Difference between revisions of "Team:TAS Taipei/Proof"

 
(7 intermediate revisions by 4 users not shown)
Line 3: Line 3:
  
 
<head>
 
<head>
<title>Model - TAS Taipei iGEM Wiki</title>
+
<title>Proof of Concept - TAS Taipei iGEM Wiki</title>
 
  <style type='text/css'>
 
  <style type='text/css'>
 
       #top_title, #sideMenu{
 
       #top_title, #sideMenu{
Line 67: Line 67:
 
<ul style='margin-left:0px'>
 
<ul style='margin-left:0px'>
 
<li class="dropdown">
 
<li class="dropdown">
<a href="https://2016.igem.org/Team:TAS_Taipei/Description"><h4 class="dropdown-toggle disabled" data-toggle="dropdown"><b>PROJECT</b></h4></a>
+
<a href="https://2016.igem.org/Team:TAS_Taipei/Background"><h4 class="dropdown-toggle disabled" data-toggle="dropdown"><b>PROJECT</b></h4></a>
 
<div class="dropdown-menu">
 
<div class="dropdown-menu">
 
<div class='subcategories_container'>
 
<div class='subcategories_container'>
 
<div>
 
<div>
<h5><a href="https://2016.igem.org/Team:TAS_Taipei/Description">Background</a></h5>
+
<h5><a href="https://2016.igem.org/Team:TAS_Taipei/Background">Background</a></h5>
 
</div>
 
</div>
 
<div>
 
<div>
Line 158: Line 158:
 
</li>
 
</li>
 
<li class="dropdown">
 
<li class="dropdown">
<a href="https://2016.igem.org/Team:TAS_Taipei/Safety"><h4 class='dropdown-toggle disabled' data-toggle="dropdown"><b>BIOSAFETY</b></h4></a>
+
<a href="https://2016.igem.org/Team:TAS_Taipei/Safety"><h4 class='dropdown-toggle disabled' data-toggle="dropdown"><b>SAFETY</b></h4></a>
 
<div class="dropdown-menu">
 
<div class="dropdown-menu">
 
<div style='height:100px;'>
 
<div style='height:100px;'>
Line 231: Line 231:
 
<div id="category_navbar">
 
<div id="category_navbar">
 
<ul class="nav nav-list" data-spy="affix" data-offset-top="160" style='-webkit-transform: translateZ(0);width:160px;margin-left:0' >
 
<ul class="nav nav-list" data-spy="affix" data-offset-top="160" style='-webkit-transform: translateZ(0);width:160px;margin-left:0' >
<li><a href="#lensmodel">Lens Cataract Model</a></li>
+
                        <ul>
+
                             <li> <a href="#packaging">Packaging</a></li>
                             <li> <a href="#LensPrevention">Prevention</a></li>
+
                             <ul>
                             <li> <a href="#LensTreatment">Treatment</a></li>
+
                                <li> <a href="#encapsulation">Encapsulation</a></li>
                        </ul>
+
                             <li> <a href="#release">Release</a></li>
<li><a href="#construct">Construct</a></li>
+
                             </ul>
                        <ul>
+
                             <li> <a href="#ConstructPrevention">Prevention</a></li>
+
                             <li> <a href="#ConstructTreatment">Treatment</a></li>
+
                        </ul>
+
                        <li><a href="#prototype">Delivery Prototype</a></li>
+
                        <ul>
+
                            <li> <a href="#step1">Purification</a></li>
+
                            <li> <a href="#step2">Nanoparticle</a></li>
+
                            <li> <a href="#step2i">Encapsulation</a></li>
+
                            <li> <a href="#step2ii">Release</a></li>
+
 
                             <li> <a href="#step3">Application</a></li>
 
                             <li> <a href="#step3">Application</a></li>
                        </ul>
+
 
 
</ul>
 
</ul>
 
</div>
 
</div>
Line 258: Line 248:
 
<h1>Proof of Concept</h1>
 
<h1>Proof of Concept</h1>
 
                                      
 
