imidazole (20 mmol/L)
Dosage(g) 29.22 7.6 1.36

After cell disruption, sediment dissolves in binding buffer(8 mol/L urea)

Washing buffer(1 L)
Reagent Tris-HCl(50 mmol/L) EDTA(5 mmol/L) NaCl(100 mmol/L) Triton X-100(1%)
Dosage 100 mL 1.8612 g 5.844 g 10 mL
  1. Induced expression
  2. Collect sediment after ultrasonication, use washing buffer including 2, 3 mol/L urea to wash sediment in turn. Finally, use washing buffer including 8 mol/L urea to dissolve. Centrifuge and absorb supernatant, measure protein concentration and make it keep about 1 mg/mL. Dialyze these supernatant using binding buffer including concentration gradient urea(6,5,4,3,2,1,0.5 and 0 mol/L).

Extracting tubulin from porcine brains

  1. Pick up 20 porcine brains from Beijing No.5 Meat Processing. For tubulin extraction experiment, the brains should be as fresh as possible. Take an ice box to store the brains. Avoid contact between the brains.
  2. While getting the brains, another student should stay in the lab and prepared the centrifuge (set one at 4℃ and another at 37℃, also pre-warm the rotor). Put electronic balance, grinder, a graduated cylinder in refrigerator and pre-warm the glycerol and PEM in 37℃. prepare the fresh ATP and GTP buffer in the morning.
  3. Clean the brain by tearing off the meninges and blood clots using kim wipes or by hand.
  4. After cleaning, weigh the brains, put the brains in the blender, then add the same volume buffer PEM(with 1 mM DTT) in it accordingly.
  5. Homogenate the brain for 3s, 10 times, time interval between two homogenate is 5s, in order to avoid destroy the tubulin because of high thermos.
  6. Pour the homogenate into a flask, incubate in 4℃ for 30 min to depolymerize microtubules.
  7. Pour the homogenate into tubes for Type 45Ti rotor and balance each tube.
  8. Centrifuge at 8000 rpm for 40min at 4℃. Filter the supernatant with 4 gauzes. Then centrifuge the filtrate at 40000 g for 40min at 4℃.
  9. Add 1/2 volume of warmed glycerol drop-wise with continuous shaking, mix gently but thoroughly. Add GTP (final concentration 0.1 mmol/L), MgCl2 (final concentration 3 mmol/L), and EGTA (final concentration 1 mmol/L). Incubate in a 37℃ water bath for 1h, shake gently and occasionally.
  10. Balance each tube and centrifuge at 100000 g for 40 min at 35℃.Discard supernatant, the pellet is crude extracts. Split charge them into 50 mL centrifuge tubes, each tube contains 5 g. Snap freeze the tubulin in 15 μL aliquots in liquid nitrogen and further stored at -80℃.
  11. When going to do refined depuration, melt the freezing crude extract at 4℃ refrigerator on ice over night. Pop out 1 g of the pellet out of the tubes with a spatula. Put the pellets in the Dounce grinder, then add cold PEM in the tube to wash off residual pellets.
  12. Re-suspend the pellets with grinder, keep the grinder on ice, and grinding occasionally. After 30min, pour out the solution and rinse the grinder with cold PEM. Total re-suspended volume is 5 mL.
  13. Add GTP (final concentration 0.1 mmol/L). Place it on ice for 1h to depolymerize. Shake it occasionally.
  14. Centrifuge the depolymerized tubulin at 100000 g for 40 min at 4℃.
  15. Recover the supernatant and pour it into a flask. Add equal volume of warmed PIPES( pH =6.9 ), DMSO(final concentration 10%), GTP (final concentration 0.1 mmol/L), MgCl2 (final concentration 1 mmol/L) and EGTA (final concentration 1 mmol/L). Mix gently but thoroughly.
  16. Incubate in a 37℃ water bath for 1 h. the solution would look cloudy.
  17. Balance each tube and centrifuge at 100000 g for 1h at 35℃.
  18. Discard the supernatant. Risen the pellet briefly with cold PEM, add GTP (final concentration 0.1 mmol/L). Place it on ice for 1h to depolymerize. Shake it occasionally.
  19. Centrifuge the depolymerized tubulin at 100000 g for 40min at 4 ℃.
  20. Recover the supernatant and pour it into a flask. Add equal volume of warmed PIPES ( pH= 6.9 ), DMSO(final concentration 10%), GTP (final concentration 0.1 mmol/L), MgCl2 (final concentration 1 mmol/L) and EGTA (final concentration 1 mmol/L). Mix gently but thoroughly.
  21. Incubate in a 37℃ water bath for 1 h. the solution would look cloudy.
  22. Balance each tube and centrifuge at 100000 g for 1h at 35℃.
  23. Discard the supernatant. Risen the pellet briefly with cold PEM, add GTP (final concentration 0.1 mmol/L). Place it on ice for 1 h to depolymerize. Shake it occasionally.
  24. Centrifuge the depolymerized tubulin at 100000 g for 40 min at 4℃.
  25. Recover the supernatant, add equal volume polymerize buffer (containing 100 mmol/L PIPES-KOH, 2 mmol/L EGTA, 2 mmol/L MgCl2, 2 mmol/L GTP and 60% glycerol).
  26. Incubate in a 37℃ water bath for 1 h. Adding a series concentrations of taxol.
  27. Balance each tube and centrifuge at 100000 g for 1 h at 35℃. The pellet is fine purified product.

