Difference between revisions of "Team:TAS Taipei/Design"

(Prototype team page)
 
(10 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{TAS_Taipei}}
+
{{TAS Taipei/CSS}}
 
<html>
 
<html>
  
 +
<head>
 +
<title>Human Practice - TAS Taipei iGEM Wiki</title>
 +
<style type='text/css'>
 +
      #top_title, #sideMenu{
 +
        display: none;
 +
      }
  
<div class="column full_size judges-will-not-evaluate">
+
      #content{
<h3>★  ALERT! </h3>
+
        width: 100%;
<p>This page is used by the judges to evaluate your team for the <a href="https://2016.igem.org/Judging/Awards#Special_Prizes"> design special prize</a>. </p>
+
        margin: 0;
 +
        padding: 0;
 +
        background: #f3f4f4;}
  
 +
     
  
<p> Delete this box in order to be evaluated for this medal. See more information at <a href="https://2016.igem.org/Judging/Pages_for_Awards/Instructions"> Instructions for Pages for awards</a>.</p>
+
 
 +
    </style>
 +
</head>
 +
 
 +
<body data-spy="scroll" data-target="#category_navbar">
 +
<link rel="shortcut icon" href="https://static.igem.org/mediawiki/2016/c/c6/T--TAS_Taipei--TAS_iGEM_Logo.png">
 +
<link href='http://fonts.googleapis.com/css?family=Lato' rel='stylesheet' type='text/css'>
 +
 
 +
<link rel="stylesheet" href="https://2015.igem.org/Template:TAS_Taipei/css/bootstrap?action=raw&ctype=text/css">
 +
 
 +
 
 +
 
 +
<script>localStorage.clear();</script>
 +
<script src="https://2015.igem.org/Template:TAS_Taipei/js/jquery?action=raw&ctype=text/javascript"></script>
 +
<script src='https://2015.igem.org/Template:TAS_Taipei/js/bootstrap?action=raw&ctype=text/javascript'></script>
 +
<script src="https://2015.igem.org/Template:TAS_Taipei/js/jquerySlides?action=raw&ctype=text/javascript"></script>
 +
 
 +
<script type="text/javascript" async
 +
  src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML">
 +
</script>
 +
 
 +
<script type="text/x-mathjax-config">
 +
MathJax.Hub.Config({tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]}});
 +
</script>
 +
 
 +
<style type='text/css'>
 +
p{font-family: Lato !important; font-size:17px !important}
 +
h1{font-size:40-px !important;}
 +
body{font-family:Lato !important;}
 +
h3{font-size:25-px
 +
</style>
 +
 
 +
<script>
 +
$(document).ready(function() {
 +
if(document.domain === "2016.igem.org")
 +
setTimeout(function() {
 +
$("style:eq(0)").remove();
 +
}, 500);
 +
});
 +
   
 +
   
 +
</script>
 +
   
 +
 
 +
   
 +
<div class="container" style='z-index:10;position:relative;'>
 +
<div class="row center-block" style = "text-align: left;">
 +
<nav style='font-family:Lato;font-size:22px;background-color:#1C77C3;-webkit-transform: translateZ(0);z-index: 100;position: fixed;box-shadow: 0px 0px 10px black;'>
 +
<ul style='margin-left:0px'>
 +
<li class="dropdown">
 +
<a href="https://2016.igem.org/Team:TAS_Taipei/Background"><h4 class="dropdown-toggle disabled" data-toggle="dropdown"><b>PROJECT</b></h4></a>
 +
<div class="dropdown-menu">
 +
<div class='subcategories_container'>
 +
<div>
 +
<h5><a href="https://2016.igem.org/Team:TAS_Taipei/Background">Background</a></h5>
 +
</div>
 +
<div>
 +
<h5><a href="https://2016.igem.org/Team:TAS_Taipei/Achievements">Achievements</a></h5>
 +
</div>
 +
<div>
 +
<h5><a href="https://2016.igem.org/Team:TAS_Taipei/Collaborations">Collaborations</a></h5>
 +
</div>
 +
<div>
 +
<h5><a href="https://2016.igem.org/Team:TAS_Taipei/Parts">Parts</a></h5>
 +
</div>
 +
</div>
 +
<div style='height:140px;'>
 +
<img src="https://static.igem.org/mediawiki/2016/1/11/T--TAS_Taipei--TAS_Icon_Project.png">
 +
<h4><b>Cataracts</b> - the leading cause of blindness. Find out how we can non-invasively <b>treat</b> and <b>prevent</b> cataract formation.</b></h4>
 +
</div>
 +
 +
</div>
 +
</li>
 +
<li class="dropdown">
 +
<a href="https://2016.igem.org/Team:TAS_Taipei/Experimental_Summary"><h4 class='dropdown-toggle disabled' data-toggle="dropdown"><b>EXPERIMENTAL</b></h4></a>
 +
<div class="dropdown-menu">
 +
<div class='subcategories_container'>
 +
<div>
 +
<h5><a href="https://2016.igem.org/Team:TAS_Taipei/Experimental_Summary#lensmodel">Lens Cataract Model</a></h5>
 +
</div>
 +
<div>
 +
<h5><a href="https://2016.igem.org/Team:TAS_Taipei/Experimental_Summary#construct">Prevention and Treatment Constructs </a></h5>
 +
</div>
 +
<div>
 +
<h5><a href="https://2016.igem.org/Team:TAS_Taipei/Experimental_Summary#prototype">Delivery Prototype</a></h5>
 +
</div>
 +
<div>
 +
<h5><a href="https://2016.igem.org/Team:TAS_Taipei/Notebook">Notebook</a></h5>
 +
</div>
 +
</div>
 +
<div style='height:140px;'>
 +
<img src="https://static.igem.org/mediawiki/2016/b/b0/T--TAS_Taipei--TAS_Icon_Experiments.png">
 +
                        <h4>We build <b>constructs</b> to make our great ideas become reality. Follow along our discovery of exciting science!</h4>
 +
</div>
 +
</div>
 +
</li>
 +
<li class="dropdown">
 +
<a href="https://2016.igem.org/Team:TAS_Taipei/Model"><h4 class='dropdown-toggle disabled' data-toggle="dropdown"><b>MODEL</b></h4></a>
 +
<div class="dropdown-menu">
 +
<div class='subcategories_container'>
 +
<div>
 +
<h5><a href="https://2016.igem.org/Team:TAS_Taipei/Model#GSRFunc">GSR Function</a></h5>
 +
</div>
 +
<div>
 +
<h5><a href="https://2016.igem.org/Team:TAS_Taipei/Model#prototype">Prototype Delivery</a></h5>
 +
</div>
 +
<div>
 +
<h5><a href="https://2016.igem.org/Team:TAS_Taipei/Model#treatment">CH25H Treatment</a></h5>
 +
</div>
 +
<div>
 +
<h5><a href="https://2016.igem.org/Team:TAS_Taipei/Model#software">Calculator</a></h5>
 +
</div>
 +
 