                                      
                  <div class = "row">
+
                  <div class = "row">
 
              <div class="col-sm-12">
 
              <div class="col-sm-12">
        <h2 id = 'construct'>Research</h2>
+
                <p>We made a functional prototype to show how chitosan nanoparticles can both encapsulate and release desired proteins for delivery to the eye. We encapsulated green fluorescent protein (GFP, BBa_K741002), red fluorescent protein, and green pigment (Bba_K274003) into nanoparticles. Because the nanoparticles are translucent, the pelleted nanoparticles displayed the color of the protein. When we viewed the nanoparticles under blue light, the GFP and RFP containing pellets glowed, showing that protein encapsulation was successful and that the proteins remained functional inside nanoparticles. We also determined the percent of proteins that were encapsulated into the nanoparticles by measuring the amount of protein left in the solution outside the nanoparticles. We found that 72% of proteins was loaded into nanoparticles. We tested if the nanoparticles would degrade and release proteins by incubating resuspended nanoparticles in phosphate buffered saline at 4℃ and 37℃. Using Coomassie Brilliant Blue to stain proteins, we found that proteins were released at 37℃ but not at 4℃. Finally, we made eye drops containing nanoparticles and  GFP-containing nanoparticles. </p>
                            <div class="row">
+
                          <h3 id="packaging"></h3>
 +
                                    <br>
 +
                          <h3><u>Packaging in Nanoparticles</u></h3>
 +
                          <div class="row">
 
                                  
 
                                  
 
                                 <div class="col-sm-12">
 
                                 <div class="col-sm-12">
                                <h3 id="ConstructPrevention"></h3>
 
                                    <br>
 
                                <h3>Professional Help</h3>
 
 
                                 <p>
 
                                 <p>
                                     In order to improve how we develop our prototype we needed to get in contact with experts in the fields of eye surgery and cataracts research. Our first step was to contact eye doctors to discuss any problems associated with current cataracts treatment. Finally, while developing our project we realized that cataracts is a major issue in pets and other animals as well as people. As a result, we contacted local veterinarians to discuss what pet owners do when their pets contract cataracts. As our project developed, we needed more specific information regarding our genes of interest, cataracts development, and our delivery mechanism. We contacted scientists doing research similar to our own to get their opinion on our projects progress.
+
                                     The cornea is the outermost layer of the eye and protects the eye from foreign materials, but also prevents drugs from reaching the lens (Gaudana et al., 2010). Scientists have developed several methods to penetrate the cornea and deliver drugs to the lens, but many are invasive, such as implants (Patel et al., 2013). The most promising method is using nanoparticles as drug carriers (Cholkar et al., 2013). so we chose to use nanoparticles to deliver our proteins to the lens.
 +
                                </p>
 +
                                </div>
 +
                              <div class="col-sm-12">
 +
                                <p>
 +
                                    Nanoparticles can be made from a variety of materials, but we selected chitosan for several reasons. Researchers have used chitosan nanoparticles in the eye; its low toxicity to somatic cells makes it safe and it does not affect the anatomy of the eye (Enriquez de Salamanca et al., 2006).  We also learned that chitosan nanoparticles can embed in the cornea, and its biodegradability allows the drug to be released continuously into the eye (figure 3.3) (Enriquez de Salamanca et al., 2006; Campos et al., 2005). Therefore, we want to load our purified proteins into chitosan nanoparticles (figure 3.4).  
 
                                 </p>
 
                                 </p>
 
                                 </div>
 
                                 </div>
 
                                  
 
                                  
 
                             </div>
 
                             </div>
 +
                         
 +
                          <br><br>
 +
                          <div class="row">
 +
                                <figure class = "col-sm-6">
 +
                                    <br><br>
 +
        <img src="https://static.igem.org/mediawiki/2016/4/4e/T--TAS_Taipei--NPAnimation.gif">
 +
                                    <figcaption class='darkblue'><b>Figure 3.3: &nbsp;</b>Nanoparticles containing our proteins embed into the cornea and degrade. The released proteins are then delivered within the eye.</figcaption>
 +
                                </figure>
 +
                                <figure class = "col-sm-6">
 +
        <img src="https://static.igem.org/mediawiki/2016/4/41/T--TAS_Taipei--PurificationAnimation.gif">
 +
                                    <figcaption class='darkblue'><b>Figure 3.4: &nbsp;</b>Purified proteins can be encapsulated in chitosan nanoparticles.</figcaption>
 +
                                </figure>
 +
                            </div>                       
 +
                         