Preparing STM samples

  1. Use 200 # copper mesh to prepare the samples. This procedure was done in Institute of Biophysics, Chinese Academy of Science. Pretreat the copper mesh with Varian Plasma Cleaner PDC-32G.
  2. Add protein solution on copper mesh. Keep still for 1 min.
  3. Add 3 drops of uranyl acetate on parafilm. Mix the protein binding side with uranyl acetate thoroughly.
  4. Store the sample carefully. Observe by transmission electron microscopy in Beijing Normal University.

OD350 test

  1. Take out the tubulin monomer solution after precision purification from -80℃, and melt on the ice.
  2. Prepare 10 um tubulin monomer solution with the same concentration, and add isopyknic polymerization buffer (the formula is the same as the polymerization buffer used in precision purification). This step finished on the ice in order to avoid the influence of the Spontaneous tubulin polymerization because of the high room temperature.
  3. Prepare a series concentration gradient of taxol solution and add the tubulin polymerization system.
  4. Incubate for 1h at 37℃.
  5. Use Nanodrop UV-IS to determinate absorbance value, and set measurement parameters 280 nm, 350 nm and 750 nm, but we only read at 350 nm.
  6. Use isopyknic mixed solution of polymerization buffer and PEM buffer to calibrate baseline, each group of samples detect three times in parallel.

Improvement

Culture and collection

  1. Use LB medium to preculture transformed media 5 ml for 12h, 200 rpm/ 37℃.
  2. Culture 5 mL preculture media into 100 mL TB medium for about 3h until OD600=0.4~0.6, 200 rpm/ 37℃.
  3. Add arabinose or turn to 42℃ to induce P(3HB) expression for 72h, 220 rpm.
  4. Collect cells and centrifuge for 3min, 5,000 rpm.
  5. Remove supernatant and suspend with pure water.
  6. Centrifuge again for 3min, 5,000 rpm and remove its supernatant.

Extract PHB1

  • Centrifuge settings: 4000RPM, 10mins.
  • Scale as appropriate.
  • After each centrifuge step the supernatant should be poured off.
  1. Resuspend precipitation in 10 mL Triton X-100(1% v/v in PBS) for 30mins at room temp.
  2. Centrifuge, resuspend in 10 mL PBS.
  3. Centrifuge, add 10 mL sodium hyperchlorite solution and incubate at 30˚C for 1 hour.
  4. Centrifuge, wash with 10 mL 70% EtOH.
  5. Allow powder to dry.

[1]: Shahryar Shakeri, Comparison of intracellular polyhydroxybutyrate granules formation between different bacterial cell subpopulations by flow cytometry, Jundishapur Journal of Microbiology 2011.

Agents formula

TB medium (1 L)
yeast extract tryptone K2HPO4 KH2PO4 Glycerol Glucose ddH2O
24 g 12 g 72 mM 17 mM 8 mL 2% add to 1 L
PBS (1 L)
NaCl KCl Na2HPO4·12H2O KH2PO4·3H2O pH ddH2O
8 g 0.2 g 3.63 g 0.31 g adjust to 7.4 add to 1 L

Fluorescence Detection

Protein functional Test

  1. Bacteria culturing and inducing for expression.
  2. Collect supernatant after ultrasonication.
  3. Concentrate the supernatant via ultra-filtering
    Protein samples α-Tubulin YNE α-tubulin-YCE β-tubulin Aggregation buffer
    Dosage 75 μL 75 μL 150 μL 300 μL
    Protein samples α-tubulin-YCE β-tubulin- YNE Aggregation buffer
    Dosage 150 μL 150 μL 300 μL
  4. Mixed the protein samples and add proper GTP, taxol to 200uM.
  5. Use absolute recording spectrofluorometer with 514nm excitation.
  6. Record light intensity in 520nm-530nm wavelength emission.

Taxol-concentration based assay

  1. Bacteria culturing and inducing for expression
  2. Collect supernatant after ultrasonication
  3. Concentrate the supernatant via ultra-filtering
    Protein samples α-Tubulin YNE α-tubulin-YCE β-tubulin Aggregation buffer
    Dosage 75 μL 75 μL 150 μL 300 μL
  4. Mixed the protein samples and add taxol respectively as the following table:
    Taxol concentration (μM) 0 0.5 5 25 50 100 250 500
  5. Use absolute recording spectrofluorometer with 514nm excitation
  6. Record light intensity in 520nm-530nm wavelength emission.