 +
</div>
 +
<div style='height:140px;'>
 +
<img src="https://static.igem.org/mediawiki/2016/c/ca/T--TAS_Taipei--TAS_Icon_Model.png">
 +
<h4><b>Computational Biology</b> provides us models that we cannot easily test experimentally. Click to find out the results of our modeling, and the math behind it!</h4>
 +
</div>
 +
</div>
 +
</li>
 +
<li class="dropdown">
 +
<a href="https://2016.igem.org/Team:TAS_Taipei/Human_Practices"><h4 class='dropdown-toggle disabled' data-toggle="dropdown"><b>HUMAN PRACTICE</b></h4></a>
 +
<div class="dropdown-menu">
 +
<div class='subcategories_container'>
 +
<div>
 +
<h5><a href="https://2016.igem.org/Team:TAS_Taipei/Human_Practices#research">Research</a></h5>
 +
</div>
 +
<div>
 +
<h5><a href="https://2016.igem.org/Team:TAS_Taipei/Human_Practices#outreach">Outreach</a></h5>
 +
</div>
 +
<div>
 +
<h5><a href="https://2016.igem.org/Team:TAS_Taipei/Human_Practices#impact">Impact</a></h5>
 +
</div>
 +
</div>
 +
<div style='height:140px;'>
 +
<img src="https://static.igem.org/mediawiki/2016/b/b9/T--TAS_Taipei--TAS_Icon_HP.png">
 +
<h4>We don't just grow cool bacteria. We make a <b>difference</b>. Find out how we tackled <b>social aspects</b> of this project.</h4>
 +
</div>
 +
</div>
 +
</li>
 +
<li class="dropdown">
 +
<a href="https://2016.igem.org/Team:TAS_Taipei/Safety"><h4 class='dropdown-toggle disabled' data-toggle="dropdown"><b>SAFETY</b></h4></a>
 +
<div class="dropdown-menu">
 +
<div style='height:100px;'>
 +
<div class='subcategories_container'>
 +
<div>
 +
<h5><a href="https://2016.igem.org/Team:TAS_Taipei/Safety#overview">Overview</a></h5>
 +
</div>
 +
<div>
 +
<h5><a href="https://2016.igem.org/Team:TAS_Taipei/Safety#biosafety">Biosafety</a></h5>
 +
</div>
 +
<div>
 +
<h5><a href="https://2016.igem.org/Team:TAS_Taipei/Safety#riskreduction">Risk Reduction Methods</a></h5>
 +
</div>
 +
<div>
 +
<h5><a href="https://2016.igem.org/Team:TAS_Taipei/Safety#furtherquestion">Further Questions</a></h5>
 +
</div>
 +
</div>
 +
<img src="https://static.igem.org/mediawiki/2016/7/7e/T--TAS_Taipei--TAS_Icon_Safety.png">
 +
<h4><b>Safety first.</b> Especially in a lab. Here's how we maintained and investigated the integrity and security of our work environment.</h4>
 +
</div>
 +
</div>
 +
</li>
 +
<li class="dropdown">
 +
<a href="https://2016.igem.org/Team:TAS_Taipei/Team"><h4 class='dropdown-toggle disabled' data-toggle="dropdown"><b>TEAM</b></h4></a>
 +
<div class="dropdown-menu">
 +
<div class='subcategories_container'>
 +
<div>
 +
<h5><a href="https://2016.igem.org/Team:TAS_Taipei/Team#members">Members</a></h5>
 +
</div>
 +
<div>
 +
<h5><a href="https://2016.igem.org/Team:TAS_Taipei/Team#about">About</a></h5>
 +
</div>
 +
<div>
 +
<h5><a href="https://2016.igem.org/Team:TAS_Taipei/Attributions">Attributions</a></h5>
 +
</div>
 +
<div>
 +
<h5><a href="https://2016.igem.org/Team:TAS_Taipei/Wiki_Standard_Pages">Wiki Standard Pages</a></h5>
 +
</div>
 +
</div>
 +
<div style='height:140px;'>
 +
<img src="https://static.igem.org/mediawiki/2016/c/c6/T--TAS_Taipei--TAS_Icon_Team.png">
 +
<h4>Every iGEM project is the accumulation of an entire year's hard work by a group of cheerful students. <b>Meet the team!</b></h4>
 +
</div>
 +
</div>
 +
</li>
 +
</ul>
 +
</nav>
 +
</div>
 +
<br>
 +
<br>
 +
<br>
 +
<div class="row center-block" style = "padding:10px;width:90%;background-color:#07BEB8;box-shadow:0px 0px 5px black">
 +
<div class="row" style = "text-align:center;">
 +
<div class="col-sm-2">
 +
<a href="https://2016.igem.org/Team:TAS_Taipei" style='text-decoration: none'><img src="https://static.igem.org/mediawiki/2016/c/c6/T--TAS_Taipei--TAS_iGEM_Logo.png
 +
" alt="" style="width: 100px;"></a>
 +
</div>
 +
<div class="col-sm-8" style='text-align:center;'>
 +
<a href="https://2016.igem.org/Team:TAS_Taipei" style='text-decoration: none;'>
 +
<h2 style="font-family:'Lato';letter-spacing:10px;color: white; font-size: 60px;  margin-top: 0;  margin-bottom: 0;"><b>
 +
C&#9678;UNTERACTS</b></h2>
 +
</a>
 +
</div>
 +
<div class="col-sm-2">
 +
<a href="https://igem.org/HS"><img src="https://static.igem.org/mediawiki/2016/6/6e/T--TAS_Taipei--TAS_Icon_Logo2.png" alt="" style="width: 100px;"></a>
 +
</div>
 +
</div>
 