 
                           <br><br>
 
                           <br><br>
 
                             <div class="row">
 
                             <div class="row">
 
                                 <div class="col-sm-12">
 
                                 <div class="col-sm-12">
                                    <h3 id="ConstructPrevention"></h3>
+
                                <p>
                                        <br>
+
                                     Below is a video of our nanoparticle synthesis procedure.
                                     <h4>Contact with Eye Doctors</h4>
+
                                </p>
                                    <p>
+
                                        Eye doctors are on the front lines, delivering cataracts surgery, some privately and others for charity in organizations such as the Himalayan Cataracts Projects. We contacted local Taiwanese Eye Doctors to ask them about cataracts surgery. Here is a list of the doctors we contacted along with the information they provided:
+
                                    </p>
+
 
                                 </div>
 
                                 </div>
                               
 
                               
 
 
                             </div>
 
                             </div>
                            <div class="row">
+
                          <div class="row">
 
                                 <div class="col-sm-6">
 
                                 <div class="col-sm-6">
                                    <h3 id="ConstructPrevention"></h3>
+
                              <video controls>
                                        <br>
+
  <source src="https://static.igem.org/mediawiki/2016/5/50/4-Ingredient_Nanoparticles.mp4" type="video/mp4"> Your browser does not support the video tag.
                                    <p>
+
</video>
                                        Dr. Wei-Chi Wu is a retina specialist and an associate professor at Chang Gung memorial hospital in Taiwan. According to Dr. Wu current cataracts surgery methods are efficient and effective, but are not without their issues. Besides the issue of price, there can also be several different post-surgery complications such as infection, hemorrhaging, or secondary glaucoma. In regards to our project, he said one of the biggest issues we would face is non-invasive delivery. Currently, injections and incisions are the only methods for delivery because all current potential methods of noninvasive delivery either lack efficiency or induce with side effects.  
+
</div>
                                    </p>
+
                            </div>
 +
                          <br><br>
 +
 
 +
                          <div class="row">
 +
                                <div class="col-sm-12">
 +
                                <p>
 +
                                    Following the procedure of Quan and Wang (2007),  we made nanoparticles and imaged them using scanning electron microscopy and atomic force microscopy (figure 3.5). This revealed our nanoparticles to be spherical and at the optimal size of 200-600 nm (figure 3.6 and 3.7).
 +
                                </p>
 
                                 </div>
 
                                 </div>
 +
                            </div>
 +
                                                    <br><br>
 +
                          <div class="row">
 +
                              <div class="col-sm-1"></div>
 +
                                <figure class = "col-sm-10">
 +
        <img src="https://static.igem.org/mediawiki/2016/7/7f/T--TAS_Taipei--MakingNP.png">
 +
                                    <figcaption class='darkblue'><b>Figure 3.5: &nbsp;</b> Team members imaging nanoparticles on the scanning electron microscope and atomic force microscope. </figcaption>
 +
                                </figure>
 +
                              <div class="col-sm-1"></div>
 +
                            </div>
 +
                        <br><br>
 +
                          <div class="row">
 +
                                <figure class = "col-sm-4">
 +
        <img src="https://static.igem.org/mediawiki/2016/3/30/T--TAS_Taipei--SEMChitosan%28C%29.png">
 +
                                    <figcaption class='darkblue'><b>Figure 3.6: &nbsp;</b>Scanning electron microscope image of chitosan nanoparticles</figcaption>
 +
                                </figure>
 +
                              <figure class = "col-sm-8">
 +
        <img src="https://static.igem.org/mediawiki/2016/2/27/T--TAS_Taipei--AtomicForceMicroscopeImage%28D%29.png">
 +
                                    <figcaption class='darkblue'><b>Figure 3.7: &nbsp;</b>We imaged chitosan nanoparticles using atomic force microscopy. On the left is the empty silica plate. On the right is an image of the chitosan nanoparticles, which were placed on the silica plate</figcaption>
 +
                                </figure>
 +
                            </div>
 +
                         
 +
                          <br><br>
 +
                          <h3 id="encapsulation"></h3>
 +
                                    <br>
 +
                          <h3 style="text-transform: none"><i>Protein Encapsulation</i></h3>
 +
                         
