(8 intermediate revisions by the same user not shown) | |||
Line 3: | Line 3: | ||
<html> | <html> | ||
<style> | <style> | ||
− | + | .content{ | |
− | + | padding: 40px 20px; | |
− | + | border-top:1px solid #333; | |
− | + | border-bottom:1px solid #333; | |
− | } | + | display: inline-block; |
+ | } | ||
+ | .content h3{ | ||
+ | font-size: 24px; | ||
+ | } | ||
+ | .sub-content{ | ||
+ | margin: 20px 10px; | ||
+ | } | ||
− | . | + | .img-block{ |
− | + | width: 98%; | |
− | } | + | position: relative; |
+ | } | ||
+ | .img-block img{ | ||
+ | float: left; | ||
+ | display: inline-block; | ||
+ | margin: 20px auto; | ||
+ | width: 50%; | ||
+ | padding: 0px; | ||
+ | } | ||
− | + | .content caption { | |
− | + | font-style: italic; | |
− | + | font-weight: 400; | |
− | + | font-size: 18px; | |
− | + | } | |
</style> | </style> | ||
<div class="column full_size" > | <div class="column full_size" > | ||
+ | <h2>Results</h2> | ||
<div class="content"> | <div class="content"> | ||
− | <h2></h2> | + | <h2>Part 1. Desiccation Tolerance</h2> |
− | <p></p> | + | <h3>Desiccation Test Results for HDLEA1 (K2128204) and MAHS (K2128200)</h3> |
− | <p></p> | + | <p>The desiccation protection part of our iGEM project involved determining how proteins in extremophile species such as tardigrades could assist bacteria to survive in desiccation circumstances. To this end it was necessary to identify which proteins to pursue, to successfully synthesize and assemble those proteins into functional genetic circuits, to identify a protocol for quantitative evaluation of desiccation survival, and to execute that protocol. These efforts would have benefits in the routine sharing of strains of bacteria between members of the research community. They would also potentially open up new avenues of investigation and applications involving bacteria under limited-hydration environments.</p> |
− | <img src="https://static.igem.org/mediawiki/2016/8/87/T--genspace--DesicationResults.png | + | <p>As a result of literature surveys, several proteins were identified for investigation, especially those belonging to a class of Late Embryonic Abundant (LEA) proteins. Sequences for these candidates were successfully codon-optimized for use in E. coli, synthesized, placed into plasmid backbones and confirmed through sequencing. These parts were further assembled into functional genetic circuits to both support expression of the proteins of interest and also to identify reference controls against which we could compare performance. These composite parts were successfully sequenced in order to ensure evaluation of known entities. A protocol was determined and tested to quantify results in a manner that balanced time, effort and cost. Finally, this protocol was used to evaluate a test LEA protein (HDLEA1).</p> |
− | " alt=""> | + | <p>Part K2128204 (and the underlying Coding Sequence in part K2128004) was validated using a desiccation protocol that demonstrated the part worked as expected (i.e., improved survivability when the HDLEA1 coding sequence was expressed compared to when it was not expressed). The K2128204 part consists of the Biobrick part K880005 (i.e., a strong constitutive promoter J23100 and strong ribosome binding site B0034) followed by the HDLEA1 coding sequence from K2128004. When placed on the high-copy-number plasmid backbone pSB1C3, maximal expression of HDLEA1 is expected. The comparative reference was K880005, also on pSB1C3 backbone (i.e., the plasmid under test minus the HDLEA1 coding sequence).</p> |
− | + | <p>The desiccation protocol was initially run to identify serial dilution values for each hour of desiccation that would result in a number of colony forming units per plate (CFU/plate) on the order of 30-300. The OD600 of the initial overnight culture was taken (using a 1:10 dilution proxy) in order to obtain the expected number of CFUs in 20uL using the formula (0.02mL)*(8x108 CFU/mL/OD600)*OD600. Excellent agreement (within ±25%) with the observed average CFU/plate was found for both the reference and test plasmid systems after correcting for the dilution factor for H=0 hours of desiccation (i.e., no desiccation).</p> | |
− | <p></p> | + | <p>For each hour (H=0, 4, 7.5 and 22.5) and each plasmid system under test (i.e., the K880005 reference and the HDLEA1-based K2128204), data were collected in triplicate and used to obtain an average and standard deviation for CFU/plate. Plates with evidence of contamination or pipetting error were removed (a total of two plates out of 24). The dilution factor was corrected for in order to obtain the CFU in the desiccated 20uL aliquot and normalized by the measured CFU in a non-desiccated 20uL aliquot to obtain a survival rate versus time (i.e., fraction of surviving colonies). The numerical results are contained in Tables 1 and 2 for K880005 (REF) and K2128204 (TEST_HDLEA1), respectively. </p> |
− | <p></ | + | <p> |
− | + | <img src="https://static.igem.org/mediawiki/2016/e/ea/Genspace-2016-Data-Table1.jpg" alt=""> | |
+ | Table 1: Reference (REF) data (raw, adjusted for dilution, and normalized) | ||
+ | </p> | ||
+ | <p> | ||
+ | <img src="https://static.igem.org/mediawiki/2016/b/b3/Genspace-2016-Data-Table2.jpg" alt=""> | ||
+ | Table 2: HDLEA1-related (TEST_HDLEA1) data (raw, adjusted for dilution, and normalized) | ||
+ | </p> | ||
+ | <p> | ||
+ | The combined graphical results for the normalized data are shown in Figure 1 below. | ||
+ | <img src="https://static.igem.org/mediawiki/2016/8/87/T--genspace--DesicationResults.png" alt=""> | ||
+ | Figure 1: Survival Rate vs. Desiccation (HDLEA1) | ||
+ | </p> | ||
+ | <p>As expected, the fraction of surviving cells decays monotonically with increasing desiccation time for both the reference (“REF”) and HDLEA1-based systems (“TEST_HDLEA1”). Beyond four hours, the plasmid expressing HDLEA1 shows an improved ability to survive desiccation in a manner that is statistically significant based on measured standard deviations. In particular, the amount improvement is estimated to be 3.2-fold (±1.5) for H=7 hours of desiccation and 2.5-fold (±1.3) for H=22.5 hours of desiccation. This approximately three-fold improvement in survivability validates that the HDLEA1-related part (K2128204) works as expected.</p> | ||
+ | <p> | ||
+ | In contrast, the preliminary testing for the corresponding MAHS LEA protein (expressed using the part K2128200) does not show an improvement in desiccation survivability as shown in Table 3 and Figure 2. | ||
+ | <img src="https://static.igem.org/mediawiki/2016/d/d6/Genspace-2016-Data-Table3.jpg" alt=""> | ||
+ | Table 3: MAHS-related (TEST_MAHS) data (raw, adjusted for dilution, and normalized) | ||
+ | </p> | ||
+ | <p> | ||
+ | Data beyond H=7 hours of desiccation had failed positive controls that invalidated those results. (Positive controls for hours H=0, 4 and 7 were successful.) While those control issues could not be resolved in time for iGEM deadlines, it was desired to supply this preliminary information as a guide to other teams that may wish consider use of this part. | ||
+ | <img src="https://static.igem.org/mediawiki/2016/4/41/Genspace-2016-Data-Figure2.jpg" alt=""> | ||