</div>
 
</div>
 +
<br>
 +
<div class="row card" id='bodycontainer' class='row'>
 +
<div class="col-sm-2" style='padding-left:8px;'>
 +
<div id="category_navbar">
 +
<ul class="nav nav-list" data-spy="affix" data-offset-top="160" style='-webkit-transform: translateZ(0);width:160px;margin-left:0' >
 +
 +
                            <li> <a href="#packaging">Packaging</a></li>
 +
                            <ul>
 +
                                <li> <a href="#encapsulation">Encapsulation</a></li>
 +
                            <li> <a href="#release">Release</a></li>
 +
                            </ul>
 +
                            <li> <a href="#step3">Application</a></li>
  
 +
</ul>
 +
</div>
  
 +
</div>
  
<div class="column full_size">
 
  
 +
<div class="col-sm-10" style="padding-right:5%">
 +
<h1>Applied Design</h1>
 +
                                   
 +
                  <div class = "row">
 +
              <div class="col-sm-12">
 +
                <p>A main obstacle for protein delivery into the eye is that the cornea acts as a barrier and blocks materials from entering the eye. To increase the amount of proteins that reach the lens, we made biodegradable chitosan nanoparticles that can package and deliver proteins. According to literature research, chitosan nanoparticles can embed in the cornea, where the encapsulated proteins can be released as the particles degrade. This is a better solution than commercially available eye drops (since more proteins can be delivered through the cornea) and surgery (because it is non-invasive). In addition, the nanoparticles do not affect vision or the normal protective functions of the cornea. We show that our nanoparticles successfully encapsulated proteins. Proteins remain inside nanoparticles at 4℃, which allows for storage, but can be released at body temperature. Finally, we envision using these nanoparticles in eye drops or contact lenses.</p>
 +
                          <h3 id="packaging"></h3>
 +
                                    <br>
 +
                          <h3><u>Packaging in Nanoparticles</u></h3>
 +
                          <div class="row">
 +
                               
 +
                                <div class="col-sm-12">
 +
                                <p>
 +
                                    The cornea is the outermost layer of the eye and protects the eye from foreign materials, but also prevents drugs from reaching the lens (Gaudana et al., 2010). Scientists have developed several methods to penetrate the cornea and deliver drugs to the lens, but many are invasive, such as implants (Patel et al., 2013). The most promising method is using nanoparticles as drug carriers (Cholkar et al., 2013). so we chose to use nanoparticles to deliver our proteins to the lens.
 +
                                </p>
 +
                                </div>
 +
                              <div class="col-sm-12">
 +
                                <p>
 +
                                    Nanoparticles can be made from a variety of materials, but we selected chitosan for several reasons. Researchers have used chitosan nanoparticles in the eye; its low toxicity to somatic cells makes it safe and it does not affect the anatomy of the eye (Enriquez de Salamanca et al., 2006).  We also learned that chitosan nanoparticles can embed in the cornea, and its biodegradability allows the drug to be released continuously into the eye (figure 3.3) (Enriquez de Salamanca et al., 2006; Campos et al., 2005). Therefore, we want to load our purified proteins into chitosan nanoparticles (figure 3.4).
 +
                                </p>
 +
                                </div>
 +
                               
 +
                            </div>
 +
                         
 +
                          <br><br>
 +
                          <div class="row">
 +
                                <figure class = "col-sm-6">
 +
                                    <br><br>
 +
        <img src="https://static.igem.org/mediawiki/2016/4/4e/T--TAS_Taipei--NPAnimation.gif">
 +
                                    <figcaption class='darkblue'><b>Figure 3.3: &nbsp;</b>Nanoparticles containing our proteins embed into the cornea and degrade. The released proteins are then delivered within the eye.</figcaption>
 +
                                </figure>
 +
                                <figure class = "col-sm-6">
 +
        <img src="https://static.igem.org/mediawiki/2016/4/41/T--TAS_Taipei--PurificationAnimation.gif">
 +
                                    <figcaption class='darkblue'><b>Figure 3.4: &nbsp;</b>Purified proteins can be encapsulated in chitosan nanoparticles.</figcaption>
 +
                                </figure>
 +
                            </div>                       
 +
                         
 +
                          <br><br>
 +
                            <div class="row">
 +
                                <div class="col-sm-12">
 +
                                <p>
 +
                                    Below is a video of our nanoparticle synthesis procedure.
 +
                                </p>
 +
                                </div>
 +
                            </div>
 +
                          <div class="row">
 +
                                <div class="col-sm-6">
 +
                              <video controls>
 +
  <source src="https://static.igem.org/mediawiki/2016/5/50/4-Ingredient_Nanoparticles.mp4" type="video/mp4"> Your browser does not support the video tag.
 +
</video>
 +
</div>
 +
                            </div>
 +
                          <br><br>
  
<p>
+
                          <div class="row">
By talking about your design work on this page, there is one medal criterion that you can attempt to meet, and one award that you can apply for. If your team is going for a gold medal by building a functional prototype, you should tell us what you did on this page.
+
                                <div class="col-sm-12">
</p>
+
                                <p>
 +
                                    Following the procedure of Quan and Wang (2007), we made nanoparticles and imaged them using scanning electron microscopy and atomic force microscopy (figure 3.5). This revealed our nanoparticles to be spherical and at the optimal size of 200-600 nm (figure 3.6 and 3.7).
 +
                                </p>
 +
                                </div>
 +
                            </div>
 +
                                                    <br><br>
 +
                          <div class="row">
 +
                              <div class="col-sm-1"></div>
 +
                                <figure class = "col-sm-10">
 +
        <img src="https://static.igem.org/mediawiki/2016/7/7f/T--TAS_Taipei--MakingNP.png">
 +
                                    <figcaption class='darkblue'><b>Figure 3.5: &nbsp;</b> Team members imaging nanoparticles on the scanning electron microscope and atomic force microscope. </figcaption>
 +
                                </figure>
 +
                              <div class="col-sm-1"></div>
 +
                            </div>
 +
                        <br><br>
 +
                          <div class="row">
 +
                                <figure class = "col-sm-4">
 +
        <img src="https://static.igem.org/mediawiki/2016/3/30/T--TAS_Taipei--SEMChitosan%28C%29.png">
 +
                                    <figcaption class='darkblue'><b>Figure 3.6: &nbsp;</b>Scanning electron microscope image of chitosan nanoparticles</figcaption>
 +
                                </figure>
 +
                              <figure class = "col-sm-8">
 +
        <img src="https://static.igem.org/mediawiki/2016/2/27/T--TAS_Taipei--AtomicForceMicroscopeImage%28D%29.png">
 +
                                    <figcaption class='darkblue'><b>Figure 3.7: &nbsp;</b>We imaged chitosan nanoparticles using atomic force microscopy. On the left is the empty silica plate. On the right is an image of the chitosan nanoparticles, which were placed on the silica plate</figcaption>
 +
                                </figure>
 +
                            </div>
 +
                         