 +
                          <div class="row">
 +
                              <div class="col-sm-6">
 +
                                  <p>Next, we wanted to load our purified proteins into the nanoparticles. We first used colored proteins to qualitatively test whether proteins could be successfully encapsulated. To do so, we lysed bacteria expressing green fluorescent protein (GFP), red fluorescent protein (RFP), and green pigment (from pGRN, Bba_K274003). We then add the proteins to the chitosan solution. After nanoparticles were made, our results showed that we successfully encapsulated the colored proteins. When we further viewed the nanoparticles under blue light, the GFP- and RFP-containing pellets glowed (figure 3.8), suggesting that the proteins remain functional. Thus, our nanoparticles can serve as protein carriers to enhance drug delivery. </p>
 +
                              </div>
 
                                 <figure class = "col-sm-6">
 
                                 <figure class = "col-sm-6">
        <img src="https://static.igem.org/mediawiki/2016/6/67/T--TAS_Taipei--GSR_Construct_Experimental.jpg">
+
        <img src="https://static.igem.org/mediawiki/2016/2/21/T--TAS_Taipei--ProteinPellets.png" style="width:100%">
                                     <figcaption class='darkblue'><b>Figure X. </b>Full Construct.</figcaption>
+
                                     <figcaption class='darkblue'><b>Figure 3.8: &nbsp;</b> Proteins were successfully encapsulated into nanoparticles. Figure shows nanoparticle pellets containing no protein, GFP, RFP, and pGRN (left to right) under white light (top) and blue light (bottom). Fluorescence of GFP and RFP-containing pellets shows that proteins are still functional.  </figcaption>
 +
                               
 
                                 </figure>
 
                                 </figure>
                                  
+
                                   
 +
                            </div>
 +
                        <div class="row">
 +
                            <div class="col-sm-12">
 +
                                 <p>In order to quantitatively determine encapsulation efficiency, we measured protein concentration in the supernatant before and after nanoparticle formation. We started with 1 mg/mL of bovine serum albumin (BSA). After nanoparticle formation, we performed a Bradford assay and found that the concentration decreased to 0.28 mg/mL. As shown in figure 3.9, the encapsulation efficiency was 72%.</p>
 
                                  
 
                                  
 
                             </div>
 
                             </div>
 +
                           
 +
                        </div>
 +
                        <br><br>
 +
                        <div class="row">
 +
                            <div class="col-sm-2"></div>
 +
                            <figure class = "col-sm-8">
 +
        <img src="https://static.igem.org/mediawiki/2016/a/ad/T--TAS_Taipei--EncapEfficiency.png" style="width:100%">
 +
                                <figcaption class='darkblue'><b>Figure 3.9: &nbsp;</b>The encapsulation efficiency is 72%. Using a Bradford assay, we created a standard curve of known BSA protein concentrations by measuring absorbance at 595 nm. <b>Top</b>: graph shows absorbance values of the supernatant after nanoparticle formation. <b>Bottom</b>: cuvettes containing standard solutions (left) and the sample solution (right).  </figcaption>
 +
                                </figure>
 +
                            <div class="col-sm-2"></div>
 +
                        </div>
 +
                       
 +
                              <br><br>
 +
                                                         
 +
                               
 +
                       
 +
                          <h3 id="release"></h3>
 +
                                    <br>
 +
                          <h3 style="text-transform: none"><i>Protein Release</i></h3>
 +
                          <div class="row">
 +
                               
 +
                                <figure class = "col-sm-6">
 +
        <img src="https://static.igem.org/mediawiki/2016/1/17/T--TAS_Taipei--BSATempComp.png" style="width:100%">
 +
                                    <figcaption class='darkblue'><b>Figure 3.10: &nbsp;</b>BSA proteins are released from chitosan nanoparticles at 37℃, but almost no change occurred at 4℃. </figcaption>
 +
                                </figure>
 +
                                <div class="col-sm-6">
 +
                                <p>
 +
                                    After proteins are encapsulated, nanoparticles should embed in the cornea and release proteins as they degrade over time. To test whether nanoparticles degrade, we measured the release of proteins. After BSA-containing nanoparticles were made, they were spun down and the solution was replaced with phosphate buffered saline (PBS) (Wilson, 2014). Using a Bradford assay, we could then measure protein concentration in the PBS over a 72-hour period.
 +
                                </p>
 +
                                <p>
 +
                                    Trials were performed at two different temperatures: 4°C and 37°C. Our results show that proteins are released from nanoparticles at 37°C , but almost no change could be detected at 4°C (figure 3.10). This finding suggests that we can store a final functional product (e.g., eye drop) at 4°C without nanoparticle degradation, while the proteins can be released from nanoparticles when the eye drop is applied at body temperature. 
 +
                                </p>
 +
                                </div>
 +
                           