+ | Figure 2: Survival Rate vs. Desiccation (MAHS) | ||
+ | </p> | ||
+ | <p>Based on this data, there is no evidence that the MAHS-related system (K2128200) provides any survivability benefit over the reference system (K880005). </p> | ||
+ | |||
+ | </div> | ||
+ | |||
<div class="content"> | <div class="content"> | ||
− | <h2></h2> | + | <h2>Part 2. Using Tardigrades as a Developmental Model</h2> |
− | <p></p> | + | |
− | < | + | <p>While we were able to successfully microinject the Cas9 protein along with the guide RNAs targeting different developmental genes. The microinjections proved fatal to the injected tardigrades and thus the only information we were able to gain is that future microinjectors of the Cas9 protein would need to place a premium on preventing the lethality of such injections. Things to consider would be:</p> |
− | <img src="https://static.igem.org/mediawiki/2016/ | + | <ol> |
− | <img src="https://static.igem.org/mediawiki/2016/ | + | <li>Microinjection technique and pressure used to inject</li> |
− | <img src="https://static.igem.org/mediawiki/2016/ | + | <li>Concentration of the Cas9 Protein</li> |
+ | <li>Whether injections to the tardigrades’ body parts other than the gonads prove lethal</li> | ||
+ | </ol> | ||
+ | |||
+ | <p>Unfortunately due to time we were not able to alter these different aspects of our protocol.</p> | ||
+ | <img src="https://static.igem.org/mediawiki/2016/f/f2/Genspace-2016-Microinjection.jpg" alt=""> | ||
+ | <img src="https://static.igem.org/mediawiki/2016/3/33/Genspace-2016-Microinjection-S1.jpg" alt=""> | ||
+ | <img src="https://static.igem.org/mediawiki/2016/2/2f/Genspace-2016-Microinjection-S2.jpg" alt=""> | ||
+ | </div> | ||
+ | |||
+ | <div class="content"> | ||
+ | <h2>Part 3. Plasmid Copy Measurement</h2> | ||
+ | |||
+ | <p>A preliminary experiment was run using lysate from 1 million cells per reaction. Eight replicates were run for each sample type (with or without the reporter). After excluding outliers caused by edge effects, average CT values for six replicates for each sample were compared:</p> | ||
+ | |||
<img src="https://static.igem.org/mediawiki/2016/c/c4/T--genspace--pSB1C3_Preliminary_PCN_Analysis.png" alt=""> | <img src="https://static.igem.org/mediawiki/2016/c/c4/T--genspace--pSB1C3_Preliminary_PCN_Analysis.png" alt=""> | ||
+ | <p>Test: 17.02</p> | ||
+ | <p>Control: 21.48</p> | ||
+ | |||
+ | |||
+ | |||
+ | <div class="sub-content"> | ||
+ | </p><p class="c0"><span><b>pSB1C3 absolute quantification run #1</b><p>Lysate from 1 million stationary phase cells harboring K909006-pSB1C3 was run against a 3-point standard of 106, 107, and 108 copies. Linear regression indicates approximately 18.2 copies of the target sequence for every cell in the reaction, or around 17 plasmid copies per cell.</p><p class="c0"> | ||
+ | |||
+ | <div class="img-block"> | ||
+ | <!-- fig1 --> | ||
+ | <img src="https://static.igem.org/mediawiki/2016/d/db/T--genspace--pSB1C3_Absolute_Quantification_1.png" alt=""> | ||
+ | <img src=" AAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmcTuX/x/HXdWbGOvZIEmlxEi20KEtZkhZLVCff9v1L iqRFIrIU7ahUtHxL0Wnx60uLFqSURBvK0SKKtFiyG5zr98e5x3cwuA333HPPvJ+Ph4e5z33OuT7X Pcxnrutci7HWIiIiIqnBSXYAIiIiEj8lbhERkRSixC0iIpJClLhFRERSiBK3iIhIClHiFhERSSFK 3CIiIikkPdkBiOQn13VPA6YCTwZBcEOO41cADwZBUDkBZZ4OTAEygyBYH8f5xwCVgiCYug9llgXu AC4ADgGWAROBe4MgWJbX++YhjgOAVkEQjI29ngJ8EQTB7a7rGuA54ELgT6A/8EAQBFX2Q7nbfYau 64ZAmyAI3t7Xe++h3DuBBkEQXJjIcqRoU4tbippLgAVAJ9d1i+/wXiJXI9qbe78JHJ3XgmLJ8nPg dOAGwAWuiv09y3Xdw/N67zy4H+iQ43UH4J7Y16cCl8eONQbGsQ/13sGOn2FV4P39dO9cua57GTCQ xP47ElGLW4oO13WLEbVAbwaeAs4HXk5qULkz+3j9o8Aq4PQgCLbGjv3quu404F3gGaDZPpYRr+3q EgTBqhwvKwA2CIL3chzblKBy/9xP992J67olgCcAj+iXQpGEUuKWoqQNUBZ4i6jr+mp2SNyxrs6e sZcvALcGQRC6rptGlBAvAMoBs4FbgiD4Inbd4cCDRK3cEHgj9v7aHe5fE1gI1AuC4LvYsW3d9LGu 5JrACNd1LwiCoIXrugcCI4CzgLWx+HsGQbB6xwq6rluBqOu5Q46kDUAQBNZ13X7Ap67r1gmC4HvX dRcSdU8/kVt8rutWAR4BWsXq/SswOAiC52LnTwE+Ao4HzgT+BvoHQfBsrKwrYudtDYIgLburHJhH 1E2O67pbiVrhi8jxuMJ13WOBh4BTgBXAyCAIhsTeOwm4D2hI9HPsG6BbEAQzd/EZbusqd103A+gd i+0gYFbs85y5mzrdEwTBMzt+3jFVYuWdBNwOlN7FeSL7hbrKpSi5BJgeBMEKosTaLJaosh1A9IO6 Wezci4l+EAPcBLQF2hF1wS4AXgVwXbc88AlRa7ExUddvE6KWbW5y60rNPtYR+I0osXSMHRsPbCVK Um2Aw4i6lXNzAlEi+yy3N4MgmAFsBBrt4vod43uR6HNpDtQh6oIe6bpuzrEAtwNvE30u44EnYu8/ CPjABKKu6pzGAZfFyqoaO3db2a7rVgI+JPosTgSuB3q5rnul67qZsfK+BI4h+lzWEvWiQO6fYU6P Ef3S1oUoOc8D3o/9grSrOj2+Q523CYJgcRAELYMg+D6390X2NyVuKRJc1y0HnAO8Hjv0f0Qt4ytz nLYFuDgIgrlBEEwCBhE9IwY4lCjh/RoEwS/ALcAVsQFWlxL9X7o8CILvgyD4OHbfC3fxPHmXXeFB EKwkStJrgiBY5bpuc6AecFns3l8SJbyzXNetk8stDoj9vWZXZRC1Xg/Yzfs545sA/DsIgnlBEPwM 3AsUA2rnOGdKEARPxz6XPrH3jwuCYB2wAdgUBMFfO9RzE1F3PkEQ/JXLoL1OQBZwXRCZRJRo1wKl gKFAryAIfgmC4FtgJNHntNNnmPOmsX8HVwM3B0EwKQiCIHbfX4Eb91Sn3XxmIvlGiVuKiouIfviO BwiCYDlRd+gVOc5ZEgTB7zlezwYOjo3QHglkEj0r/hj4N/BdEASWqCX6dRAEWTmu/YIo8dTdx7iP Jup6Xem67hrXddcAAdEvHUflcv7y2N/Vd3PPcsSSZhxGAqe4rjvcdd13ge+IWsVpOc75IfuLIAiy f2HIiPP+u1IH+DYIgi057j02CILXYs+rRwNdXdcdHXt2/x/i+3lWO3bejBz3tcCnbP+9SkSdRPYL PeOWouKS2N8LXdfNPmYA47puy9jrrTtck50INgdBELiuWwtoDZwNdANudF23IVFLPDeG7RMc5N5N vrv/h+nAL8AZ7NxS/yOX82cR9RycHLtuO67rnkD0i8AXu4gnPce5BpgEVCPq2p5M1K0c7HBNFjvb 1wF2Wbu6h+u6BwEzgfnAO7HYKgNj4rjvxl3c12H771Ui6iSyX6jFLYWe67o1iJ459yPq7sz+cwJR 1+vVsVOrx55XZ2sELAqCYIPrupcCFwVBMDEIgq5EU6uqxO77PXD8DtPLTiZKgjs+98xOCGVyHNux Oz1nMv2eKHGuDYLg51h39VaigXI7zXeOdRP7QL/YICxc123suu63ruu2IZquNDvW5Z4dz46xZJdf H2gBnB0EwYAgCP6PaCQ4xJ/E8jo1agFQLzYokFg97nZd9xXgX0S/TLUKguDhIAg+IJqrHk+5PwKb 2fkZ/6lEvQkiBZ5a3FIUXEr0rHX4jiOxXdf9D3AtUQs0HRjruu4dRAnsTqJFTCAajT7Add3lRD/g 2xAlry+BpcDdwAuu6w4AKhFND3o/CIL5sUFP2YnuD6LnqT1d1+1F9AvElTvEuxaoExsM9X6svFdc 172VqIv8MaJu+192Ud+biR4DTHFd9x7gJ2A68F+ihJYzaX0BXB7rBi/B9vOQlxF77u+67ktEv6wM i72/4xz4XVkL1HVdt2YQBIvivAbgJaIFWZ5wXfch4IhYvboT/bJxoOu65wJziQbO3QXRlL/YI4tt n2HO5+uxX8JGAA+7rruOaAR9d6JR4aP2Ij6RpFGLW4qCi4FxuU2fIkqCxYhGhH9HlMimET3bfTAI glEAselSj8WOzyca5XxBEAQ/BUGwgWg0ejmiLtxXiVZnOz9HOTZ2H0uUqOsQdTt3J/oFIadhRL9s vBs7vx3Rs+vJsT9LgXNi7+0k9vz+1FgMjxEltzZE09veAMbFWt8QJbwlRKPQnyfqlQhj91kaq+d1 RC3/R4HHgW+Jeit2JWdczxNNuZoXm1oWl9hz5bOJnuN/HSv3niAIXiTqURhFNJ3sm1h818bKzY5r 22eYS0x3Aq/Erp9N9L1oFuvN2PHc3OokklTG2sT+e/Q8ryEwxPf95p7nHU/0g28zsMD3/WsTWriI 7MR13TOJupqnJDsWEdl7CW1xe553G9FvxtndancD/X3fPw0o4XneuYksX0R2FgTBe0raIqkr0V3l P7L9OsVfAQd4nmeIBsRsTnD5IiIihUpCE7fv++OJBrdk+wEYTvRsrwrRMzgRERGJU36PKh8GNPZ9 f77neTcAD7P9akW50aAQEREpinKddpnfiXs5/1uKcSm7Xy95m6VLlyYsoESpVq1aSsYdL9Uvtal+ qU31S23x1K9atWq7fC+/E/d1wCue520mtg5xPpcvIiKS0hKeuH3fX0SsZe37/nSilaZEREQkD7QA i4iISApR4hYREUkhStwiIiIpRIlbREQkhShxi4iIpBBt6ykiIinh66+/ZsCAARx66KEArFu3jmrV qtGnTx/S0rZt3Y61lpEjR7Jw4UKysrIoWbIk3bt356CDDtpjGVlZWQwePJhVq1ZRqlQpevXqRbly 5bY7Z+zYsUyePJnSpUtz0UUXceqppzJ27FhmzpyJMYY1a9awcuVKXnvttW3XjBkzhoULF9K3b999 /hyUuEVEJGXUr19/u+Q3aNAgpk+fzmmnnbbt2MyZM1m+fDkPPPAAANOnT+eJJ55g4MCBe7z/m2++ yWGHHcYVV1zB5MmTefHFF7nxxv8t8Llw4UImT57MyJEjCcOQG2+8kRNOOIF//etf/Otf/wKgd+/e dO7ceds1n3/+OZ9//jlVqsS9s+1uKXGLiEhK2rx5MytWrKBMmTLbHS9fvjwLFixgypQpNGjQgMaN G3PKKacA8NFHHzFmzBjKly9P6dKlOfXUU2nduvW2a+fMmbMtATds2JAXX3xxu3svWrSI448/nvT0 KH1Wr16dn376iTp16gAwbdo0ypQpwwknRFvDL1myhLfeeourrrqKt956a7/UW4lbRET2Wvjqc9jZ 0/frPc0JjXEuvGq353z11VfccsstrFixAsdxaNu2LfXr19/uHNd16dmzJxMmTGDEiBFUqVKFG264 gbp16zJy5EhGjx5N6dKl6dWr1073X79+PaVLlwagVKlSrF+/frv3DzvsMF5++WU2bNhAVlYW8+bN