 +
                          <br><br>
 +
                          <h3 id="encapsulation"></h3>
 +
                                    <br>
 +
                          <h3 style="text-transform: none"><i>Protein Encapsulation</i></h3>
 +
                         
 +
                          <div class="row">
 +
                              <div class="col-sm-6">
 +
                                  <p>Next, we wanted to load our purified proteins into the nanoparticles. We first used colored proteins to qualitatively test whether proteins could be successfully encapsulated. To do so, we lysed bacteria expressing green fluorescent protein (GFP), red fluorescent protein (RFP), and green pigment (from pGRN, Bba_K274003). We then add the proteins to the chitosan solution. After nanoparticles were made, our results showed that we successfully encapsulated the colored proteins. When we further viewed the nanoparticles under blue light, the GFP- and RFP-containing pellets glowed (figure 3.8), suggesting that the proteins remain functional. Thus, our nanoparticles can serve as protein carriers to enhance drug delivery. </p>
 +
                              </div>
 +
                                <figure class = "col-sm-6">
 +
        <img src="https://static.igem.org/mediawiki/2016/2/21/T--TAS_Taipei--ProteinPellets.png" style="width:100%">
 +
                                    <figcaption class='darkblue'><b>Figure 3.8: &nbsp;</b> Proteins were successfully encapsulated into nanoparticles. Figure shows nanoparticle pellets containing no protein, GFP, RFP, and pGRN (left to right) under white light (top) and blue light (bottom). Fluorescence of GFP and RFP-containing pellets shows that proteins are still functional.   </figcaption>
 +
                               
 +
                                </figure>
 +
                                   
 +
                            </div>
 +
                        <div class="row">
 +
                            <div class="col-sm-12">
 +
                                <p>In order to quantitatively determine encapsulation efficiency, we measured protein concentration in the supernatant before and after nanoparticle formation. We started with 1 mg/mL of bovine serum albumin (BSA). After nanoparticle formation, we performed a Bradford assay and found that the concentration decreased to 0.28 mg/mL. As shown in figure 3.9, the encapsulation efficiency was 72%.</p>
 +
                               
 +
                            </div>
 +
                           
 +
                        </div>
 +
                        <br><br>
 +
                        <div class="row">
 +
                            <div class="col-sm-2"></div>
 +
                            <figure class = "col-sm-8">
 +
        <img src="https://static.igem.org/mediawiki/2016/a/ad/T--TAS_Taipei--EncapEfficiency.png" style="width:100%">
 +
                                <figcaption class='darkblue'><b>Figure 3.9: &nbsp;</b>The encapsulation efficiency is 72%. Using a Bradford assay, we created a standard curve of known BSA protein concentrations by measuring absorbance at 595 nm. <b>Top</b>: graph shows absorbance values of the supernatant after nanoparticle formation. <b>Bottom</b>: cuvettes containing standard solutions (left) and the sample solution (right).  </figcaption>
 +
                                </figure>
 +
                            <div class="col-sm-2"></div>
 +
                        </div>
 +
                       
 +
                              <br><br>
 +
                                                         
 +
                               
 +
                       
 +
                          <h3 id="release"></h3>
 +
                                    <br>
 +
                          <h3 style="text-transform: none"><i>Protein Release</i></h3>
 +
                          <div class="row">
 +
                               
 +
                                <figure class = "col-sm-6">
 +
        <img src="https://static.igem.org/mediawiki/2016/1/17/T--TAS_Taipei--BSATempComp.png" style="width:100%">
 +
                                    <figcaption class='darkblue'><b>Figure 3.10: &nbsp;</b>BSA proteins are released from chitosan nanoparticles at 37℃, but almost no change occurred at 4℃. </figcaption>
 +
                                </figure>
 +
                                <div class="col-sm-6">
 +
                                <p>
 +
                                    After proteins are encapsulated, nanoparticles should embed in the cornea and release proteins as they degrade over time. To test whether nanoparticles degrade, we measured the release of proteins. After BSA-containing nanoparticles were made, they were spun down and the solution was replaced with phosphate buffered saline (PBS) (Wilson, 2014). Using a Bradford assay, we could then measure protein concentration in the PBS over a 72-hour period.
 +
                                </p>
 +
                                <p>
 +
                                    Trials were performed at two different temperatures: 4°C and 37°C. Our results show that proteins are released from nanoparticles at 37°C , but almost no change could be detected at 4°C (figure 3.10). This finding suggests that we can store a final functional product (e.g., eye drop) at 4°C without nanoparticle degradation, while the proteins can be released from nanoparticles when the eye drop is applied at body temperature.
 +
                                </p>
 +
                                </div>
 +
                           
 +
                          </div>
 +
                          <br><br>
 +
                       
 +
                          <h3 id="step3"></h3>
 +
                                    <br>
 +
                          <h3><u>Application (EYE DROP OR CONTACT LENSES)</h3>
 +
                          <div class="row">
 +
                              <div class="col-sm-1"></div>
 +
                                <div class="col-sm-10">
 +
                                    <p>Our goal is to package GSR and CH25H in nanoparticles to deliver these proteins to the lens using a safe and non-invasive method. We have considered two drug delivery mechanisms to administer the nanoparticles: eye drops and contact lenses. </p>
 +
                                    <br>
 +
                                    <b>Eye drops</b>
 +
                                    <p>After packaging our proteins in nanoparticles, the nanoparticles can be spun down and resuspended in saline, since it is commonly used in eye drops (Falsini, 2016). </p>
 +
                                    <br>
 +
                                    <b>Contact Lenses</b>
 +
                                    <p>We found a method to make chitosan nanoparticle-embedded hydrogel contact lenses (Behl, 2016). Following their protocol, we created a polymer solution containing all the necessary components, and then transferred this solution into a 3D-printed mold (figure 3.11, left). After exposure to UV for 40 minutes, we successfully made hydrogel contact lenses (figure 3.11, right). </p>
 +
                                </div>
 +
                                <div class="col-sm-1"></div>
 +
                             