 +
                          </div>
 +
                          <br><br>
 +
                       
 +
                          <h3 id="step3"></h3>
 +
                                    <br>
 +
                          <h3><u>Application (EYE DROP OR CONTACT LENSES)</h3>
 +
                          <div class="row">
 +
                              <div class="col-sm-1"></div>
 +
                                <div class="col-sm-10">
 +
                                    <p>Our goal is to package GSR and CH25H in nanoparticles to deliver these proteins to the lens using a safe and non-invasive method. We have considered two drug delivery mechanisms to administer the nanoparticles: eye drops and contact lenses. </p>
 +
                                    <br>
 +
                                    <b>Eye drops</b>
 +
                                    <p>After packaging our proteins in nanoparticles, the nanoparticles can be spun down and resuspended in saline, since it is commonly used in eye drops (Falsini, 2016). </p>
 +
                                    <br>
 +
                                    <b>Contact Lenses</b>
 +
                                    <p>We found a method to make chitosan nanoparticle-embedded hydrogel contact lenses (Behl, 2016). Following their protocol, we created a polymer solution containing all the necessary components. We dispersed GFP-nanoparticles in the polymer solution to test if protein containing nanoparticles can be embedded in the contact lenses. We then transferred this solution into a 3D-printed mold (figure 3.11, left). After exposure to UV for 40 minutes, we successfully made hydrogel contact lenses (figure 3.11, right). </p>
 +
                                </div>
 +
                                <div class="col-sm-1"></div>
 +
                             
 +
                               
 +
                          </div>
 +
                       
 +
                           
 +
                        <div class="row">
 +
                                <figure class = "col-sm-12">
 +
        <img src="https://static.igem.org/mediawiki/2016/9/9b/T--TAS_Taipei--ContactLensMold.png" style="width:100%">
 +
                                    <figcaption class='darkblue'><b>Figure 3.11: &nbsp;</b>A 3D printed mold (left) used to make hydrogel lenses (right). </figcaption>
 +
                                </figure>
 +
                        </div>
 +
                        <div class="row">
 +
                                <figure class = "col-sm-12">
 +
        <img src="https://static.igem.org/mediawiki/2016/7/79/T--TAS_Taipei--Figure3.12a.jpeg " style="width:100%">
 +
                                    <figcaption class='darkblue'><b>Figure 3.12: &nbsp;</b> Contact lenses embedded with GFP-containing nanoparticles (left) and without GFP nanoparticles (right) in mold. </figcaption>
 +
                                </figure>
 +
                        </div>
 +
 +
                       
 
                            
 
                            
 
                     </div>
 
                     </div>
Line 308: Line 426:
 
                     <div class = "row">
 
                     <div class = "row">
 
  <div class="col-sm-12">
 
  <div class="col-sm-12">
<h3>Citations</h3>
+
        <br> <br>  <br> <br>  <br>  <br>  <br>  <br>           
+
        <br> <br>  <br>        
 
  </div>
 
  </div>
 
    </div>
 
    </div>
 
             </div>
 
             </div>
</div>
 
 
     </div>
 
     </div>
 
 
Line 344: Line 461:
 
var nowRadius = 0
 
var nowRadius = 0
 
$(function() {
 
$(function() {
     if (screen.width < 1400)
+
     if (screen.width > 1800)
       document.body.style.zoom="72%"; // zoom in or out feature
+
       $("#slideoutco").fadeOut(0);
    else if (screen.width < 1500)
+
      document.body.style.zoom = "77%";
+
    else if (screen.width < 1600)
+
      document.body.style.zoom="83%";
+
    else if (screen.width < 1700)
+
      document.body.style.zoom="90%";
+
    else if (screen.width < 1800)
+
      document.body.style.zoom="96%";
+
    else document.body.style.zoom="100%";
+
 