o23bttveHzt27LYegQ0bNjBs2DB69+7NL7/8kpePJFdK3CIikjKyu8pXr17NbbfdRtWqVXc65+ef f+aQQw7ZlkBnzZpF//79eeaZZyhbtiyZmZkAHHfccTtdW6pUKTZs2ABESTz73Gw1atTgvPPO4447 7qBKlSrUqVNn2zPwRYsWkZmZuW2d8VmzZrFy5UoGDBjAmjVrWL58OWPHjqVnz5779BkocYuIyF5z LrwK9tA6TqSyZcvSu3dvevTowejRo6lYseK292bPns2iRYvo2bMnxhhq1qxJyZIlqVChAhs3bmTV qlWUL1+eIAho1Gj7va7q1avHjBkzcF2Xzz//nGOOOWa79//55x/Wr1/P8OHDWbduHbfffju1atXa Vm7Dhg23ndu0aVOaNm0KRAPrJkyYsK0bfl8ocYuISEqqWbMm559/PiNGjKBfv37bjnfs2JEnn3yS a6+9lszMTIwx3HXXXQD06NGD3r17U7p0aTZt2rTTPdu3b899991Ht27dyMjIoE+fPgC8+uqrVK9e nVNPPZXFixfTpUsXMjIy6Ny5M8ZEu2/+9ttv255tJ5KxtsBvd21TcXs3bUuX2lS/1Kb6pbb8qt+o UaOoUaPGdoPT8sNebOuZ637cWoBFREQkhairXEREiqTrrrsu2SHkiVrcIiIiKUSJW0REJIUocYuI iKQQJW4REUkIa2H9+q1s2VLgZy+lFCVuERHZr7Zutcybt5rBg7+hXbv3uPjiKUyatJS//87a72WN Hz9+n+/RtWtX/vjjj72+bvHixfTo0WOfy99bGlUuIiL71bRpf3LFFZPZuvV/Le3p05fRqlV17r+/ IVWqFN9vZY0ZM4YOHTrst/vtrezFV/KTEreIiOw3v/22gc6dp22XtLO9//5vfPppLc4775A83vs3 hg4dSnp6OmEY0qBBA9asWcOwYcO47rrreOCBB1i3bh3Lly+nffv2tGvXjh49enDEEUewcOFC1q9f T//+/alSpQqjR49m1qxZVK5cmdWrVwPw119/8eijj5KVlcWKFSu4+uqrady4MVdffTXVq1cnIyOD rl27MmjQIAAqVKiwLbbRo0fz9ddfE4Yhp512Gp06dcpTHeOhxC0iIvvNggX/sHbt5l2+P2LEHM44 oxqZmWl7fe9Zs2ZRp04d/v3vfzNnzhzKlSvHhAkT6N69Oz/88AMtW7akSZMmLF++nB49etCuXTsA 6tSpQ9euXXnmmWf48MMPadCgAXPmzOHJJ59k/fr1XHbZZUDU9e15Hscddxzz5s3j+eefp3HjxmzY sIErrriCww8/nOHDh9OyZUvOPfdcpkyZwoQJEwCYPHkyjzzyCBUrVmTSpEl5+OTip8QtIiL7zZo1 u07aAH/8sYGNG7fmKXGfc845jB07lttvv53MzEyuueaabe9VqFCB1157jWnTplGqVCm2bNmy7b0j jjgCgMqVK7Ny5Up+++03XNcFot3AsjcJqVSpEi+++CJvv/02AFu3bt12j0MOiXoJfv31V9q0aQNE G5JkJ+7evXvz9NNPs3LlSk4++eS9rtve0OA0ERHZb6pUKbnb9489thKZmXlrM06fPp1jjz2Whx56 iNNPP52xY8eSvd+G7/vUrVuX3r1706xZM3Luw7Hjc+iaNWsyf/58INoze9GiRQA8++yztG7dmjvv vJP69evneo9DDz2UuXPnAmy7x5YtW/joo4/o27cvDz/8MO+++y5//vlnnuoYD7W4RURkv6lduyw1 a2ayaNHaXN+/4Ya6lCiRtzaj67oMGTKEF198EWvtttHg9957L+eccw7Dhw9nypQplC5dmvT0dDZv 3pzr4LEjjjiCk08+mc6dO1OpUqVtz6qbNWvGyJEjefnllznggAO2PfvOeY9LL72UwYMHM3Xq1G17 gaenp1OmTBluuOEGSpQowUknnUSVKlXyVMd4aHewBNHuPalN9Uttql9yBcEaLrnkQ37/ff22Y8ZA v34ncsklh1Oq1O67yQt6/fbVvu4Opha3iIjsV65bhokTz+b771cxf/5KKlQowfHHV+Kww0pTrJie 0O4rJW4REdnvqlYtTtWqB9K8+YHJDqXQ0a8+IiIiKUSJW0REJIUocYuIiKQQJW4REUkIYy3p69fj 5FgMRfadEreIiOxXZutWSs2bR/nBg6nUrh2VLr6YzEmTKPb33/t036ysLN566629uubbb79l4cKF +1RuQZPwUeWe5zUEhvi+39zzvLHAgURz0w4FPvN9/+JExyAiIvmn9LRplLniCkxsydA0IGP6dLJa tWL1/feTlcfFSVasWMHbb7/NueeeG/c177zzDs2bN9+2rGlhkNDE7XnebcBlwFoA3/f/FTteHpgM 3JzI8kVEJH8V/+03ynTuvC1p51Ts/fcp/umnZJ13Xp7uPWbMGBYtWsR//vMfFi5cuG1ls5tuuola tWoxdOhQli5dSlZWFh07dqRmzZrMnDmTH374gVq1alG5cuV9qltBkegW949AB+DFHY7fA4zwfT9x i7mKiEi+y1iwALM29+VOAUqOGMGGM85gS2bmXt/70ksvZeHChWRlZdGgQQPatWvHkiVLGDp0KEOH DmXOnDk8/vjjAMyePZvatWtz8skn06JFi0KTtCHBidv3/fGe59XMeczzvMpAC9TaFhEpdMyaNbt9 3/njD5yNGyEPiTvbzz//zJdffsnUqVOx1rJmzRpKlixJ165deeihh1i/fj1nnHFGnu9f0CVj5bQL gJd93497kfTYmq0pJ1Xjjpfql9pUv9RWUOu3/uCDd/v+1uOOo1yNGmSUL7/b83KrnzGG9PR0jj76 aOrVq8e5557LihUreO2118jIyOD3339n9OjRZGVl0axZM6688kpKly5N+fLlC9zntS/x5FfizrlQ +hnAwL25OBUXm9ci+alN9Uttql/yFKtVi2I1a5Ie2ypzRxu6dGHt+vWwfn2u78Ou65eVlcWGDRv4 888/GT9+PC+88ALr16/nyiuvZPPmzSxatIiOHTuSlpbGhRdeyLJly6hZsyZDhw6lePHi1KhRY7/V c1/sxSYjucqvxJ2zdV0b+DmfyhURkXyUVakSa557jnKXXILz++/bjltjWN+vHxsaNMjzvYsVK8bT Tz+9y/d79Oix07G2bdvStm3bPJdZECU8cfu+vwholOP1MYkuU0REkmeD67J14kSKff89afPnYytU YPPxx7PpsMMIixVLdngpT7uDiYjIfpdVtSpZVatC8+bJDqXQ0cppIiIiKUSJW0REJIWkROK24c4r 8IiIiBRFKZG4w8G3Yn/8LtlhiIiIJF1KJG4W/0Q4tBfhqIewK/ZtdxkREZFUlhKJ2+l1P9Q8Ajvz I8K+XQjf8rGbs5IdloiISL5LicRtDj8Kp/eDmCtuguIlsP83hvDurtgvP8PauFdOFRERSXkpkbgB jOPgNGmFM+hJzJnnwcq/CUfeR/jI3dgli5MdnoiISL5ImcSdzZQqjXPh1Tj9R0C9E+D7bwgHdCMc +zR23a63khMRESkMUi5xZzNVq5PWvR/OTX3hgKrYyRMJ+/ybcOo7mj4mIiKFVsom7mzm2JNw7hmB ueBK2LIF+9JIwoG3YBfMTXZoIiIi+13KJ24Ak56B07pj9Py7UUv4bSHhA70Jn7ofu/yvZIcnIiKy 3xSKxJ3NlKuAc1V3nN4PQq3a2FmfEN7dhfC/Y7FZm5IdnoiIyD4rVIk7m6lVG6fX/ZirboaSpbET xhL2vQE76xNNHxMRkZRWKBM3xKaPNWqBM2gk5qzzYfVKwqfuJ3yoD/a3hckOT0REJE8KbeLOZkqU wjn/Cpx7HoPjToZgDuGAHoQvjcSuXZ3s8ERERPZKoU/c2UyVaqTd2Aene384sBp26juEd3UmnDwR u1XTx0REJDUUmcSdzdRrgNNvOMa7BmyIHfs04cCbsd9/k+zQRERE9qjIJW4Ak56O06p9NH2s6Zmw dDHhw33ZOvI+7F/Lkh2eiIjILhXJxJ3NlC2Pc/mNOHc9BEfUgS8/I7y7K+H/jcFu2pjs8ERERHZS pBN3NlPzCJzbh2Cu7QmZZbFv+YR9byD8/CNNHxMRkQJFiTvGGIPT8HScgU9gzvFgzT/Y0Q8R3n8n dvFPyQ5PREQEUOLeiSlREqfDpTgDHof6p8CP3xEOuoXwhcewa/5JdngiIlLEKXHvgqlclbQbeuPc MhAOOgT78XvR9LEP3sRu2ZLs8EREpIhS4t4DU+c4nLuHYTpdDwbsK88QDuiOnfdVskMTEZEiSIk7 DiYtDadlG5xBT2FOPwuWLSF8tB9bHxuE/fP3ZIcnIiJFSHqyA0glpkxZzKU3YE8/m3Dc0/DNTMJ5 X2Jatcec42FKlEx2iCIiUsipxZ0H5pBaOLfei7n+dihbHvvO64R9uhB+NgUbhnt3L2P2vvwc1+Tl ehERSV1qceeRMQZzUhPssSdhJ72OffcN7LOPYKe+jdPpeqhWbZfXbt5sWbBgDZMnL2Hu3BXUq1eR Fi0OpnbtMmRk5J6Ic16zatUmGjY8kHnzVjJ//sq4rhcRkcLBpMACI3bp0qXJjmGP7PI/sa8+h509 HYDSrdqyofUFmHIVtjtv82bLhAm/0q3bJ+T86I2B4cOb0LbtITsl35zX1K1bkTZtajJ06FdxX58I 1apVIxW+L3ml+qU21S+1qX7ROUCuP8zVVb6fmEpVcDrfgXPrYKh+KOven0DYpzPhpPHYLZu3nbdg wZqdkjaAtdCt2ycsWLBmp3vnvObCCw/fKWnv6XoRESk8lLj3M+Meg9PnESrc0AvS0rGvPUfYvxt2 ziwAJk9eslPSzWYtTJmyZKfj2ddUq1aKxYvX7vX1IiJSeCT8GbfneQ2BIb7vN/c8rzIwCigPpAGX +76/MNEx5DeTlkbmuRfwT+1jsG++jP3oHcLhAzDHnMifc+vv9tq5c1dijNm2RroxhrlzVwBQtWqU uPfmehERKVwS2uL2PO82okRdPHbofmCM7/vNgL7AUYksP9lM6TI4F/8b5+5hcNSx2Dmz6Muz9D7q azLTN+d6Tb16FbZLutZa6tWrCMCyZeupUSNzt2XueL2IiBQuie4q/xHokON1Y6C653nvAxcDUxNc foFgDq6Jc8tAnC53srVMRTofNp+pp7/FhdV/xvC/JGsMNG9+8E7Xt2hxMMbA0qVR4t7VDLBdXS8i IoVHQhO37/vjgZwLex8KrPB9vxXwK9ArkeUXJMYYTINTSR/wON8f2YbMtM08dOxM3mz0PvXL/40x MGJEU2rXLrPTtbVrl2H48CYYA6+++hN33FF/p+S9u+tFRKTwyO953MuBCbGvJwCD8rn8pMsoXQK3 x3X8PLsV9vXnOJ6vebPRB/xTpwllmpTMdSpXRoahbdtDcN02TJmyhJUrN/Hss8357ruVzJ+/inr1 KtC8ueZxi4gUBfmduD8GzgFeAk4D5sVzUbXdLGZSkO0u7po1DyY871Q2zv2S1aMeodz3n2AGzCbz omso0+FiTEaxXK6Bli1rE4YhjhN1lmR/nf06P6Xq9yVeql9qU/1Sm+q3a/mduG8FRnue1wX4h+g5 9x6l4kT8uBcQOKAa9o4hmE8+wI5/kX/+8xj/vP0ajncNHHdygV3SVAskpDbVL7WpfqltLxZgyVXC E7fv+4uARrGvFwNnJrrMVGOcNMxprbEnNsZOGIed8hbh44Ph6Po4na7FHHRIskMUEZECQguwFCCm VCbORdfi9BsOR9eH774ivKcb4Sujset3P39bRESKBiXuAsgcdAjOzf1xut4FFStjP/hvtPvYtEnY cGuywxMRkSRS4i6gjDGY4xvi3PM4puPlkLUJ++LjhIN7Yn/4LtnhiYhIkihxF3AmIwPn7AtwBo3E nNIcFv9MeH8vwlEPYlf8nezwREQknylxpwhTvhLONT1wet0Phx6JnTmNsG8XwomvYLM2JTs8ERHJ J0rcKcYcfhTOnQ9gruwGJUpi33yJ8O6u2C8/1RrlIiJFgBJ3CjKOg9P4DJxBT2Jad4BVKwhHDiF8 uC/2t1+SHZ6IiCSQEncKMyVL4VxwFU7/EXDMiTD/W8IBNxO+/BR23ZpkhyciIgmgxF0ImKoHk9bt bpxud0OVg6IFXPp0Jpz6tqaPiYgUMkrchYg55kSc/sMxF1wFW7ZgX3qScGAPbDA32aGJiMh+osRd yJj0DJzWHaLn341bwm+/ED7Ym/DJodjlfyY7PBER2UdK3IWUKVcB58ruOL0fgsNc7OzphH1vIPzv y9hNmj4mIpKqlLgLOVPrSJw7hmKu6QGlMrETxhHe3YXwi080fUxEJAUpcRcBxnFwTmkerb529gWw ehX26fsJH+yNXfxzssMTEZG9oMRdhJgSJXE6Xo5zz+Nw3MmwYB7hoFsIxzyBXbM62eGJiEgclLiL IFPlINJu7INz8z1Q9WDsR+8S9vk34YcTsVs1fUxEpCBT4i7CTN36OHcPw1x0DViw454mHNAd+/03 yQ5NRER2QYm7iDPp6ThntMcZ/CSm6Znw+6+ED/dl6xP3Yv9aluzwRERkB0rcAoApUw7n8htx7noY jjgavppBeHdXwvFjsBs3JDs8ERGJUeKW7Ziah+Pcfh/muluhTDns2340/3vGVE0fExEpAJS4ZSfG GJyTT8MZ+ASmzUWwdjX2mYcJ7++FXfRTssMTESnSlLhll0zxEjjtL8EZ+AQ0aAQ/fk84+BbCFx5j 66oVyQ5PRKRIUuKWPTIHHEhal144twyEajWwH7/H79d3JHz/TeyWLckOT0SkSFHilriZOsfh9H0U 86/rMcbB+s8Q3tMNO/fLZIcmIlJkKHHLXjFpaTgt2lB11BuYZmfDH0sJh/Vn62ODsH8uTXZ4IiKF XnqyA5BKITMbAAAgAElEQVTUlFa2PM4lXbCnn0U4bjR8M5Nw7peYM9ph2niYEqWSHaKISKGkFrfs E1O9Fk7PQTid74ByFbCT3iDs04Xw0w+xYZjs8ERECh0lbtlnxhjMCY2j6WPtLoYN67DPDSMccjt2 4YJkhyciUqgocct+Y4oVx2nbCWfASMxJTWHhAsJ7byV8bhj2n5XJDk9EpFBQ4pb9zlSqjHP9bTi3 