 +
                               
 +
                          </div>
 +
                       
 +
                           
 +
                        <div class="row">
 +
                                <figure class = "col-sm-12">
 +
        <img src="https://static.igem.org/mediawiki/2016/9/9b/T--TAS_Taipei--ContactLensMold.png" style="width:100%">
 +
                                    <figcaption class='darkblue'><b>Figure 3.11: &nbsp;</b>A 3D printed mold (left) used to make hydrogel lenses (right). </figcaption>
 +
                                </figure>
 +
                        </div>
 +
                        <div class="row">
 +
                                <figure class = "col-sm-12">
 +
        <img src="https://static.igem.org/mediawiki/2016/7/79/T--TAS_Taipei--Figure3.12a.jpeg " style="width:100%">
 +
                                    <figcaption class='darkblue'><b>Figure 3.12: &nbsp;</b>Huiru you type the caption in. </figcaption>
 +
                                </figure>
 +
                        </div>
  
 +
                       
 +
                         
 +
                    </div>
 +
                </div>
 +
                    <br><br     
 +
               
 +
                    <div class = "row">
 +
  <div class="col-sm-12">
 +
<br>  <br>  <br>  <br>  <br>           
 +
  </div>
 +
    </div>
 +
            </div>
 +
    </div>
 +
 +
<br>
 +
<br><br>
  
<p>This is a prize for the team that has developed a synthetic biology product to solve a real world problem in the most elegant way. The students will have considered how well the product addresses the problem versus other potential solutions, how the product integrates or disrupts other products and processes, and how its lifecycle can more broadly impact our lives and environments in positive and negative ways.</p>
+
<canvas id="canvas-container" style = "z-index:-1"></canvas>
 +
<script type="text/javascript" src='https://2016.igem.org/Template:TAS_Taipei/js/field?action=raw&ctype=text/javascript'></script>
  
<p>
+
</body>
If you are working on art and design as your main project, please join the art and design track. If you are integrating art and design into the core of your main project, please apply for the award by completing this page.
+
</p>
+
  
  
<p>Teams who want to focus on art and design should be in the art and design special track. If you want to have a sub-project in this area, you should compete for this award.</p>
+
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
<style type='text/css'>
 +
    #bg { position: fixed; top: 0; left: 0; }
 +
    .bgwidth { width: 100%; }
 +
    .bgheight { height: 100%; }
 +
</style>
 +
 
 +
<div class="backgroundpic">
 +
<img src="https://static.igem.org/mediawiki/2016/e/e5/T--TAS_Taipei--Taipei_Background_1.0.jpg" style="z-index:0" width="100%" height="100%" id="bg" alt="" >
 
</div>
 
</div>
 +
 +
<script>
 +
var nowRadius = 0
 +
$(function() {
 +
    if (screen.width > 1800)
 +
      $("#slideoutco").fadeOut(0);
 +
    $({blurRadius: 0}).animate({blurRadius: 10}, {
 +
        duration: 20000,
 +
        easing:'swing', // or "linear"
 +
                        // use jQuery UI or Easing plugin for more options
 +
        step: function() {
 +
            console.log(this.blurRadius);
 +
            if ($("#bluebutton").hasClass("isOn") ) {return;};
 +
            if($('#redbutton').hasClass("isOn") ) {return;}
 +
            $('.backgroundpic').css({
 +
                "-webkit-filter": "blur("+this.blurRadius+"px)",
 +
                "filter": "blur("+this.blurRadius+"px)"
 +
 +
            });
 +
            nowRadius = this.blurRadius;
 +
        var LOCSnum = Math.round(nowRadius*6/9);
 +
        var NineLOCSnum = Math.round(nowRadius*6/9*10);
 +
        /**if (NineLOCSnum > 20) switchMessage("YELLOW","<b> Oh no! </b> Cataracts are forming! Click on the Eyedrop Tab and get <b>TREATMENT</b> eyedrops!", currentColor()=="GREEN");
 +
        if (NineLOCSnum == 55) $("#slideoutco").fadeOut(1000);
 +
        if (NineLOCSnum > 60) switchMessage("RED","Your cataracts are very severe. You need to get TREATMENT fast by clicking the Eyedrop Tab", currentColor()=="YELLOW");*/
 +
        if (LOCSnum > 6) {LOCSnum = "6+"; $('#LOCS').text(LOCSnum+"");}
 +
        else $('#LOCS').text(LOCSnum+"");
 +
       
 +
        if (LOCSnum ==0) document.getElementById('bluebutton').click();
 +
        }
 +
    });
 +
 +
});
 +
 +
startBlur= function(speed) {
 +
    $({blurRadius: nowRadius}).animate({blurRadius: 10}, {
 +
        duration: speed,
 +
        easing: 'swing', // or "linear"
 +
                        // use jQuery UI or Easing plugin for more options
 +
        step: function() {
 +
            console.log(this.blurRadius);
 +
            if ($("#bluebutton").hasClass("isOn") ) {return;};
 +
            if($('#redbutton').hasClass("isOn") ) {return;}
 +
 +
            $('.backgroundpic').css({
 +
                "-webkit-filter": "blur("+this.blurRadius+"px)",
 +
                "filter": "blur("+this.blurRadius+"px)"
 +
 +
            });
 +
 +
        nowRadius = this.blurRadius;
 +
        var LOCSnum = Math.round(nowRadius*6/9);
 +
        var NineLOCSnum = Math.round(nowRadius*6/9*10);
 +
        /**if (NineLOCSnum == 15) $("#slideoutco").fadeOut(400);
 +
        if (NineLOCSnum > 20) switchMessage("RED","<b>Cataracts</b> are creeping back again! Click the PREVENTION eyedrop to add GSR into your eyes!", currentColor()=="BLUE");*/
 +
        if (LOCSnum > 6) {LOCSnum = "6+"; $('#LOCS').text(LOCSnum+"");}
 +
        else $('#LOCS').text(LOCSnum+" ");
 +
       