     $({blurRadius: 0}).animate({blurRadius: 10}, {
 
     $({blurRadius: 0}).animate({blurRadius: 10}, {
 
         duration: 20000,
 
         duration: 20000,
Line 609: Line 717:
 
     <div id="slidecontentco">
 
     <div id="slidecontentco">
 
         <div id="slidecontenttext" class="alert alert-danger">
 
         <div id="slidecontenttext" class="alert alert-danger">
             <p style="font-size:14px !important"> <a href="#" class="close" data-dismiss="alert" style="font:18px">&times;</a>
+
             <p style="font-size:14px !important"> <a href="#" class="close" data-dismiss="alert">&times;</a>
                 <strong>The tutorial is disabled.</strong> &#160; &#160; &#160; &#160; &#160;<a href="https://2016.igem.org/Team:TAS_Taipei/Wiki_Standard_Pages#Animation"><button  type="button" class="btn btn-danger btn-sm">?</button> </a><span style="font-size:14px"><br>Turn off prevention eyedrops to activate the animation. For a full tutorial, click the question mark. </span></p>
+
                 <strong>Zoom out to see animation.</strong> &#160; &#160; &#160; &#160; &#160;<a href="https://2016.igem.org/Team:TAS_Taipei/Wiki_Standard_Pages#Animation"><button  type="button" class="btn btn-danger btn-sm">?</button> </a><span style="font-size:14px"><br>Your screen resolution is too low unless you zoom out </span></p>
 
              
 
              
 
         </div>
 
         </div>

Latest revision as of 03:03, 20 October 2016

Proof of Concept - TAS Taipei iGEM Wiki





Proof of Concept

We made a functional prototype to show how chitosan nanoparticles can both encapsulate and release desired proteins for delivery to the eye. We encapsulated green fluorescent protein (GFP, BBa_K741002), red fluorescent protein, and green pigment (Bba_K274003) into nanoparticles. Because the nanoparticles are translucent, the pelleted nanoparticles displayed the color of the protein. When we viewed the nanoparticles under blue light, the GFP and RFP containing pellets glowed, showing that protein encapsulation was successful and that the proteins remained functional inside nanoparticles. We also determined the percent of proteins that were encapsulated into the nanoparticles by measuring the amount of protein left in the solution outside the nanoparticles. We found that 72% of proteins was loaded into nanoparticles. We tested if the nanoparticles would degrade and release proteins by incubating resuspended nanoparticles in phosphate buffered saline at 4℃ and 37℃. Using Coomassie Brilliant Blue to stain proteins, we found that proteins were released at 37℃ but not at 4℃. Finally, we made eye drops containing nanoparticles and GFP-containing nanoparticles.


Packaging in Nanoparticles

The cornea is the outermost layer of the eye and protects the eye from foreign materials, but also prevents drugs from reaching the lens (Gaudana et al., 2010). Scientists have developed several methods to penetrate the cornea and deliver drugs to the lens, but many are invasive, such as implants (Patel et al., 2013). The most promising method is using nanoparticles as drug carriers (Cholkar et al., 2013). so we chose to use nanoparticles to deliver our proteins to the lens.

Nanoparticles can be made from a variety of materials, but we selected chitosan for several reasons. Researchers have used chitosan nanoparticles in the eye; its low toxicity to somatic cells makes it safe and it does not affect the anatomy of the eye (Enriquez de Salamanca et al., 2006). We also learned that chitosan nanoparticles can embed in the cornea, and its biodegradability allows the drug to be released continuously into the eye (figure 3.3) (Enriquez de Salamanca et al., 2006; Campos et al., 2005). Therefore, we want to load our purified proteins into chitosan nanoparticles (figure 3.4).





Figure 3.3:  Nanoparticles containing our proteins embed into the cornea and degrade. The released proteins are then delivered within the eye.
Figure 3.4:  Purified proteins can be encapsulated in chitosan nanoparticles.


Below is a video of our nanoparticle synthesis procedure.



Following the procedure of Quan and Wang (2007), we made nanoparticles and imaged them using scanning electron microscopy and atomic force microscopy (figure 3.5). This revealed our nanoparticles to be spherical and at the optimal size of 200-600 nm (figure 3.6 and 3.7).