3gvVa2E//ZCwT2fCSW9gt2xOdngiIilNiVsSxrj1cPo+jLmkC6SnY197nrDfTdhvv0h2aCIiKUuJ WxLKOGk4zc7GGfQUpmVb+HsZ4YiBbB12D3bZb8kOT0Qk5ewxcXue1yA/ApHCzZTOxOl0Hc7dw6HO cTB3NmH/mwj9Z7Dr1yU7PBGRlBFPi/ulhEchRYY5uAZOjwE4N/SGCgdg338zev798XuaPiYiEod4 FmD51vO8i4FPgLXZB33fj2uXCc/zGgJDfN9v7nne8cBEIHuO0Ejf91/dy5glxRljoP4pOPUaYN/7 P+zbr2JfeAz70bs4na7DHFEn2SGKiBRY8STu9sCFOxyzQNqeLvQ87zbgMv6X8E8AHvJ9/5G9CVIK J5NRDHOuh23UEvv689jPPyIcegfmlGaY86/AlK+U7BBFRAqcPSZu3/dL7MP9fwQ6AC/GXp8A1PY8 7zzgB6C77/t6wFnEmQqVMNf2xDY7m3DsKOyMqdivZmDOuRDTqj0mo1iyQxQRKTD2mLg9z3OAW4B6 wE3AjcD9vu9v3dO1vu+P9zyvZo5DnwOjfN//yvO83kB/4La8BC6FjzniaJy7HsRO/xA7/sXozyfv 41x4NRzfMOpiFxEp4uIZnPYAcCzQMHb+WUBeu7r/z/f9r2JfjweOz+N9pJAyThpO0zNxBj2JadUe VvxF+MS9hI/2wy5dnOzwRESSLp5n3C2BBsBs3/f/8TzvTODrPJY3yfO8G33fnxW77+x4LqpWrVoe i0uuVI07Xgmv38192Xz+Zawa9TAbZ39KeE93MttcSLmLr8cpUzaxZaPvX6pT/VKb6rdr8STuzb7v h57nAeD7/ibP87bksbwuwAjP87KAZcD18Vy0dGnq7fNcrVq1lIw7XvlWv7Ri2H/fgfPtLEJ/NGv/ O461k9/GnHcppmkrjLPHMZJ5ou9falP9Upvqt/vEHk/inut5XlcgzfM8l+h5d9wtbt/3FwGNYl9/ BTSJ91oRiE0fO+4knKOPx374X+xEHzvmCexH7+B0uh5Tu+4ur7PW5nO0IiKJFU/i7k70TPtAYDow CeiWyKBEcmMyMjBnnY89pTn2jRewn00mfOBOzElNMRdcialYGbN5MyUWLKDY5Mmkz53Llnr1yGrR go21a2MzMpJdBRGRfRbPdLDVwDX5EItIXEz5ipirb46mj40bhf3iY+w3n+Oc2ZHMrHTK9LgFE2tp F584kVJDh7J2+HDWtm2r5C0iKS+e6WBVgGFAK2Az8DbQ0/f9VQmOTWS3zGEuTq/7sTOmYN94gXDi ONau30T6geUouWwV2ZPHjLVkduvGFtdlQ93cu9VFRFJFPNPBRgE/AycDTYGVwFOJDEokXsZxcBq1 xBk4khKVD2VriQyWNzicv04+kqwy/1s7yFhLsSlTkhipiMj+Ec8z7kN932+f4/WtnufNSVRAInnh lCpN2eWbKD/tO1bVqc7GA8vzR5OjyVz8F2UXLCVt81bS587VgDURSXnxtLiXep5XK/uF53nVgd8T F5LI3rPWsqVePTLWb6Ly7J84YOYPpK/bxNqaVVh2ej3W1KzM5rpHK2mLSMrbZYvb87wJRJuJVAa+ 9jzvA2Ar0Bz4Nn/CE4lfVosWlBo6FGMtJf9eTYmPv2PtoZX554hqrKpbA2fpXJj/LeaoY5MdqohI nu2uq/y1XRx/KxGBiOyrjbVrs3b4cDK7dcNYi7GWMgv/pOTSlSy/4nyylvwID/WBExrhXHg1plKV ZIcsIrLXdpm4fd//T87XnueVSnw4InlnMzJY27YtW1yXYlOm/G8ed/PmhLVr4yz5hXDcKJj9KeG3 szCtO2DOugBTvHiyQxcRiVs808F6AIOB7J9uhjj34xbJbzYjgw1167Khbt2dBqKZQ4/EuWMo9vOP ov2/J76Cnf5htHjLSU21+5iIpIR4BqfdApwClI39KRP7W6RAy20gmjEG55RmOANHYs65ENaswo56 kPCBO7GLf0pClCIieyee6WA/+L6vwWhSqJgSJTEdLsM2aUXoPwtfzyAcdAum6ZmY8y4FCvfORCKS uuJJ3I95nvcK8B7RymkA+L7/QsKiEsknpnJV0rr2xn73dbR86rRJ2FmfsObSztj6jTHp8fwXERHJ P/H8VOpKtMFIzsFpFlDilkLDHH08zt3DsB+9g/3vy6x6+iE4yMfpdC3m6PrJDk9EZJt4EncN3/eP THgkIklm0tMxLdtiTz6Nku+PZ9274wkf6QfHN8TxrsFUrprsEEVE4hqc9ovneXrgJ0WGKVOOijf2 xunzCBx5NHz9OeHdNxC+8QJ244ZkhyciRVw8Le4NwFzP874ANmUf9H2/XcKiEikATI3DcG67Dzvr E+xrz2HfeQ372WTM+VdgGjbT9DERSYp4EvfrsT8iRY4xBnNSU+yxJ2PffR076Q3sM49gp76D0+k6 zKF6iiQi+WuPiXvHFdREiiJTvDim/cXYxi0JX3suWn3t3lsxjVpiOl6GKVsh2SGKSBERz8ppa4hG kW/H930twiJFjjngQNI698LO/zaaPjb9A+yXn2LaXIRp0QaTnpHsEEWkkIunq7xejq+LAR2JdgkT KbLMUcfi9H00mvf95kvYV5/Dfvwejnct5pgTkh2eiBRi8XSVL9rh0FDP8z4HHkxMSCKpwaSlYZqf gz2pCfa/L2Onvks4/B445kSci67FHKjJGCKy/+31slCe5x1FtCCLiAAmsyzm4s7Y086Kdh+bM4vw u68xZ7TFnHsRpqQ21hOR/Wdvn3Ebou7y2xMZlEgqMtUPxek5CL78jPDVZ7GTxmNnTMV0uBxzanOM E8+yCSIiu7e3z7gtsMr3/dUJikckpRlj4IRGOMecgH1vfDT3+/loKVWn03WYw9xkhygiKW6XTQDP 82p4nleDKFln/wEoHzsuIrtgihXHadMp2j70pKawcAHhfbcRPvsIdtWK3K/Rgi4iEofdtbjnESXr nD9NLFCSKOGnJTAukULBVKyMuf42bLNzCMc9jf1sCvbLGZhzPcwZ7XCAEgsWUGzyZNLnzmVLvXpk tWjBxtq1sRmaWiYiO9tl4vZ9v0zO157nGaA3cGvsj4jEydSui9PnYewn72PHj8G+8R/sx5MoeUhd yg1+AMdGHVrFJ06k1NChrB0+nLVt2yp5i8hO4hpV7nnewcAYoAzQ0Pf9BQmNSqQQMk4a5rSzsCc0 wU4Yi538Fuv+WsbWEw+n/He/krEu2grAWEtmt25scV021K2b5KhFpKDZ4zBXz/M6At8As4FTlbRF 9o0pnYnT6TrKHdmQ4n+tZmPlcixrWpeVdaoTpkf/JY21FJsyJcmRikhBtMsWt+d5JYFhwLlAJ9/3 P8i3qEQKOWMMxX/8hTJf/MDGKuVYWecQ1tY6kPXVKlIuWELp35aTPncuxhis3WnFYREpwnbXVf4l UJMoeR/red6xOd/0ff/hRAYmUphZa9lSrx7FJ06k5J//UOLv1aypdSCrD6/KymMPZW3NypSodXCu SVvJXKRo213i/hyYAVSN/clJPzVE9lFWixaUGjoUYy0mtJT9aRmlflvOP0cdzPqDK7H5xy8wox7C nH8FTplyGn0uIsDuR5VfmY9xiBQ5G2vXZu3w4WR264aJtaDTN22m4reLcC64nLVL5mNnfoT9egbF ah5NuceexdkaAhp9LlKU7fVa5XvL87yGwBDf95vnOHYxcKPv+40SXb5IQWUzMljbti1bXJdiU6b8 ryXdvDkba9fGSUvDfvohvPocG3/4imVNj6b8979R8o9VGDT6XKSoSmji9jzvNuAyYG2OY/WBqxNZ rkiqsBkZbKhblw116+707NoApkkrysyaw9YJ41hz6IEsP+Fwiv+9mgrf/UrG2o3bRp8rcYsUHYne 9eBHoEP2C8/zKgGDgO4JLlck5exqIFqx7wPKz19C1Y/nUeLPf9h0QFmWNTmalUcfQpietm30uYgU DfHM4/7S87xrPc/b670Jfd8fD2yJ3ccBRgO3AOvYfilVEclF9uhzgIx1m6g860cO+OIH0jdsYu2h Vfi9WT3WVi1HuHVLkiMVkfxi9jStxPO8RsC/gTOB14GRvu/Pi7cAz/NqAmOBbsBzwF9E653XAZ71 ff+WPdxCI9ilSFs/bRolmzXbNoANwBrDmkOrsPrIg7DpaWTUqk35zrdSol6DJEYqIvtZrg3cPSbu bJ7nlQcuBnoCS4Hhvu+/Gsd1NYFxvu+fusOxsXEOTrNLly6NK8aCpFq1aqRi3PFS/fKP2byZzAkT tht9DlHyXv3gUNas+xM7I1plzZzYBHPBVZhKlXd7z4JUv0RQ/VKb6hedwy4Sd7xrlZcnGmR2DfAP 4AOXe57X1vf9y+O4hVrNInm0x9HnGRnYFucSjn0aO+sT7LczMa3Px5zVEVOseLLDF5H9bI+J2/O8 l4BzgIlAF9/3P4sdHwn8uafrfd9fBDTa0zGRgizZq5XtdvS5MVCrNk6v++Hzjwhffz7axGT6BzgX XgUnNNbgNZFCJJ4W9zzgZt/3/8p50Pf9LZ7nNU5MWCLJt3mzZcGCNUyevIS5c1dQr15FWrQ4mNq1 y5CRkbxEaK3dLrZVqzbRsOGBzJu3kvnzi1G/Tg86HjmTil+/S/jU/eAeg9PpWkz1WkmLWUT2n7ie cXuedw7QGtgKTPB9Pz+3LdIz7gKosNevfPlKPPvsV3Tr9gk5/4sYA8OHN6Ft20OSlrw3b7ZMmPAr 3bp9Qt26FWnTpiZDh361U5zP3OfScuXbmDlfgHEwp7fGtL8Ek1m20H//VL/Upvrt/hl3PNPB+gEP ET3bXg885Xlet72OVCSFzJq1ZKekDWAtdOv2CQsWrElOYMCCBWu2xXbhhYfvlLQhivOaOwOClt1x uveHA6thp75DeFdnwskTsZo+JpKy4lmA5TLgFN/37/Z9vw/QEOiS2LBEkmvSpEU7JcNs1sKUKUvy N6AcJk9egrVQrVopFi9eu8c4Tb0GOP2GY7xrwIbYsU/zx02XYL//Jn8DF5H9Ip7EvRzI2bxYRY4l TEUKG2MM3377927PmTt3ZVIGfBljmDt3BQBVq0aJe3ey4zTp6Tit2uMMehLT9Ew2L/6Z8OG+bB15 H/avZfkRuojsJ/Ek7lnAm57ntfE87yzgRWCx53kdPc/rmNjwRPKftZZjjz1gt+fUq1chKaPMrbXU q1cRgGXL1lOjRuZuz98xTlO2PM7lN3LgIy/AEXXgy88I7+5K+H9jsJs2JjR2Edk/4kncRwOZRAuv 3AEcDFQEbgJuTFxoIsnTunVNdtWgNgaaNz84fwPKoUWLgzEGli6NEnde4ix2ZB2c24dgru0JmWWx b/mEfW8g/PyjpE57E5E92+N0sOztOD3PSweM7/ubEx6VSJKdeOLBDB/eJNdR5SNGNKV27TJJi612 7TLbYnv11Z+44476uY4q31OcxhhMw9Oxx52Mfed17HvjsaMfwk59B+df12FqHJ4PtRGRvRXPWuVV gP8ALYgS/UfApb7v59dYfU0HK4CKQv0WLVrCggVrmDJlCXPnrqRevQo0b578edzwvznmU6YsYeXK aB73d9+tZP78VXHFmdv3z/61jPDVZ+GrGWAMpkkrTIfLMGXK5UeV9qui8O9T9Utd+bHk6WPADOBf QBrRZiEjgfZ7E6hIqsnIMNStW5a6dcsmfeW0HeUW25lnHrRPcZrKVUm7oTf2+28Ix43CfvwedtZ0 TLtOmGbnYtLjWiFZRBIsnv+JtX3f93K87ud5Xty7g4kUBgUpae8oZ2z7I05T5zicu4dhp76D/e9L 2FeewU57D+eiazF16+/z/UVk38QzOC3D87wS2S9i+3IX3J9iIrLPTFoaTss2OIOewpx+FixbQvho P7Y+Ngj75+/JDk+kSIunxT0O+MDzvOdir68CXktcSCJSUJgyZTGX3oA9/WzCcU/DNzMJ532JadUe c46HKVEy2SGKFDl7bHH7vj8QeAY4EzgLeB64J7FhiUhBYg6phXPrvZjrb4ey5bHvvE7YpwvhZ1Ow YZjs8ESKlN22uD3PywCK+77/HPCc53nHAPN931dXuUgRY4zBnNQEe+xJ2EmvY999A/vsI9ipb+N0 uh5T68hkhyhSJOyyxe15XnWiLT3b5DjcB5jjeV61RAcmIgWTKV4cp93FOAOfwJzQGH4OCO/tSfj8 MOw/K5Mdnkiht7uu8geAZ33fH5d9wPf9i4AxwP2JDkxECjZTqQpO5ztwbh0M1Q/FTv+QsE9nwknj sVu0TpNIouwucdfzfX9ILsfvBRokKB4RSTHGPQanzyOYSzpDWjr2tecI+3fDzpmV7NBECqXdJe6s 3A76vh8C2o1ARLYxaWk4zc7BGfwkpvm58NfvhMMHsHX4AOyy5G2BKlIY7S5xr/Y8r9aOBz3POxzY kriQRCRVmdJlcC7+N87dw+CoY2HOLML+NxG++hx2w/pkhydSKOxuVPlDwATP87oBnxIl+VOAYUTd 5SIiuTIH18S5ZSB8NYPQfybawGTGFEzHyzGntsA48az9JCK52eX/Ht/3JxIl6NHAOmAN8Dhwr+/7 Y/MnPBFJVcYYTINTcQY8jml/CWzcgH1+OOF9t2F/mp/s8ERS1m7ncfu+/zLwsud5FYHQ9/1V+ROW iBQWplhxTJuLsI1aYl9/HjtzGuGQ2zGnNMecfzmmfKVkhyiSUuLa7sf3/RWJDkRECjdT8QDMdbdi m51DOO5p7Iwp2K8+w5zrYc5oj8nISHaIIilBD5pEJF+ZI4/GueshzGVdIaMY9o0XCPt1xX79eYHe hU2koFDiFpF8Z5w0nNNaR9PHzmgHK/4ifHww4aP9sb//muzwRAq0PXaVe55XY4dDFljv+/7yxIQk IkWFKZWJueha7GmtCceNhu++IrynG6b5uZi2nTClMpMdokiBE0+LezqwEPgW+Br4BVjqed4Sz/Ma JTA2ESkizEGH4NzcH6frXVCxMvaD/0a7j02bhA23Jjs8kQIlnsT9AXCV7/vlfd+vCHhEW3u2AR5J YGwiUoQYYzDHN8S553FMx8shaxP2xccJB/fE/vBdssMTKTDiSdzH+b7/QvYL3/dfB07wff8roFjC IhORIslkZOCcfQHOoJGYU5rD4p8J7+9FOOpB7Iq/kx2eSNLFk7jTPc+rl/0i9nWa53klAM3fEJGE