 +
       
 +
        }
 +
    });
 +
};
 +
 +
stopBlur= function(speed) {
 +
 +
    $({blurRadius: nowRadius}).animate({blurRadius: 0}, {
 +
        duration: speed,
 +
        easing: 'swing', // or "linear"
 +
                        // use jQuery UI or Easing plugin for more options
 +
        step: function() {
 +
            console.log(this.blurRadius);
 +
        if ($("#redbutton").hasClass("isOn") ) {} else{return;};
 +
            $('.backgroundpic').css({
 +
                "-webkit-filter": "blur("+this.blurRadius+"px)",
 +
                "filter": "blur("+this.blurRadius+"px)"
 +
 +
            });
 +
        nowRadius = this.blurRadius;
 +
        var LOCSnum = Math.round(nowRadius*6/9);
 +
        var NineLOCSnum = Math.round(nowRadius*6/9*10);
 +
         
 +
        /**if (NineLOCSnum < 68){ if (NineLOCSnum > 10) if(currentColor()=="RED" ||  currentColor() == "BLUE") $("#slideoutco").fadeOut(0); switchMessage("YELLOW","<b> Treating</b> your cataract with <b>25HC Eyedrops </b>", currentColor()=="RED");
 +
                              }
 +
        if (NineLOCSnum == 9) $("#slideoutco").fadeOut(0);
 +
       
 +
           
 +
        if (NineLOCSnum < 5) {
 +
            if ($("#bluebutton").hasClass("isOn")){
 +
                   
 +
                switchMessage("GREEN","<b>Your eyes are <i>pernamently</i> crystal clear!</b> Treatment is not needed, so don't forget to turn it off!. Click the question mark to learn more.", currentColor()=="BLUE")
 +
            }
 +
            else switchMessage("BLUE","Your eyes are crystal clear! To avoid waste, please turn off the <b>TREATMENT</b> eyedrop.", currentColor()=="YELLOW");
 +
        }*/
 +
        if (LOCSnum > 6) LOCSnum = "6+";
 +
        else LOCSnum = LOCSnum +" ";
 +
        $('#LOCS').text(LOCSnum+"");   
 +
       
 +
        }
 +
    });
 +
   
 +
   
 +
};
 +
 +
function chooseBlur() {
 +
  if ($("#redbutton").hasClass("isOn") )
 +
      {
 +
      stopBlur(4500);
 +
 
 +
            }
 +
 
 +
    else {
 +
            if($("#bluebutton").hasClass("isOn") ) {}
 +
            else {startBlur(12000);}
 +
          }
 +
    /**if (!$("#redbutton").hasClass("isOn"))
 +
        if ($("#bluebutton").hasClass("isOn"))
 +
            {
 +
                $("#slideoutco").fadeOut(0);
 +
                switchMessage("BLUE","Great! Furthur cataract formation is prevented with GSR Eyedrops. Now use <b>TREATMENT</b> eyedrops one last time.", currentColor()=="RED")
 +
            }*/
 +
};
 +
 +
 +
</script>
 +
 +
<script>
 +
 +
function switchToggleB() {
 +
    if ( $("#bluebutton").hasClass("isOn") ) {
 +
        $("#bluebutton").removeClass("isOn"); }
 +
  else { $("#bluebutton").addClass("isOn"); }
 +
};
 +
function switchToggleR() {
 +
    if ( $("#redbutton").hasClass("isOn") ) {
 +
        $("#redbutton").removeClass("isOn"); }
 +
  else { $("#redbutton").addClass("isOn"); }
 +
};
 +
   
 +
function currentColor() {
 +
    if ($("#slidecontenttext").hasClass("alert-danger"))
 +
        return "RED";
 +
    if ($("#slidecontenttext").hasClass("alert-warning"))
 +
        return "YELLOW";
 +
    if ($("#slidecontenttext").hasClass("alert-info"))
 +
        return "BLUE";
 +
    if ($("#slidecontenttext").hasClass("alert-success"))
 +
        return "GREEN";
 +
    else return "NONE"
 +
};
 +
function switchMessage(color, textInside, refresh) {
 +
    var entirebox = document.getElementById("slideoutco");
 +
 +
    if (refresh)
 +
    {$(entirebox).fadeOut(100);
 +
    if ($("#slidecontenttext").hasClass("alert-danger"))
 +
        $("#slidecontenttext").removeClass("alert-danger");
 +
    if ($("#slidecontenttext").hasClass("alert-warning"))
 +
        $("#slidecontenttext").removeClass("alert-warning");
 +
    if ($("#slidecontenttext").hasClass("alert-info"))
 +
        $("#slidecontenttext").removeClass("alert-info");
 +
    if ($("#slidecontenttext").hasClass("alert-success"))
 +
        $("#slidecontenttext").removeClass("alert-success");
 +
    if (color == "RED")
 +
        $("#slidecontenttext").addClass("alert-danger");
 +
    if (color == "YELLOW")
 +
        $("#slidecontenttext").addClass("alert-warning");
 +
    if (color == "BLUE")
 +
        $("#slidecontenttext").addClass("alert-info");
 +
    if (color == "GREEN")
 +
        $("#slidecontenttext").addClass("alert-success");
 +
   
 +
   
 +
    $("#slidecontenttext").html(textInside);
 +
    $(entirebox).fadeIn(500);
 +
    }
 +
   
 +
};
 +
 +
 +
</script>
 +
 +
 +
 +
 +
 +
 +
<canvas id="canvas-container" style = "z-index:-1" hidden></canvas>
 +
<script type="text/javascript" src='https://2015.igem.org/Template:TAS_Taipei/js/field?action=raw&ctype=text/javascript' hidden></script/>
 +
 +
 +
 +
<script type="text/javascript">
 +
/* Toggle between adding and removing the "active" and "show" classes when the user clicks on one of the "Section" buttons. The "active" class is used to add a background color to the current button when its belonging panel is open. The "show" class is used to open the specific accordion panel */
 +
var acc = document.getElementsByClassName("accordion");
 +
var i;
 +
 +
for (i = 0; i < acc.length; i++) {
 +
    acc[i].onclick = function(){
 +
        this.classList.toggle("active");
 +
        this.nextElementSibling.classList.toggle("show");
 +
    }
 +
}
 +
</script>
 +
 +
<script type="text/javascript">
 +
$("#category_navbar a").on('click', function(event) {
 +
    // Make sure this.hash has a value before overriding default behavior
 +
    if (this.hash !== "") {
 +
      // Prevent default anchor click behavior
 +
      event.preventDefault();
 +
 +
      // Store hash0
 +
      var hash = this.hash;
 +
 +
      // Using jQuery's animate() method to add smooth page scroll
 +
      // The optional number (800) specifies the number of milliseconds it takes to scroll to the specified area
 +
      $('html, body').animate({
 +
        scrollTop: $(hash).offset().top
 +
      }, 800, function(){
 +
 