Figure 3.5:   Team members imaging nanoparticles on the scanning electron microscope and atomic force microscope.


Figure 3.6:  Scanning electron microscope image of chitosan nanoparticles
Figure 3.7:  We imaged chitosan nanoparticles using atomic force microscopy. On the left is the empty silica plate. On the right is an image of the chitosan nanoparticles, which were placed on the silica plate



Protein Encapsulation

Next, we wanted to load our purified proteins into the nanoparticles. We first used colored proteins to qualitatively test whether proteins could be successfully encapsulated. To do so, we lysed bacteria expressing green fluorescent protein (GFP), red fluorescent protein (RFP), and green pigment (from pGRN, Bba_K274003). We then add the proteins to the chitosan solution. After nanoparticles were made, our results showed that we successfully encapsulated the colored proteins. When we further viewed the nanoparticles under blue light, the GFP- and RFP-containing pellets glowed (figure 3.8), suggesting that the proteins remain functional. Thus, our nanoparticles can serve as protein carriers to enhance drug delivery.

Figure 3.8:   Proteins were successfully encapsulated into nanoparticles. Figure shows nanoparticle pellets containing no protein, GFP, RFP, and pGRN (left to right) under white light (top) and blue light (bottom). Fluorescence of GFP and RFP-containing pellets shows that proteins are still functional.

In order to quantitatively determine encapsulation efficiency, we measured protein concentration in the supernatant before and after nanoparticle formation. We started with 1 mg/mL of bovine serum albumin (BSA). After nanoparticle formation, we performed a Bradford assay and found that the concentration decreased to 0.28 mg/mL. As shown in figure 3.9, the encapsulation efficiency was 72%.



Figure 3.9:  The encapsulation efficiency is 72%. Using a Bradford assay, we created a standard curve of known BSA protein concentrations by measuring absorbance at 595 nm. Top: graph shows absorbance values of the supernatant after nanoparticle formation. Bottom: cuvettes containing standard solutions (left) and the sample solution (right).



Protein Release

Figure 3.10:  BSA proteins are released from chitosan nanoparticles at 37℃, but almost no change occurred at 4℃.

After proteins are encapsulated, nanoparticles should embed in the cornea and release proteins as they degrade over time. To test whether nanoparticles degrade, we measured the release of proteins. After BSA-containing nanoparticles were made, they were spun down and the solution was replaced with phosphate buffered saline (PBS) (Wilson, 2014). Using a Bradford assay, we could then measure protein concentration in the PBS over a 72-hour period.

Trials were performed at two different temperatures: 4°C and 37°C. Our results show that proteins are released from nanoparticles at 37°C , but almost no change could be detected at 4°C (figure 3.10). This finding suggests that we can store a final functional product (e.g., eye drop) at 4°C without nanoparticle degradation, while the proteins can be released from nanoparticles when the eye drop is applied at body temperature.




Application (EYE DROP OR CONTACT LENSES)

Our goal is to package GSR and CH25H in nanoparticles to deliver these proteins to the lens using a safe and non-invasive method. We have considered two drug delivery mechanisms to administer the nanoparticles: eye drops and contact lenses.


Eye drops

After packaging our proteins in nanoparticles, the nanoparticles can be spun down and resuspended in saline, since it is commonly used in eye drops (Falsini, 2016).


Contact Lenses

We found a method to make chitosan nanoparticle-embedded hydrogel contact lenses (Behl, 2016). Following their protocol, we created a polymer solution containing all the necessary components. We dispersed GFP-nanoparticles in the polymer solution to test if protein containing nanoparticles can be embedded in the contact lenses. We then transferred this solution into a 3D-printed mold (figure 3.11, left). After exposure to UV for 40 minutes, we successfully made hydrogel contact lenses (figure 3.11, right).

Figure 3.11:  A 3D printed mold (left) used to make hydrogel lenses (right).
Figure 3.12:   Contact lenses embedded with GFP-containing nanoparticles (left) and without GFP nanoparticles (right) in mold.








Prevention

GSR Eyedrop

Treatment

25HC Eyedrop

LOCS: 0      


Eyedrops




× Zoom out to see animation.          
Your screen resolution is too low unless you zoom out