MOUr4VzTA6fX/XDokdH8775dCCe+gs3alOzwRJImnnncvYCpnufNI0r0RwIXA/cA4xMYm4gI5vCj cO58APvZZOwbL2DffAn7yfs43tVQ/1SMMckOUSRf7bHF7fv+20BtoufZQ4A6vu9PBgb5vt83wfGJ iGAcB6fxGTiDnsS07gCrVhCOHEL4cF/skkXJDk8kX+0xcXue5wDXAjcDdwI3eZ6X7vv+mkQHJyKS kylZCueCq3D6j4BjToT53xIO6E748lPYdfqRJEVDPF3l9wHHAY8SJfrrgQeAHvEU4HleQ2CI7/vN Pc87Gngq9tYPwLWx/b1FROJmqh5MWre7sXNmEb7yDHbKW9gvpmHaX4I5rXWywxNJqHgGp50FtPV9 //98338DaA+cHc/NPc+7DRgFFI8dGgz08n2/KWCAtnsfsohIxBxzIk7/4ZgLroItW7AvPUk4sAcb 58xOdmgiCRNP4nZ839+c/cL3/U3A5t2cn9OPQIccrzv6vj/d87xiQFXgn7gjFRHJhUnPwGndIXr+ 3bgl/PYLf/X6N+GTQ7HL/0x2eCL7XTxd5V97nvcI8FjsdVeiVdT2yPf98Z7n1czx2saWUP0AWAV8 s5fxiojkypSrgLmyO/b0c0h/43myZk/HfvsF5qyOmNbnY4oX3/NNRFJAPIm7KzAc+JSoe3sScFNe C/R9fzFQ2/O8a4hGql+5p2uqVauW1+KSKlXjjpfql9oKbf2qVcOe2pT1U99l1XPDCSeMw5kxhfLX 3EzJJmcUmuljhfb7F6P67doeE7fv+6vZIbl6nlcX2Os9uj3PexPo6fv+j8AaIK5FiJcuXbq3RSVd tWrVUjLueKl+qa0o1O+fo46Hex7HvP0qW9//P5YPuRNqj8HpdD3mkFrJDnGfFIXvX1Gv3+4Sezwt 7tx8BpTNw3VDgOc9z9sErCeaZiYikhCmRElMx8uxTVoR+s/ANzMJB/bAnHYmpv2lmDJ5+TEmklx5 Tdxx9zX5vr8IaBT7+jOgSR7LFBHJE1PlINJu7IOd9xXhK6OxH72L/eJjTLtLMM3OxqSlJTtEkbjF M6o8N3a/RiEikg9M3fo4dw/DXHQNWLDjniYc0B37vcbJSurIa+IWEUlJJj0d54z2OIOfxDQ9E37/ lfDhvmx94l7sX8uSHZ7IHu2yq9zzvDXk3rI2QKmERSQikg9MmXKYy2/Enn424bhR8NUMwjmzMWd2 wJx9PqZEyWSHKJKr3T3jrreb90RECgVT83Cc2+/DfvEx9rXnsW/72E8/xJx/Babh6YVm+pgUHrtM 3LFBZSIihZ4xBnPyadjjTsa++zr23TewzzyM/eidaPpYzcOTHaLINnrGLSISY4qXwGl/Cc7AJ6BB I/jxe8LBtxC+8Bh29apkhycCKHGLiOzEHHAgaV164dwyEKrVwH78HmGfLoTvv4ndsiXZ4UkRp8Qt IrILps5xOH0fxfzrejAG6z9DeE837Nwvkx2aFGFK3CIiu2HS0nBatImmjzU7G/5YSjisP1sfG4T9 s/AuyykFV15XThMRKVJMZlnMJV2wp59FOG50tHzq3C8xZ7TDtPEwJTRLVvKHWtwiInvBVK+F03MQ Tuc7oFwF7KQ3ouffn36IDcNkhydFgBK3iMheMsZgTmiMM/AJTLuLYcM67HPDCIfcjl24INnhSSGn xC0ikkemWHGctp1wBozEnNQUFi4gvPdWwueGYf9ZmezwpJBS4hYR2UemUmWc62/DufVeqF4L++mH hH06E056A7tlc7LDk0JGiVtEZD8xbj2cvg9jLukC6enY154n7HcT9tsvkh2aFCJK3CIi+5Fx0nCa nY0z6ClMy7bw9zLCEQPZOuwe7LLfkh2eFAKaDiYikgCmdCam03XYpq0JXxkFc2cTfv81pkUbTJtO mFKlkx2ipCi1uEVEEsgcXAOnxwCcG3pDhQOw778ZPf/++D1NH5M8UeIWEUkwYwym/ik4Ax7HnHcp bNqIfeExwntvxf74fbLDkxSjxC0ikk9MRjGccz2cQU9iGp4Oi34kHHoH4TMPY1ctT3Z4kiKUuEVE 8pmpUAnn2p44dwyBGodjZ0yNVl97+1Xs5qxkhycFnBK3iEiSmCOOxrnrQczlN0Kx4tjxLxL2uxH7 1QystckOTwooJW4RkSQyThpO0zOj7vNW7WHFX4RP3Ev4aD/s0sXJDk8KICVuEZECwJQqjeNdg9Nv BNRrAN99TXhPN8Jxo7Dr1iY7PClAlLhFRAoQc1B1nG79cG7sCwcciP1wQjR97KN3seHWZIcnBYAS t4hIAWOMwRx3Ek7/xzDnXwGbN2PHPEE46BbsgnnJDk+STIlbRKSAMhkZOGedjzNoJObUFvDrQsIH 7mT50N7YFX8lOzxJEiVuEZECzpSviHP1zTh3PgC1arN+2nuEfbsQThyHzdqU7PAknylxi4ikCHOY i9Prfir26A8lS2PffJnw7q7Y2dM1fawIUeIWEUkhxnEofUYbnIEjMa07wqoVhE8OJXyoD/a3X5Id nuQDJW4RkRRkSpbCueBKnHseg2NPgmAO4YCbCV96Ert2dbLDkwRS4hYRSWHmwGqk3dQXp3s/OPAg 7NS3o+VTp7yN3arpY4WREreISCFg6p2A02845sKrIdyKfflJwoE3Y4M5yQ5N9jMlbhGRQsKkZ+Cc eV40faxJK1i6mPDBu9j65BDs8j+THZ7sJ+mJLsDzvIbAEN/3m3uedzwwHNgCbAIu931fkxFFRPYj U7YC5oqbsKefRThuFMz+lPDbWZjWHTBnXYApXjzZIco+SGiL2/O824BRQPa/kkeBrr7vtwDGA70S Wb6ISFFmDj0S546hmGtugdKZ2ImvRPO/Z07T9LEUluiu8h+BDjleX+T7fvYDl3RgQ4LLFxEp0owx OKc0i6aPnXMhrFmFHfUg4QN3Yhf/lOzwJA8Smrh93x9P1C2e/foPAM/zGgFdgUcSWb6IiERMiZI4 HS7DGfAE/H97dx4mRXX1cfx7a0CQTcUFHRVJNLhAjEsUAwoCGhElhKgXxO1NIojii0ZFZVEWIahR UJYgrqiJxqNvMGo0GgWNEkUhQFiiuEIEQaKCCMpW9f5RPWYYB5ylu2uq5/d5Hh6qq7tunfP0zJy+ t7ruPeI4eHsx4agrCB+cRLRubdLhSSW4XA+XeO8PAB42s7aZxz2BQUB3M1tagSY0niMikmVfzZ3F Z3feypZl7+EaNmaXcy+iUdczcXVy/tUnqThX3s68vkPe+3OBvsCJZramosetWLEid0HlSHFxcSrj rijll27KL92ykl+z/YkG3YJ76RmiJx5izZRbWPPEIwS9+uAOOyI7gVaR3r/4NduTt9vBvPcBcDvQ CJjmvZ/uvR+Wr/OLiMi2XJ06BJ27EYy6A9e+C6z8kHDc9WydNJpo9cqkw5PtyHmPOzMc3jbzcPdc n09ERCrHNd4Fd94lmdvH7oR5swgXzsGd/FNc17Nw9XdOOkQpRROwiIgIAK75dwkGjsH1HQhNdiV6 5rH49rHXZuj2sRpEhVtERL7mnCM45gSCkZNxp/eC9V8Q3TOO8KZriD54O+nwBBVuEREph6tXj6B7 bwkZ2cEAABG6SURBVIKRk+DotvDum4S/vopw6niizz9LOrxaTYVbRES2y+3RjKJ+1xJcOQqKmxPN fD5efey5aURbNicdXq2kwi0iIt/KHXI4wXW34Xr3g6CI6NH7CEcMIFowJ+nQah0VbhERqRBXVETQ sWu8+ljHrrDqI8LxI9g6fiTRqsK977qm0RQ5IiJSKa5RE1zvfkTtM6uPLZhNuHge7qRuuNN64nZu kHSIBU09bhERqRK3XwuCK0cR9LsWdm1K9Oy0+PaxmS8QhWHS4RUsFW4REaky5xzu6LYEIyfhuveG L9cTTb2d8Marid57K+nwCpIKt4iIVJvbqR7B6b3i5UOPOQHeX0I4ZiDhveOI1nyadHgFRYVbRESy xjXdk6DvQIKBY2D/7xC9OiO+feyZ/yParNvHskGFW0REss61bEUwdCzuvEugbl2iP95POPxSovmv V2r6VOdcuY/L7q9N9K1yERHJCRcU4dp3ITr6eKInHyaa8WfCiaOg1ZEEPfvg9tmv3OM2bNjIokWf M336chYu/JTWrZvSpk0zVq3awJYtEUuWrOGddz7n8MOb0qnTvrRs2Zi6dWtPIVfhFhGRnHING+F6 9SFqfwrhI3fDormEI/4X1/F0XLdeuAYNv37t5s0R99//T/r3f4mSjvlTTy2ldeum9O79PYYMmfX1 /qefXspNN81l/Pjj6dZt/1pTvDVULiIieeGKmxNcPoKg/2BouifR838iHNqP8OXniMKtACxZsm6b ol3irLMO3KZol4giGDDgFZYsWZenLJKnwi0iInnjnMMdcRzBiIm4HufBpo1ED0wkHH0V0TuLmT59 +TeKc3FxA5Yt++Ib+0tEEcyYsTz3wdcQGioXEZG8c3V3wnU9i+hHnYj+eD/Ray8S3nQtP+Qw9q5/ ECu/+u/sa3vvHRfuHVm48DOcc7Vi3XD1uEVEJDFut90JfnkFwbU3wwEHcSyLebH9n7n0wEXUC+Lh 85UrN9C8eaMdttO69W61omiDCreIiNQA7sBDCAbfwkcn92H91jpcffACXmj/NKc0+5AVK9bTvHkj tncHmHPQseO++Q04QSrcIiJSI7ggoFmP05nzkzHc+d7B7FN/A3cd/QoPHfsisx5/g9Gj23yjeDsH EyacQMuWjZMJOgG6xi0iIjVG3bqOcy5sw8xD9+KxZ+Zx+Ft/5Pg93qOdM5YuX8kdY09j8Qebeffd tbRurfu4RUREEtegQT1atWpCq1btca4D4fzXCR+5hxbvv0iL1XPo2v1cgoGngKudg8a1M2sREUmF KIpwhx9DMGIC7sz/gS1biH4/ma0jf0W0ZGHS4SVChVtERGo8V6cuwSk/Ixh1B65tZ/jwfcLfDCac cjPRJ6uTDi+vVLhFRCQ13C67Efz8MoLBt8B3WhLNfoXw+osJn3iYaNPGpMPLCxVuERFJHfedlgTX 3oz7+eWwc0OiJx8mvO4SotmvFPz93CrcIiKSSi4ICNp2Ihg1GdflDPj8M8IpNxPeOpTow/eTDi9n VLhFRCTVXP0GBGdcQDBiIvzgWHhrAeHIXxH+fjLRF58nHV7WqXCLiEhBcHsVU3TpUILLhkOzYqIX nyEc0o9w+lNEW7cmHV7WqHCLiEhBca2PIhg2Hud/CVFI9PCdhDdcTvSv+UmHlhUq3CIiUnBcnToE J3ePbx874cewYhnh2OvYOnkM0eqVSYdXLSrcIiJSsFyTXQnOv5RgyK1w0KHwj1cJr+9P+PjviDZ+ lXR4VaLCLSIiBc8dcBDB1TfiLrwSGjUh+rMRXncJ4ayXUnf7mAq3iIjUCs45gjYdCG74La6rh3Vr ie6+lfDmQUTL3k06vArLeeH23rfx3s8os2+s975vrs8tIiJSlqu/M0GPcwlGToIjj4N3FhOOuoLw gYlE69YmHd63yunqYN77gcB5wBeZx3sADwDfA97M5blFRER2xO25N0WXDCb613zCP9xF9PJzRLNn 4n7SC3fiabg6NXMBzVz3uN8BepR63AgYBjyY4/OKiIhUiDv0BwTX347r1RccRI/cQzjyMqJFc5MO rVw5LdxmNg3YUurxB2b2BlB7VjwXEZEazxUVEXQ+nWDUFFyHLrByOeFtw9g6cRTRxx8lHd42auY4 QBnFxcVJh1AlaY27opRfuim/dFN+OTszXD2KTWeez5opt7Bx/uuEi+bSuMc5NOn5C4KdG2TnLNXI L1+Fu1o97BUrVmQrjrwpLi5OZdwVpfzSTfmlm/LLg/qNiAYMw82eSfTYvax7dCrrnnsCd8YFuDYd cEHVB6wrkt+OCnu+bgcre5Ncum6aExGRWsc5R3DM8QQjJ+O69YINXxDdO47wpmuI3n87sbhy3uM2 s6VA2zL7Rub6vCIiItng6tXD/aQ3UbuTiB69j2jOTMJfX4lr1xnX43zcLrvlNR5NwCIiIlIBbve9 CPpdQ3DVaNivBdHMFwiH9iN8dhrRls15i0OFW0REpBLcwd8nGDoOd04/KKpD9Nh9hMMHEC2YnZfz q3CLiIhUkisqIjixK8HoO3AdT4PVHxGOH8nW8SOJVi7P6blTcTuYiIhITeQaNsb1voioQxfCP9wF C2YTLp6H69wNd3pPXJZuHytNPW4REZFqcvseQHDFDQQXD4JdmxI9Ny2+/j3zeaIwzOq5VLhFRESy wDmHO+pHBCMn4bqfA199STR1POGYgUTvZm95DhVuERGRLHI71SM4vSfBDZNxx7aHD94mvPFqwnvG Ea35pNrtq3CLiIjkgGu6B0GfqwiuvhGaf5fotRmEQy/mc5tKtLnqt4+pcIuIiOSQ+95hBENuxZ3X H+ruxNr7JxIO6080bxZRVPmJRFW4RUREcswFRQTtTyEYfQeNup8Nn64mnDSa8LbhRB/9u1JtqXCL iIjkiWvQiN36XkkwbDwcdiQsnks4YgDhI3cTbfiiQm2ocIuIiOSZ22d/gsuHE/QfAk33JHr+CcKh FxP+7VmicOsOj1XhFhERSYBzDndEG4IRk3A/Ox82bSR6cBLh6Ct3eJwKt4iISIJc3boEp55JMGoy 7riOsOy9Hb5eU56KiIjUAG7X3XG//BVRt547fJ163CIiIjWI26t4h8+rcIuIiKSICreIiEiKqHCL iIikiAq3iIhIiqhwi4iIpIgKt4iISIqocIuIiKSICreIiEiKqHCLiIikiAq3iIhIiqhwi4iIpIgK t4iISIqocIuIiKSICreIiEiKqHCLiIikiAq3iIhIiqhwi4iIpIgKt4iISIrUyfUJvPdtgBvNrKP3 /kBgKhACC82sf67PLyIiUkhy2uP23g8E7gLqZXaNBQabWQcg8N53z+X5RURECk2uh8rfAXqUeny0 mb2c2X4GOCnH5xcRESkoOS3cZjYN2FJqlyu1vQ7YJZfnFxERKTQ5v8ZdRlhquzGwpiIHFRcX5yaa HEtr3BWl/NJN+aWb8ku36uSX78L9D+99ezP7G3AqML0Cx7hvf4mIiEjtkO/CfRVwl/e+LvAv4LE8 