 +
        // Add hash (#) to URL when done scrolling (default click behavior)
 +
        window.location.hash = hash;
 +
      });
 +
    }  // End if
 +
  });
 +
 +
 +
</script>
 +
 +
<div id="slideout">
 +
    <div id="slidecontent">
 +
        <h3>Prevention</h3>
 +
        <h5>GSR Eyedrop</h5>
 +
        <label class="switch">
 +
            <input id="bluebutton" onClick="switchToggleB(); chooseBlur()" type="checkbox">
 +
            <div class="slider round bluecolorbutton"></div>
 +
        </label>
 +
<br>
 +
 +
        <h3>Treatment</h3>
 +
        <h5>25HC Eyedrop</h5>
 +
        <label class="switch">
 +
            <input id="redbutton" onClick="switchToggleR(); chooseBlur()" type="checkbox">
 +
            <div class="slider round redcolorbutton"></div>
 +
        </label>
 +
        <h4><b> LOCS: <span id="LOCS">0 &#160;</span></b> &#160; &#160; <a href="https://2016.igem.org/Team:TAS_Taipei/Wiki_Standard_Pages#Animation"><button  type="button" class="btn btn-danger btn-md">?</button> </a>
 +
 +
    </div>
 +
    <div id="clickme">
 +
    <h2 class="vertical-text" style="Lato" !important>
 +
            <br> Eyedrops
 +
    </h2>
 +
        <br><br><br>
 +
       
 +
    </div>
 +
</div>
 +
 +
<div id="slideoutco">
 +
    <div id="slidecontentco">
 +
        <div id="slidecontenttext" class="alert alert-danger">
 +
            <p style="font-size:14px !important"> <a href="#" class="close" data-dismiss="alert">&times;</a>
 +
                <strong>Zoom out to see animation.</strong> &#160; &#160; &#160; &#160; &#160;<a href="https://2016.igem.org/Team:TAS_Taipei/Wiki_Standard_Pages#Animation"><button  type="button" class="btn btn-danger btn-sm">?</button> </a><span style="font-size:14px"><br>Your screen resolution is too low unless you zoom out </span></p>
 +
           
 +
        </div>
 +
    </div>
 +
</div>
 +
 +
<javascript>
 +
   
 +
</javascript>
 +
 +
<style type='text/css'>
 +
 +
#slideout {
 +
    background: #FFD700;
 +
    position: fixed;
 +
    height: 300px;
 +
    width: 200px;
 +
    top: 30%;
 +
    right:-150px;
 +
    padding-left: 60px;
 +
    z-index:30;
 +
    border-radius: 25px;
 +
 +
 +
}
 +
   
 +
#slideoutco {
 +
    position: fixed;
 +
    height: 200px;
 +
    width: 300px;
 +
    top: 78%;
 +
    right:1%;
 +
    padding-left: 10px;
 +
    padding-right: 10px;
 +
    border-radius: 10px;
 +
    z-index:30;
 +
}
 +
   
 +
#clickme {
 +
    position: absolute;
 +
    top: 0; left: 0;
 +
    height: 300px;
 +
    width: 50px;
 +
    background: #FFBA49;
 +
    z-index:30;
 +
    border-radius: 25px 5px 5px 25px;
 +
}
 +
 +
#slidecontent {
 +
    float:left;
 +
}
 +
   
 +
#slidecontentco {
 +
    float:left;
 +
}
 +
 +
.vertical-text {
 +
transform: rotate(90deg);
 +
transform-origin: left bottom 0;
 +
  float: left;
 +
}
 +
/* The switch - the box around the slider */
 +
.switch {
 +
  position: relative;
 +
  display: inline-block;
 +
  width: 60px;
 +
  height: 34px;
 +
}
 +
 +
/* Hide default HTML checkbox */
 +
.switch input {display:none;}
 +
 +
/* The slider */
 +
.slider {
 +
  position: absolute;
 +
  cursor: pointer;
 +
  top: 0;
 +
  left: 0;
 +
  right: 0;
 +
  bottom: 0;
 +
  background-color: #ccc;
 +
  -webkit-transition: .4s;
 +
  transition: .4s;
 +
}
 +
 +
 +
.slider:before {
 +
  position: absolute;
 +
  content: "";
 +
  height: 26px;
 +
  width: 26px;
 +
  left: 4px;
 +
  bottom: 4px;
 +
  background-color: white;
 +
  -webkit-transition: .4s;
 +
  transition: .4s;
 +
}
 +
 +
input:checked + .slider.bluecolorbutton {
 +
  background-color: #2196F3;
 +
}
 +
 +
input:focus + .slider.bluecolorbutton {
 +
  box-shadow: 0 0 1px #2196F3;
 +
}
 +
 +
input:checked + .slider.redcolorbutton {
 +
  background-color: #FF0000;
 +
}
 +
 +
input:focus + .slider.redcolorbutton {
 +
  box-shadow: 0 0 1px #FF0000;
 +
}
 +
 +
 +
 +
input:checked + .slider:before {
 +
  -webkit-transform: translateX(26px);
 +
  -ms-transform: translateX(26px);
 +
  transform: translateX(26px);
 +
}
 +
 +
/* Rounded sliders */
 +
.slider.round {
 +
  border-radius: 34px;
 +
}
 +
 +
.slider.round:before {
 +
  border-radius: 50%;
 +
}
 +
input[type=text] {
 +
    width: 100%;
 +
    padding: 12px 20px;
 +
    margin: 8px 0;
 +
    box-sizing: border-box;
 +
    border: 3px solid #ccc;
 +
    -webkit-transition: 0.5s;
 +
    transition: 0.5s;
 +
    outline: none;
 +
}
 +
input[type=text]:focus {
 +
    border: 3px solid #555;
 +
}
 +
</style>
 +
<script>
 +
$(function () {
 +
    var rightVal = -150;
 +
   
 +
        $("#clickme").click(function () {
 +
       
 +
        rightVal = (rightVal * -1) - 150;
 +
        $(this).parent().animate({right: rightVal + 'px'}, {queue: false, duration: 500});
 +
    });
 +
   
 +
});
 +
  
  
 +
</script>
  
  
 +
</body>
  
 
</html>
 
</html>

Latest revision as of 03:09, 20 October 2016

Human Practice - TAS Taipei iGEM Wiki





Applied Design

A main obstacle for protein delivery into the eye is that the cornea acts as a barrier and blocks materials from entering the eye. To increase the amount of proteins that reach the lens, we made biodegradable chitosan nanoparticles that can package and deliver proteins. According to literature research, chitosan nanoparticles can embed in the cornea, where the encapsulated proteins can be released as the particles degrade. This is a better solution than commercially available eye drops (since more proteins can be delivered through the cornea) and surgery (because it is non-invasive). In addition, the nanoparticles do not affect vision or the normal protective functions of the cornea. We show that our nanoparticles successfully encapsulated proteins. Proteins remain inside nanoparticles at 4℃, which allows for storage, but can be released at body temperature. Finally, we envision using these nanoparticles in eye drops or contact lenses.