n19ERCTVXBRFSccgIiIiFaQJWERERFJEhVtERCRFVLhFRERSJN9fTitoZaZ3PQJ4CliSeXqymT2a XHTVVya/PYlnxdsVKALON7P3Ew2wmsrk9zDQjPiuhhbAq2bWO8n4qqucn8/JwGZgiZldmGx01Vcm v6OI8/sKmGdmlyUbXdV57+sA9xL/HO4EjAYWUyDTR5eXn5k9mXluLPCmmd2ZXITVs533bxkwgXie k43Efz9XV7RN9bizpJzpXY8GbjWzTpl/aS/aZfO7GfidmZ0IXAccklBoWVE2PzM728w6Ec/89xlw eYLhVVs579/1wHAzaw/U996fllhwWVBOflOAAZnpldd679P8oetc4D+Z96oLMJHCmj66dH6nAhO9 97t7758GuiUbWlaU9/7dBvTP/I2ZBlxbmQZVuLPnG9O7Aqd571/y3t/tvW+YUFzZUja/dsB+3vu/ Ar2BF5MIKovK5ldiBDDBzD7OczzZVja/ucAe3ntHPBnS5kSiyp6y+e1nZrMy238Hjs9/SFljxB+O IR7d2gIcVUDTR5fOLyD+WWwEDAMeTCqoLCr7/m0GeprZgsy+OsCXlWlQhTtLypnedRYwMPOJ+D1g eBJxZUs5+bUAPjWzk4F/U8lPjDVNOfmRuRzQiXhIMtXKye9tYDywCNiLlH/wKie/d733J2S2uwGp /eBsZhvMbL33vjHwKDCEApo+urz8zGypmb1BAUzAtZ38Pgbw3rcF+gPjKtOmCnfuPG5mczPb04Aj kgwmBz4BnsxsP0k8wlBozgQeMrNCnOzgdqCdmR1G3KsZm3A82fYLYHBmRGgV8J+E46kW7/3+xDNN 3m9mf6CK00fXVGXyeyTpeLKtvPy89z2B3wJdzeyTyrSnwp07z3rvf5jZ7gzMSTKYHHgZ6JrZbk/c cysEpT/hn0Q8DFmIPiHuqQGsIP6SYSE5DeidGRHaA/hrwvFUmfe+GfAscLWZ3Z/ZPdd73z6zfSrx 72MqbSe/glFeft77c4l72iea2dLKtqlvlefOxcAE7/0mYCXQN+F4su0q4G7v/cXAWuLr3IWgdO+6 JfFljkLUB3jEe78Z2JR5XEjeBqZ779cDM8zsL0kHVA2DiD9YXee9v574Z/Qy4r8vhTB9dHn5nWpm G9n29zGtyuZXBLQClgLTvPcR8JKZjahog5ryVEREJEU0VC4iIpIiKtwiIiIposItIiKSIircIiIi KaLCLSIikiIq3CIiIimi+7hF8sx7HxAvWnI28T2dOxGvJHe9mW2qQnv3AQvMrEKzn3nvOwO3EN8j u08mhg8zT48hnlinwu1VMtYOwEQz+34ljwuBPczs0zL7rwRam9nPsximSI2mwi2Sf3cQzy3dyczW ee93Bh4iXt3qglyf3MxeAI4E8N4PA3Y3swElz3vvu27v2CypyuQROzpGk1FIraLCLZJH3vsWxD3t vc1sPYCZfem9vwhomyniy4FjzeydzDHPEa/dOz3zfzviFYYeN7OhZdo/lHjJwKbEPenxZja1CqG2 896fQbwm+ULg7EycXwF/Ag4HzgE2EM97vs35Mqvh3QccRDyv9hwzuyjTduPMeueHEC/D2cfMZnrv mwCTiOf1D4G/AIPMLCQzFW1mbeMJxNPRrgI+JuXzdItUlq5xi+TXUcCikqJdwsw+NrPHzexL4tXI +gB47w8knnr1KeAGoJ6ZHUzcY25Xar5qvPdFxKsPXWNmxwAnAgO998dWIc5i4pXRWgL7AT/L7N8J +JOZHQrMJ55qs7zz9QAamdlRwLGZ+L6baWNf4rXqjwTu5L8r500gXrf4+8APgR8QT61bWn/iDwOH AD8GmlchN5FUU+EWya+Qb/+9mwyclynEfYC7MiuUdQbuATCzzWbW0cz+Vuq4lsCBwL3e+7nAS0B9 MsPilfS4mW3M9HYXEi/9WeKVCpzvFaCV934G8ZKvt5lZybzv75rZ7Mz2vFJtdwEmluRHfEnh1Mxz JcPhnYlXbNtqZhuA31chN5FU01C5SH69DhzqvW9Yutftvd8XmAKcYWZve+//CfyUeDi6ZJW5LZS6 nuu93494qLpEEfBZppdb8pq9qNpQ8uZS2xHbrpr2xbedz8w2ee8PIu6FdwJe8N5fSrwq2fbaLvuB JgDqltlXNpYtiNQy6nGL5JGZrSDuJd7rvW8MUOra7urMikgQr9P7G+A1M1uV2fc8cIH33nnv6xEP U7cv1fxbwFfe+3My7e5P3FvO1Vrp2z2f974fMNXM/mpmg4iXNWydOc6V21r8mv6ZtuoRr6j3XJlj /gKc772v572vD/TMck4iNZ4Kt0j+XUK8FOPfvff/AF4lLnill9Z8CmhEPGxeYgRxb3U+8fruT5nZ 4yVPZoaXuwMXeu/nExe5IWb2aiXjK/st7ai87W853wNA4L1f7L1/A2hM/CW28tovMQBo5r1fkMnx TeDXZY6ZQpz7QmAGhbvsqsh2aVlPkRrIe98WmFLZ+51FpPDpGrdIDeO9nwp0AM5LOBQRqYHU4xYR EUkRXeMWERFJERVuERGRFFHhFhERSREVbhERkRRR4RYREUkRFW4REZEU+X8qM2PTl1V7nwAAAABJ RU5ErkJggg== "> | ||
+ | </div> | ||
+ | <div class="clear"></div> | ||
+ | |||
+ | </p><p class="c0"><span><b>pSB1C3 absolute quantification run #2</b><p>Lysate from 100,000 mid-log phase cells harboring K909006-pSB1C3 was compared against a 3-point standard of 105, 106, and 107 copies. Due to the reduced amplification efficiency of the 108-copy standard in run 1, cell numbers were reduced 10-fold in all subsequent experiments. Linear regression indicates approximately 13.4 copies of the target sequence for every cell in the reaction, or around 12-13 plasmid copies per cell.</p><p>Note: The K909006-pSB1C3 harboring cells used for this run were lysed in mid-log phase, which may account for the reduced PCN.</p><p class="c0"> | ||
+ | <div class="img-block"> | ||
+ | <!-- fig2 --> | ||
+ | <img src="https://static.igem.org/mediawiki/2016/0/0a/T--genspace--pSB1C3_Absolute_Quantification_2.png" alt=""> | ||
+ | <img src=" AAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmcTuX/x/HXdWbGvouYLEk5kZJKKkW0KJESp9Je9A2l tCd7FC0KlYr2hU6L+iqlhTYqUQrVUd+kBW3IMpgx5/r9cW5+Yxu3mbnnnjHv5+Mxj3Gf5Tqf+5ox n/u6znWuy1hrERERkeLBSXYAIiIiEj8lbhERkWJEiVtERKQYUeIWEREpRpS4RUREihElbhERkWJE iVtERKQYSU12ACKFyXXd1sAHwCNBEPTOsf0S4N4gCGok4JptgJlAhSAIMuI4/lCgehAEH+TjmpWA W4CuQF1gBfAGcGcQBCvyWm4e4tgHOCUIgkmx1zOBL4IguNl1XQM8CXQD/gSGAPcEQVCzAK67TR26 rhsCHYMgmJbfsndyrdLAHcC5QGVgDnBdEATfFvS1REAtbil5LgAWA+fF/uDmlMjZiPak7NeBJnm9 UCxZfg60AXoDLnBZ7Ptc13Ub5rXsPLgbODvH67OBobF/HwtcHNvWCphMPt73dravw1rAuwVU9vZG AV2I3ksLog9J77iuWyFB15MSTi1uKTFc1y1F1AK9DngUOAd4IalB7ZzJ5/kPAKuBNkEQZMe2/eq6 7kfA28DjwIn5vEa8tnkvQRCszvGyKmCDIHgnx7ZNCbrunwVU7jZivQaXAFcGQfBhbNsVwCqgHfDf RFxXSjYlbilJOgKVgDeJuq4vZ7vE7brubcANsZfPADcGQRC6rptClBC7EnWHzgOuD4Lgi9h5DYF7 iVq5IfBqbP+67cqvDywBmm7pSs3ZTR/rSq4PjHNdt2sQBO1c190XGAecBqyLxX9DEARrtn+DrutW Jep6PjtH0gYgCALruu5gYLbruo2DIPjOdd0lRN3TD+8sPtd1awL3A6fE3vevwIggCJ6MHT8T+BA4 HDgV+BsYEgTBE7FrXRI7LjsIgpQtXeXAIqJuclzXzSZqhS8lx+0K13UPA+4DjgFWAuODIBgZ29cC uAtoSfR37GugbxAEc3ZRh1u7yl3XTQP6x2KrDcyN1eecXN7T0CAIHt++vol6LbsS/T5sEca+V9nJ 8SL5pq5yKUkuAGYFQbCSKLGeGEtUW+xD9If6xNix3YGbY/uuAToBZxJ1wS4GXgJwXbcK8AlRa7EV Udfv8UQt253ZWbf5lm1dgN+IEkuX2LYpQDZRkuoIHEDUrbwzRxIlsk93tjMIgs+AjcBxuzh/+/ie JaqXtkBjoi7o8a7r5hwLcDMwjahepgAPx/bfC/jAVKKu6pwmAxfFrlUrduzWa7uuWx14n6gujgKu BG51XffSWBf0NOBL4FCiellH1IsCO6/DnB4k+tDWiyg5LwLejX1A2tV7emi79wxAEATZQRC8v11P wlVAKaKxFCIFTolbSgTXdSsDHYBXYpteI2oZXZrjsM1A9yAIFgZBMB0YTnSPGGB/ooT3axAEPwPX A5fEukovJPq/dHEQBN8FQfBxrNxuu7ifvMuu8CAIVhEl6bVBEKx2Xbct0BS4KFb2l0QJ7zTXdRvv pIh9Yt/X7uoaRK3XfXLZnzO+qcB/giBYFATBT8CdREmpUY5jZgZB8FisXgbE9jcLgmA9sAHYFATB X9u9z01E3fkEQfDXTgbtnQdkAj2DyHSiRLsOKEd0X/nWIAh+DoLgG2A8UT3tUIc5C439HlxONHhs ehAEQazcX4Grd/eecqmzLeW3Ae4BRgVB8MvujhfJCyVuKSnOJfrjOwUgCIJ/iLpDL8lxzO9BECzP 8XoesF9shPZ4oALRveKPgf8A3wZBYIlaovODIMjMce4XRInnkHzG3QQoD6xyXXet67prgYDoQ8fB Ozn+n9j3OrmUWZlY0ozDeOAY13XHuq77NvAtUas4JccxP2z5RxAEWz4wpMVZ/q40Br4JgmBzjrIn BUHwcux+9USgj+u6E2P37p8mvr9njWLHfZajXAvMZtuf1R6/J9d1TyO6jTElCIKBccQikie6xy0l xQWx70tc192yzQDGdd2TYq+ztztnSyLICoIgcF23AdAeOB3oC1ztum5Lopb4zhi2TXCw827y3P4f pgI/AyezY0v9j50cP5eo5+Do2HnbcF33SKIPAl/sIp7UHMcaYDqQTtS1PYOoWznY7pxMdpTfAXaZ uyrDdd3aRI9cfQ+8FYutBvBcHOVu3EW5Dtv+rPboPbmu6xHdVphENIJfJGHU4pa9nuu69YjuOQ8m 6u7c8nUkUdfr5bFD68TuV29xHLA0CIINruteCJwbBMEbQRD0IXq0qmas3O+Aw7d7vOxooiT43Xbh bEkIFXNs2747PWcy/Y4oca4LguCnWHd1NtFAuR2ed451E/vA4NggLFzXbeW67jeu63Yket54XqzL fUs828ey5frNiUZGnx4EwbAgCF4jGgkO8SfmvD5itxhoGhsUSOx9DHJd90XgfKIPU6cEQTA6CIL3 iJ5Vj+e6PwJZ7HiP/1ii3oQ95rruqUQfGp4IguDSWAteJGHU4paS4EKie61jtx+J7bru00APohZo KjDJdd1biBLYbUSTmEA0Gn2Y67r/EP2B70iUvL4ElgGDgGdc1x0GVAceBt4NguD72KCnLYnuD6L7 qTe4rnsr0QeIS7eLdx3QODYY6t3Y9V50XfdGoi7yB4m67X/exfu9jug2wEzXdYcC/wNmET2aZNk2 aX0BXBzrBi9DlNi3JJ4VxO77u677PNGHlTGx/ds/A78r64BDXNetHwTB0jjPAXieaEKWh13XvQ84 MPa+riX6sLGv67pnAAuJBs7dDtEjf7FbFlvrMOf99diHsHHAaNd11xONoL+WaBT6hD2Ij9j1SgNP EdXv0O0GuK0JgmDDnpYpsjtqcUtJ0B2YvLPHp4iSYCmiEeHfEiWyj4ju7d4bBMEEgNjjUg/Gtn9P NMq5axAE/4v9cT6V/5816yWiEcXn5LiOjZVjiRJ1Y6Ju52uJPiDkNIbow8bbsePPJLp3PSP2tQzo sKuWXez+/bGxGB4kSm4diR5vexWYHGt9Q5Twficahf4UUa9EGCtnWex99iRq+T8APAR8Q9RbsSs5 43qK6JGrRbFHy+ISu698OtF9/Pmx6w4NguBZoh6FCUSPk30di69H7Lpb4tpahzuJ6Tbgxdj584h+ FifGejO2P3Zn7ymn44F9gdZE9bgsx5e6zCUhjLWJ7dXxPK8lMNL3/bae5x1O9IcvC1js+36PhF5c RHYQ69rNCoJgZrJjEZE9l9AWt+d5NxF9Mt7SrTYIGOL7fmugjOd5ZyTy+iKyoyAI3lHSFim+Et1V /iPbzlP8FbCP53mGaEBMVoKvLyIisldJaOL2fX8K0eCWLX4AxhLd26uJZhYSERHZI4U9qnwM0Mr3 /e89z+sNjGbb2Yp2Ro9WiIhISbTTxy4LO3H/w/9PxbiM3OdL3mrZsmW73Jeenp7rfsk/1XHhUD0n nuq4cKie8y89PX2X+wo7cfcEXvQ8L4vYPMSFfH0REZFiLeGJ2/f9pcRa1r7vzyJ67lFERETyQBOw iIiIFCNK3CIiIsWIEreIiEgxosQtIiJSjChxi4iIFCNa1lNERIqF+fPnM2zYMPbff38A1q9fT3p6 OgMGDCAlZevS7VhrGT9+PEuWLCEzM5OyZcty7bXXUrt27d1eIzMzkxEjRrB69WrKlSvHrbfeSuXK lbc5ZtKkScyYMYPy5ctz7rnncuyxx7J27VpGjBjBhg0bqFSpEjfeeOPW87Kzs7njjjs444wzaNGi Rb7rQS1uEREpNpo3b87o0aMZPXo0jz76KCkpKcyaNWubY+bMmcM///zDPffcw5gxY+jUqRMPP/xw XOW//vrrHHDAAYwZM4ZTTjmFZ599dpv9S5YsYcaMGYwfP567776bJ598kszMTJ5//nkOO+wwxowZ w1lnncWECdHy7suWLeO6664jCIKCqQCUuEVEpJjKyspi5cqVVKxYcZvtVapUYfHixcycOZN///2X Vq1aMWTIEAA+/PBDevbsyU033cSQIUOYPn36NucuWLCAo48+GoCWLVsyb968bfYvXbqUww8/nNTU VEqVKkWdOnX48ccf+fnnn7eed+ihh7JgwQIANmzYwE033cThhx9eYO9bXeUiIrLHwpeexM6btdN9 y1JSyM7O3uMyzZGtcLpdlusxX331Fddffz0rV67EcRw6depE8+bNtznGdV1uuOEGpk6dyrhx46hZ sya9e/fmkEMOYfz48UycOJHy5ctz66237lB+RkYG5cuXB6BcuXJkZGRss/+AAw7ghRdeYMOGDWRm ZrJo0SI6derEQQcdxOzZsznwwAP55JNP2LRpEwANGzbc43rYHbW4RUSk2NjSVT527FjS0tKoVavW Dsf89NNP1K1bl4EDB/Lqq6/So0cPhgwZwpo1a6hUqRIVKlTAGEOzZs12OLdcuXJs2LABiJJ4hQoV ttlfr149zjrrLG655RbGjRtH48aNqVy5Mt27d2f58uVcd911/Pnnn9SsWTMxFYBa3CIikgdOt8tg F63jwlhkpFKlSvTv359+/foxceJEqlWrtnXfvHnzWLp0KTfccAPGGOrXr0/ZsmWpWrUqGzduZPXq 1VSpUoUgCDjuuG3XumratCmfffYZruvy+eefc+ihh26z/99//yUjI4OxY8eyfv16br75Zho0aMDn n39Op06daNKkCR999BFNmzZN2HtX4hYRkWKpfv36nHPOOYwbN47Bgwdv3d6lSxceeeQRevTosbV1 ffvttwPQr18/+vfvT/ny5bd2Z+fUuXNn7rrrLvr27UtaWhoDBgwA4KWXXqJOnToce+yx/PLLL/Tq 1Yu0tDSuuuoqjDHUrVuXu+66C4AaNWpw8803J+x9G2uL/HLXVst6JpfquHConhNPdVw4iks9T5gw gXr16tG+fftkh7KD2LKeO12PW/e4RUREihF1lYuISInUs2fPZIeQJ2pxi4iIFCNK3CIiIsWIEreI iEgxosQtIiIJYS1kZGSzeXORf3qpWFHiFhGRApWZmcWiRWsYMeJrzjzzHbp3n8n06cv4++/MAr/W lClT8l1Gnz59+OOPP/b4vF9++YV+/frl+/p7SqPKRUSkQE2Z8j0XXPAO2dn/39KeNWsFp5xSh7vv bknNmqUL7FrPPfccZ599doGVt6eM2emj1gmlxC0iIgXmt9820KPHjG2S9hbvvvsbs2c34Kyz6uax 7N8YNWoUqamphGHIEUccwdq1axkzZgw9e/bknnvuYf369fzzzz907tyZM888k379+nHggQeyZMkS MjIyGDJkCDVr1mTixInMnTuXGjVqsGbNGgD++usvHnjgATIzM1m5ciWXX345rVq14vLLL6dOnTqk paXRp08fhg8fDkDVqlW3xjZx4kTmz59PGIa0bt2a8847L0/vMR5K3CIiUmAWL/6Xdeuydrl/3LgF nHxyOhUqpOxx2XPnzqVx48b85z//YcGCBVSuXJmpU6dy7bXX8sMPP3DSSSdx/PHH888//9CvXz/O PPNMABo3bkyfPn14/PHHef/99zniiCNYsGABjzzyCBkZGVx00UVA1PXteR7NmjVj0aJFPPXUU7Rq 1YoNGzZwySWX0LBhQ8aOHctJJ53EGWecwcyZM5k6dSoAM2bM4P7776datWo7LBVa0JS4RUSkwKxd u+ukDfDHHxvYuDE7T4m7Q4cOTJo0iZtvvpkKFSpwxRVXbN1XtWpVXn75ZT766CPKlSvH5s2bt+47 8MADgWgO8VWrVvHbb7/hui4QrQbWoEEDAKpXr86zzz7LtGnTALZZmrRu3aiX4Ndff6Vjx45AtCDJ lsTdv39/HnvsMVatWrV1Xe5E0eA0EREpMDVrls11/2GHVadChby1GWfNmsVhhx3GfffdR5s2bZg0 aRJb1tvwfZ9DDjmE/v37c+KJJ5JzHY7t70PXr1+f77//HoANGzawdOlSAJ544gnat2/PbbfdRvPm zXdaxv7778/ChQsBtpaxefNmPvzwQwYOHMjo0aN5++23+fPPP/P0HuOhFreIiBSYRo0qUb9+BZYu XbfT/b17H0KZMnlrM7quy8iRI3n22Wex1m4dDX7nnXfSoUMHxo4dy8yZMylfvjypqalkZWXtdPDY gQceyNFHH81VV11F9erVt96rPvHEExk/fjwvvPAC++yzz9Z73znLuPDCCxkxYgQffPDB1rXAU1NT qVixIr1796ZMmTK0aNEioetxa3Uw2S3VceFQPSee6rhw/PxzJl27TmP58oyt24yBwYOP4oILGlKu 3J53k5c0ua0Opha3iIgUqGOPrc8bb5zOd9+t5vvvV1G1ahkOP7w6BxxQnlKldIc2v5S4RUSkQBlj qFWrNLVq7UvbtvsmO5y9jj76iIiIFCNK3CIiIsVIsUjcduGXyQ5BRESkSCgWiTscM4Tsh0Zg/1qR 7FBERCROxlpSMzJwckyGIvlXLBI3BzWB+Z8TDupDOOU57KaNyY5IRER2ITszk3KLFlFlxAiqn3km 1bt3p8L06ZT6++98lZuZmcmbb765R+d88803LFmyJF/XLWoSPqrc87yWwEjf99t6njcJ2Jfo2bT9 gU993+++uzKcm+7CfvEx9qUnsdN87KczMF0vxbQ4IbHBi4jIHts0ZQqVL7gAE5syNAVImzWLzFNO Yc3dd5OZx8lJVq5cybRp0zjjjDPiPuett96ibdu2W6c13RskNHF7nncTcBGwDsD3/fNj26sAM4Dr 4inHGIM5ujW22dHYaS9j33kVO+Fe7AfTyOw7AMpUSNRbEBGRPVD6t98o26PH1qSdU6l336X07Nlk nnVWnsp+7rnnWLp0KU8//TRLlizZOrPZNddcQ4MGDRg1ahTLli0jMzOTLl26UL9+febMmcMPP/xA gwYNqFGjRr7eW1GR6Bb3j8DZwLPbbR8KjPN9f48mczWly2DOvhDb6iTCl56A+Z/zx7UXYlqfhunc HVOhUkHFLSIieZC2eDFm3c6nOwUoO24cG04+mc0V9rzBdeGFF7JkyRIyMzM54ogjOPPMM/n9998Z NWoUo0aNYsGCBTz00EMAzJs3j0aNGnH00UfTrl27vSZpQ4ITt+/7UzzPq59zm+d5NYB2xNna3hlT szYpfW7HLpyH88pTbP5gGvaLjzFnXYBp3R7jaDo9EZFkMGvX5rrf+eMPnI0bIQ+Je4uffvqJL7/8 kg8++ABrLWvXrqVs2bL06dOH++67j4yMDE4++eQ8l1/UJWPmtK7AC77vxz1JemzO1p3twLY9jbVT X2TNCxOwzz9C6uwZVLnqRso0PaKAwhXI5WcgBUr1nHiq48TK2G+/XPdnN2tG5Xr1SKtSZY/LNsaQ mppKkyZNaNq0KWeccQYrV67k5ZdfJi0tjeXLlzNx4kQyMzM58cQTufTSSylfvjxVqlTZq37uhZW4 c06UfjJwx56cvLtFRtYd0w7TuDm8+gxZs9/nr1uuxLQ4AdP1Mky1ffIYsmyhhRkKh+o58VTHiVeq QQNK169PSmypzO1t6NWLdRkZkJGx0/25yczMZMOGDfz5559MmTKFZ555hoyMDC699FKysrJYunQp Xbp0ISUlhW7durFixQrq16/PqFGjKF26NPXq1cvv2ys0uX3QKKzEnbN13Qj4qaAvYCpXxVx2LbbN aYSTHotGoX89B9OhG+bUszBppQr6kiIisp3M6tXZ9MILlOnaFWf58q3brTFkDB7MhiPy3htaqlQp HnvssV3u79ev3w7bOnXqRKdOnfJ8zaJor1zW04Yh9tMZ2FeehrX/Qo1aON4V0Ozona7NKrlTK6Vw qJ4TT3VcOGrXrs0/X31Fqe++I+X777FVq5J1+OFsOuAAwlJqRMWjxC3raRwH0+pkbPNjsVMnY2e+ QfjQCDikOc65PTG16yQ7RBGRvZYxhsxatcisVQvatk12OHud4jFzWh6ZcuVxzr0CZ9AYaNwMFn1F OPQawpeewG7Y8/srIiIiybZXJ+4tTHo9nH7DcHr3hyrVse+8RjjgKsJZ72PDMNnhiYiIxK1EJG6I zb7W/BicYQ9hOl8AGzOwT40hHHkzdskPyQ5PREQkLiUmcW9hSpXG6XguzrDxmKOOhyWLCe+8gfCp sdg1q5IdnoiISK5KXOLewlSvgfOfm3FuHAH71cfOeo9wQC/Cd1/Hagk6EREpokps4t7CuIfiDHwA 0/0/YBys/zjhsGux336V7NBERER2UOITN4BJScFpewbO8EcwbU6DFb8R3j+Y7IfuxP61ItnhiYiI bKXEnYOpWAnnwt44A0bDgU1g/meEg/oQvvYcdtPGZIcnIiKixL0zpl5DnJvvwvS4ASpUxL7pEw7q TfjFJxSDmeZERGQvpsS9C8YYnJZtcO4Yjzm9K6xZjX3sbsJ7b8f+tiTZ4YmISAmlxL0bpkxZnC4X 4wx9EJodDYsXEg7rR/jCI9j1ua87KyIiUtCUuONkaqaTcvUAnL6DoWZt7Mxp0exrH7yFDbOTHZ6I iJQQStx7yBx6JM6QsZiul0HWZuzz4wmHX4/94dtkhyYiIiWAEncemNQ0nPZn4wwfjzm2Lfy6hPDu Wwkn3Idd9U+ywxMRkb2YEnc+mCrVcC7vh3Pr3VD/QOycDwkH9iKc9hI2KyvZ4YmIyF5IibsAmIYH 4/S/F3Px1VCqNHbKs4SD+2C/nqPHx0REpEApcRcQ4zg4J5wadZ+ffCb88yfhg8MJxw7Frvgt2eGJ iMheQom7gJlyFXDO7YEzeCw0bgYLvyQccg3hS09iN2QkOzwRESnmlLgTxKTXw+k3DKfXrVClOvad KdH979kzsGGY7PBERKSYUuJOIGMM5ojjcIY9hDmzO2Ssxz75AOGoW7A//5Ds8EREpBhS4i4EplRp nE7n4dzxMObIVvBTQHjnjYRPj8OuWZ3s8EREpBhR4i5EpnpNnKtuwblhOKTXw37yLuGAXoTvvY7d vDnZ4YmISDGgxJ0E5uDDcAY+gDn/SjBgX3yccNi12G/nJzs0EREp4pS4k8SkpOC064gz/BFM69Ng xW+E9w8ie/xd2L//SHZ4IiJSRClxJ5mpWBnnot44t4+GhgfDl58SDupD+PoL2E2bkh2eiIgUMUrc RYSp3xDnllGYK66HchWwb0wmHNQLO/cTzb4mIiJbKXEXIcYYnGNOxBn+MOb0c+Df1YSP3k143wDs bz8nOzwRESkClLgTwBiTv/PLlMPpcgnO0AfhsBYQLCC84zrCSY9h16/LV0z5jU1ERJIrNdkB7C2y siyLF69lxozfWbhwJU2bVqNdu/1o1KgiaWl5S5Zm33RSrhmIXTCXcPJE7Iw3sHM+xJx9Eeb4UzBO SlwxzZ//N+XKpbF48Wp+/HENhx2W/9hERCQ5TDG4f2qXLVu2y53p6enktr8wZGVZpk79lb59PyFn dRoDY8ceT6dOdfOdIG1WFvb9/2Lf8GHTBqh3AM75V2IObJJrTI8++i0dO9Zn1Kiv8hxbUajjkkD1 nHiq48Khes6/9PR0gJ3+cVZXeQFYvHjtDkkbwFro2/cTFi9em+9rmLQ0nNPOie5/H9MWfvmJcNSt hBPvw676Z5cxdevWcIekXdCxiYhI4VHiLgAzZvy+Q2LcwlqYOfP3AruWqVId54p+OLeMgnoNsZ9/ GC1e8tYr2KysbWKqXbscv/yyrtBiExGRxEv4PW7P81oCI33fb+t5Xg1gAlAFSAEu9n1/SaJjSCRj DAsXrsz1mIULV2GMKdDHusyBjXFuvxc7633sq89gX30a+8k70ZKizY5m4cKV1KoVJe7Cjk1ERBIn oS1uz/NuIkrUpWOb7gae833/RGAgcHAir18YrLU0bVot12OaNq2akMRonBScE06NZl87qRP8/Qfh uDvYPGYorQ7KZsWKDOrVq5CU2EREJDES3VX+I3B2jtetgDqe570LdAc+SPD1C0W7dvuxq6esjIG2 bfdL6PVN+Qo45/XEGTQGDj4MFsyl+w/3c0ml2RywX2pSYxMRkYKV0MTt+/4UIOeyV/sDK33fPwX4 Fbg1kdcvLI0aVWTs2ON3SJDGwLhxJ9CoUcVCicPsVx/n+jtwrroVqlSj1wHf0+GzETx+pcWYbVvV hR2biIgUjMJ+jvsfYGrs31OB4YV8/YRISzN06lQX1+3IzJm/s3DhKpo2rUrbtoX/rLQxBo48jpSm R7L5rVep+vbLnPzri3x1fgPerNiBT3+vUCDPmIuISHIUduL+GOgAPA+0BhbFc1LsebY87y8s9evD SSc1IgxDHMfBcZI8aL/3DWzu2p1VE++n2qwZXPTvw1x5yplUvrg3aVWr71FRRaWO93aq58RTHRcO 1XPiFHbivhGY6HleL+Bfovvcu1XUJ2Ap8i69DqdlW8LJE9jwzuts+Pg9TOfumDanY1J3/yugOi4c qufEUx0XDtVz/uX2wUczp5UgdvNm7IdvYV9/ATash/R6OOf1xDRulut5quPCoXpOPNVx4VA9559m ThMATGoqzkmdcEY8gjnhVFj+K+HogWSPH4n9+49khyciInFQ4i6BTMXKOBdfjXP7fdDwYPhyNuGg PoT/nYTN3JTs8EREJBdK3CWYqX8gzi2jMFf0g3IVsFMnEQ7qg503W5OyiIgUUUrcJZwxBueYttHi Je27wOqVhI+MJBw9EPv7L8kOT0REtqPELQCYMuVwul6KM2QcND0Svv+GcFhfwskTCNeuSXZ4IiIS o8Qt2zC19iPl2sE41wyEffbFvj+V5Vd2IfxoOjbMTnZ4IiIlnhK37JQ5rAXOkAcxXS7BZm7CPvsQ 