Packaging in Nanoparticles

The cornea is the outermost layer of the eye and protects the eye from foreign materials, but also prevents drugs from reaching the lens (Gaudana et al., 2010). Scientists have developed several methods to penetrate the cornea and deliver drugs to the lens, but many are invasive, such as implants (Patel et al., 2013). The most promising method is using nanoparticles as drug carriers (Cholkar et al., 2013). so we chose to use nanoparticles to deliver our proteins to the lens.

Nanoparticles can be made from a variety of materials, but we selected chitosan for several reasons. Researchers have used chitosan nanoparticles in the eye; its low toxicity to somatic cells makes it safe and it does not affect the anatomy of the eye (Enriquez de Salamanca et al., 2006). We also learned that chitosan nanoparticles can embed in the cornea, and its biodegradability allows the drug to be released continuously into the eye (figure 3.3) (Enriquez de Salamanca et al., 2006; Campos et al., 2005). Therefore, we want to load our purified proteins into chitosan nanoparticles (figure 3.4).





Figure 3.3:  Nanoparticles containing our proteins embed into the cornea and degrade. The released proteins are then delivered within the eye.
Figure 3.4:  Purified proteins can be encapsulated in chitosan nanoparticles.


Below is a video of our nanoparticle synthesis procedure.



Following the procedure of Quan and Wang (2007), we made nanoparticles and imaged them using scanning electron microscopy and atomic force microscopy (figure 3.5). This revealed our nanoparticles to be spherical and at the optimal size of 200-600 nm (figure 3.6 and 3.7).



Figure 3.5:   Team members imaging nanoparticles on the scanning electron microscope and atomic force microscope.


Figure 3.6:  Scanning electron microscope image of chitosan nanoparticles
Figure 3.7:  We imaged chitosan nanoparticles using atomic force microscopy. On the left is the empty silica plate. On the right is an image of the chitosan nanoparticles, which were placed on the silica plate



Protein Encapsulation

Next, we wanted to load our purified proteins into the nanoparticles. We first used colored proteins to qualitatively test whether proteins could be successfully encapsulated. To do so, we lysed bacteria expressing green fluorescent protein (GFP), red fluorescent protein (RFP), and green pigment (from pGRN, Bba_K274003). We then add the proteins to the chitosan solution. After nanoparticles were made, our results showed that we successfully encapsulated the colored proteins. When we further viewed the nanoparticles under blue light, the GFP- and RFP-containing pellets glowed (figure 3.8), suggesting that the proteins remain functional. Thus, our nanoparticles can serve as protein carriers to enhance drug delivery.

Figure 3.8:   Proteins were successfully encapsulated into nanoparticles. Figure shows nanoparticle pellets containing no protein, GFP, RFP, and pGRN (left to right) under white light (top) and blue light (bottom). Fluorescence of GFP and RFP-containing pellets shows that proteins are still functional.

In order to quantitatively determine encapsulation efficiency, we measured protein concentration in the supernatant before and after nanoparticle formation. We started with 1 mg/mL of bovine serum albumin (BSA). After nanoparticle formation, we performed a Bradford assay and found that the concentration decreased to 0.28 mg/mL. As shown in figure 3.9, the encapsulation efficiency was 72%.



Figure 3.9:  The encapsulation efficiency is 72%. Using a Bradford assay, we created a standard curve of known BSA protein concentrations by measuring absorbance at 595 nm. Top: graph shows absorbance values of the supernatant after nanoparticle formation. Bottom: cuvettes containing standard solutions (left) and the sample solution (right).



Protein Release

Figure 3.10:  BSA proteins are released from chitosan nanoparticles at 37℃, but almost no change occurred at 4℃.

After proteins are encapsulated, nanoparticles should embed in the cornea and release proteins as they degrade over time. To test whether nanoparticles degrade, we measured the release of proteins. After BSA-containing nanoparticles were made, they were spun down and the solution was replaced with phosphate buffered saline (PBS) (Wilson, 2014). Using a Bradford assay, we could then measure protein concentration in the PBS over a 72-hour period.

Trials were performed at two different temperatures: 4°C and 37°C. Our results show that proteins are released from nanoparticles at 37°C , but almost no change could be detected at 4°C (figure 3.10). This finding suggests that we can store a final functional product (e.g., eye drop) at 4°C without nanoparticle degradation, while the proteins can be released from nanoparticles when the eye drop is applied at body temperature.




Application (EYE DROP OR CONTACT LENSES)

Our goal is to package GSR and CH25H in nanoparticles to deliver these proteins to the lens using a safe and non-invasive method. We have considered two drug delivery mechanisms to administer the nanoparticles: eye drops and contact lenses.


Eye drops

After packaging our proteins in nanoparticles, the nanoparticles can be spun down and resuspended in saline, since it is commonly used in eye drops (Falsini, 2016).


Contact Lenses

We found a method to make chitosan nanoparticle-embedded hydrogel contact lenses (Behl, 2016). Following their protocol, we created a polymer solution containing all the necessary components, and then transferred this solution into a 3D-printed mold (figure 3.11, left). After exposure to UV for 40 minutes, we successfully made hydrogel contact lenses (figure 3.11, right).

Figure 3.11:  A 3D printed mold (left) used to make hydrogel lenses (right).
Figure 3.12:  Huiru you type the caption in.










Prevention

GSR Eyedrop

Treatment

25HC Eyedrop

LOCS: 0      


Eyedrops




× Zoom out to see animation.          
Your screen resolution is too low unless you zoom out