4Z03YX/8LtmhiYiUaErcsksmLQ3n9HOo/dirmGNOhKU/Eo66hfDx+7Gr/0l2eCIiJZISt+xWSvUa OFdcj3PLSKh3APazmYQDehO+/Qo2KyvZ4YmIlChK3BI3c2ATnNvvw1zUG9JSsa88TTjkGuyCuckO TUSkxFDilj1inBSc1qfhDH8U064j/L2CcOwwsscOw/6pKQ5FRBKtsBcZkb2EKV8Bc/6V2BNOJZw8 ARbMJfzeBNdYAAAgAElEQVRuPuaUzpgOHqZM2WSHKCKyV1KLW/LF1Nkf54bhOFfdApWqYt96hXBg L8LPPtDsayIiCaDELflmjMEc2Qpn2MOYjufBurXYx0cT3n0rdun/kh2eiMheRYlbCowpXRqnc3ec YQ/BEcfCj98Rjrie8NmHsGv/TXZ4IiJ7BSVuKXCmRi1Set2G028Y1KqD/Wg64YCrCN9/A5ut2ddE RPJDiVsSxjQ5HGfQGMy5PcCCnfwY4R3XYb//JtmhiYgUW0rcklAmNRXn5DNxho/HnHAqLPuF8L4B hI+Mwv7zV7LDExEpdpS4pVCYSlVwLr4a57Z74QAXO28W4aBehFMnYzM3JTs8EZFiQ4lbCpVpcBDO LaMwl10HZctj//sC4aA+2C9n6/ExEZE4KHFLoTOOg3NcO5w7xmPanw2rVxKOH0l4/yDssl+SHZ6I SJGmxC1JY8qWw+l6Gc6QsdD0CPjua8KhfQlfnIjNWJfs8EREiiQlbkk6U6sOTt/BOFcPhOo1se/9 l3BAL8KP38GGYbLDExEpUpS4pUgwxmCatcAZ+hDm7Itg00bsMw8S3nkj9n/fJzs8EZEiQ4lbihST lobToVt0//voNrD0R8KRNxM+cT929cpkhyciknRK3FIkmWr74PS8AefmkVC3AfbTmdHiJdNfxW7O SnZ4IiJJo8QtRZo5qAnOgNGYC3tDair25acIh/TFLpyX7NBERJJCiVuKPOOk4LQ5DWf4I5i2HeDP 5YRjhpL94HDsn8uSHZ6ISKFKTXYAIvEy5Stiul+Fbd2ecNIE+HoO4aIvMaechenQDVOmbLJDFBFJ OLW4pdgxdRrg3DgCc+XNULEK9q2Xo/vfn3+o2ddEZK+nxC3FkjEGp8XxOHc8jOl4Lqxbi514H+Hd t2F/+SnZ4YmIJIwStxRrpnQZnM4X4Ax7CJofAz9+Szj8esLnHsauXZPs8ERECtxuE7fneUcURiAi +WFq1CKld3+cfkOh1n7YD98mHHAV4cw3sdnZyQ5PRKTAxNPifj7hUYgUENOkOc6gMRjvCrAh9oVH Ce+4DhssSHZoIiIFIp5R5d94ntcd+ATYuvKD7/txTWPleV5LYKTv+209zzsceANYHNs93vf9l/Yw ZpFcmdRUzCmdsS1bY199FjvrPcJ7b8ccdTym62WY6jWSHaKISJ7Fk7g7A92222aBlN2d6HneTcBF /H/CPxK4z/f9+/ckSJG8MJWqYi7ti21zGuGkx7BzP8F+MwdzeldM+y6YtFLJDlFEZI/tNnH7vl8m H+X/CJwNPBt7fSTQyPO8s4AfgGt931+fj/JFdss0aIRz693Yz2ZiX3ka+/oL2Fnv43hXwOEtMcYk O0QRkbjtNnF7nucA1wNNgWuAq4G7fd/f7Ygf3/eneJ5XP8emz4EJvu9/5Xlef2AIcFNeAhfZE8Zx MMedhD38GOybL2Lfn0r48J3Q5HCc83piatdNdogiInGJZ3DaPcBhQMvY8acBee3qfs33/a9i/54C HJ7HckTyxJQrj9PtcpzB46BJc/h2PuHQvoQvPo7NUOePiBR98dzjPgk4Apjn+/6/nuedCszP4/Wm e553te/7c2PlxrVSRHp6er72S/7tdXWcno49ogUbP/+IVRNGk/3e65i5H1Ppkj6UP7kTxknOFAd7 XT0XQarjwqF6Tpx4EneW7/uh53kA+L6/yfO8zXm8Xi9gnOd5mcAK4Mp4Tlq2bNcLSaSnp+e6X/Jv r67jegdhB43BvPMa4bSXWDXmDla9Phnn/CsxB7iFGspeXc9FhOq4cKie8y+3Dz5md3M7e573JDAX +A/R6PLrgXK+719UgDHmxipxJ1dJqWO78m/sK09h53wEgDnuJEyXizGVqxbK9UtKPSeT6rhwqJ7z L5a4dzpyNp7+wGuJusr3BWYBFYDrCio4kaLCVNsHp+eNODfdCXUaYGe/H82+9s4U7OasZIcnIgLE 9zjYGuCKQohFpEgwjZriDByN/Wg69rXnsS89if34HZxze2KaagZgEUmueB4HqwmMAU4BsoBpwA2+ 769OcGwiSWOcFMyJHbBHHR899/3h24RjhkCzo3HO7YGpUSvZIYpICRVPV/kE4CfgaOAEYBXwaCKD EikqTIVKOBdchTPwfmh0CHw9h3BQH8Ipz2E3bUx2eCJSAsUzqnx/3/c753h9o+d5WrFBShRTtwHO jXdG06a+9CR2mo+d/T6m22WYFido9jURKTTxtLiXeZ7XYMsLz/PqAMsTF5JI0WSMwWlxAs4dD2M6 eLDuX+yEewnvuQ3765JkhyciJcQuW9ye500lWkykBjDf87z3gGygLfBN4YQnUvSY0mUwZ1+IbXUS 4UtPwPzPCe/oh2nTHtP5AkyFSskOUUT2Yrl1lb+8i+1vJiIQkeLG1KxNSp/bsQu/JHxxAvaDt7Bf fII56wJM6/YYZ7cL6ImI7LFdJm7f95/O+drzvHKJD0ek+DFNj8A5eCx2xpvYqZOwzz+C/XA6zvk9 MY2aJjs8EdnLxPM4WD9gBFA6tskQ53rcIiWFSU3DnHoWtmUb7JRnsLPeJ7ynfzRwreulmGo1kh2i iOwl4hmcdj1wDFAp9lUx9l1EtmMqV8W59Fqc2+6B/Q/CfvEx4cDehG/62KzMZIcnInuBeB4H+8H3 fQ1GE9kD5gAX57Z7sJ/OwL7yNPa157CfvItz7hXQrKUeHxORPIsncT/oed6LwDtEM6cB4Pv+MwmL SmQvYBwH0+pkbPNjsW9Mxs54g/ChO+GQ5tH0qbXrJDtEESmG4kncfYgWGMk5OM0CStwicTDlymO8 K7AnnEo4eQIs+opw6DWYkzphOp6HKatxnyISv3gSdz3f9w9KeCQiezlTuy7OdUPh688JX3wc+85r 2M8+wHS5BHNs22SHJyLFRDyD0372PG/XK3qLSNyMMZjDj8EZ9hCm8wWwMQP71BjCkTezKViY7PBE pBiIp8W9AVjoed4XwKYtG33fPzNhUYns5UxaKUzHc7HHtcO+/BT2i4/58/pLMa1OwnS5GFOparJD FJEiKp7E/UrsS0QKmKlWA3PlTdg2p5Py8hNkzXof++WnmE7nY9qegUmN57+oiJQkxlqb7Bh2xy5b tmyXO9PT08ltv+Sf6rhw1N63Jr9Pfgr72nOQsQ5q18U5rwemSfNkh7bX0O9y4VA95196ejpEE57t IJ6Z09YSjSLfhu/7moRFpACZlFScth2wLY6Pnvv+aDrh/YPh8GNwvMsxNWolO0QRKQLi6YfLOdly KaAL0SphIpIApkIlzIW9sa3bE06aAPM/I1w4D9P+bMzpXTGlyyQ7RBFJot0mbt/3l263aZTneZ8D 9yYmJBEBMPUa4tx8F3bOR9EAtjd97OwZmG6XYY46XrOviZRQ8TwOtg3P8w4mmpBFRBLMGIPTsg3O HQ9jOnSDtauxj91DeO/t2N+WJDs8EUmCPb3HbYi6y29OZFAisi1Tpizm7IuwrU4m9B+Hr+cQDuuH OfE0TOcLMOUrJjtEESkke3qP2wKrfd9fk6B4RCQXpmZtUq4egF04j3DyROzMadg5H2POuhDT+lSM o9V2RfZ2u+wq9zyvnud59YiS9ZYvgCqx7SKSJKbpkThDxmK6XgbZm7HPjyccfj128aJkhyYiCZZb i3sRUbLOOQLGAmWJEr4+2oskkUlNw7Q/G9uyDfbVZ7CfziC85zbM0a0xXS/DVK2e7BBFJAF2mbh9 39/mppnneQboD9wY+xKRIsBUqYa5/Dpsm9MIJz0WjUL/eg6mQzfMKZ0xaaWSHaKIFKC4RpV7nrcf MAM4G2jp+/7jCY1KRPaYaXgwTv97MZdcA6VKY6c8Szj4auzXc9h+hkQ9SiZSfMUzqrwL8BjwFHCb 7/tZiQ5KRPLGOA7m+FOwRxyLnfoidsZUwgeHQ9MjSDnnUsr+u55SM2aQunAhm5s2JbN9ezY1bEiY ojtfIsXFLhO353llgTHAGcB5vu+/V2hRiUi+mHIVMOdegT3hFMLJE2Dhl2Qv+gr+t4KyPy4jPLgJ 2S1aUPa55yi/fDmbDzuMzHbt2NCoETYtLdnhi0gucmtxfwnUJ0reh3med1jOnb7vj05kYCKSfya9 Hk6/YZT670tk+Y+z7oB9yahfk3L1m1J5yBCcWBd6qWnTKDtqFGkjRpB5zDFsPOAAJXCRIiq3e9yf Ay8CtYBDt/tqmst5IlKEGGMo98sf1PpoEZUW/06Ylsq63xbx1zGN2FS53P8fZy3lbr+d0h99RIWp UzFZuismUhTlNqr80kKMQ0QSxBhD6sKFOKGlYoZD6j4uG+Z/wob0avx53MGU/+0fKge/k5K5GWMt zq+/UnrCBDa7LhsOOSTZ4YvIdvZ4rvI95XleS8/zZm63rbvnebMTfW0RAWstm5tGnWRhrVqU+n0F +8xfQo3PAtLWbmB93X1Y3uYQ1u5fE2vA+fVXbM2alJo5czcli0gyJDRxe553EzABKJ1jW3Pg8kRe V0S2ldmuHdYYnBUryK4XTXxYZuU69p31HVUW/QLA6iZ1WXF8EzbWrILzxx+kLlyox8ZEiqBEt7h/ JHr2GwDP86oDw4FrE3xdEclhY6NGrBs7FrN8OWG9ethYQjYWKi79i9ofLKT8L3+xuUIZ/l35P1bW KsOmRg13eP5bRJJvt4nb87wvPc/r4Xleud0duz3f96cAm2PlOMBE4HpgPdtOpSoiCWTT0ljXqROr p08nu1w5NgwZsjV5A6RkZVN10a9UaXQsaRtDNtSqyr+LPyV8/QXspk1JjFxEtmd294na87zjgP8A pwKvAON93497JQPP8+oDk4C+wJPAX0TznTcGnvB9//rdFKGP/CIFKAxDstavJ2vuXFLeeIOUhQsJ 69YlrFuXUi+/jLNoEf/2v56MnxcSrvqblBr7UuWKfpQ9/iR1nYsUrp3+h9tt4t7C87wqQHfgBmAZ MNb3/ZfiOK8+MNn3/WO32zbJ9/3j4ri0XbZs2S53pqenk9t+yT/VceFIRj2bzZsp8+uvpH34IWmf fRbNpta2LRsbNSLM3oyd9hL23ddg82ZwD8U5ryemzv6FGmNB0u9y4VA95196ejrsInHHsx73lqR9 EXAF8C/gAxd7ntfJ9/2L4yhCrWaRIsimprKhQQM2NGiAueyybe5pm7Q0TJeLscefTPji4/DNF4TD rsOceDqmc3dM+Yq5lCwiiRJPV/nzQAfgDeBh3/c/jW1PBf70fb9agmNUizvJVMeFo6jXs10wl3Dy RPhzGVSoiDn7Iszxp2Ccnc9zbozJdXDbzvbv7pz8Kup1vLdQPedfflvci4DrfN//K+dG3/c3e57X Kv/hiUhxYA49CqdxM+z7U6MFTJ59GPvh2zjnX4k5sAkAWVmWxYvXMmPG7yxcuJKmTavRrt1+NGpU kbQ0s9P9p55ah6yskJkzl+30HBHZVlz3uD3P6wC0B7KBqb7vF+bMDGpxJ5nquHAUp3q2q1diX30a +2n0p8C0bEN250uY+nEGfft+Qs4/K8bA2LHHc/rpdXjrrd+22d+0aTU6dqzPqFFf7fScTp3qFmjy Lk51XJypnvMvtxZ3PI+DDQbuI7q3nQE86nle34IMUESKF1OlGs7l/XBuvRvqH4j9/EMY3IvvHniM NJO9zbHWQt++n7Bgweodknq3bg13SNo5z1m8eG0hvBuR4iWeCVguAo7xfX+Q7/sDgJZAr8SGJSLF gWl4ME7/ezAXX82mMJVb3W9494S3aFdj29aWtTBz5jJq1/7/6SDS08vxyy/rdkja257zeyLDFymW 4knc/wA5P/auBtYlJhwRKW6Mk0JK6/YMCHvw+JJG1C27nqdafMSTR31Ig/Jrth63ePFq9t33/xN3 rVpR4s7NwoWr9Oy4yHbiGZw2F3jd87xHiWZBuxD4xfO8LgC+77+awPhEpBiw1tLw0HSGvnkEk35t yNAm8zip5nJO2OcPHl/SiLE/HkKjRlX45pu/t56zYkUGzZvXyLXcpk2ratpVke3E0+JuAlQgmnjl FmA/oBpwDXB14kITkeKkXbv9MAYWr6vM+XPacuW8VvyxsQy9Gn7Ph23e5Jw6S1ixfP3W45cty6Be vQrsqkFtDLRtu18hRS9SfOzJzGmpgPF9PyuxIe1Ao8qTTHVcOIp7PWdlWaZO/XWbAWilnc1c1fB7 rnMDUsIsVlZpwEVvHsSCf6PpH3IbVT5u3Al07FhHo8qLIdVz/uXrOW7P82oCTwPtgFTP8z4ELvR9 Xz8VEdkqLc3QqVNdXLcjM2f+zsKFq2jatCpt256Fqb4BXnuSavNm80arn/mu2lE8vfoY9j+0Dqec Uoe2bdP54INlOc7Rc9wiuxLPPe4Hgc+A84EUosVCxgOdExiXiBRDaWmGQw6pxCGHVNpuFrRKcNWt 2O++Jpw8gSbLvmBU2W8xjbtjGh6ESU2ladPKCZ85TWRvEE/ibuT7vpfj9WDP8+JeHUxESqadJWDT uBnOoDHYD97C/vd57OQJ2I+mR4uXNG6mpC0Sh3gGp6V5nldmy4vYutz63yUieWJSUnBO6ogz/BFM 6/aw/FfC0QPJHj8S+/cfyQ5PpMiLp8U9GXjP87wnY68vA15OXEgiUhKYipUxF/XBtm5POOkx+HI2 4YK5mNO6YNqfgyldOtkhihRJu21x+75/B/A4cCpwGvAUMDSxYYlISWHqH4hzyyjMFf2gXAXs1MmE g3pj581W17nITuTa4vY8Lw0o7fv+k8CTnucdCnzv+77+N4lIgTHGYI5piz28JfbNl7Dvvk74yEg4 +LDo/vd+9ZMdokiRscsWt+d5dYiW9OyYY/MAYIHneemJDkxESh5TphzOOZfgDH0QDj0Kvv+GcNi1 hJMnYNdrpmURyL2r/B7gCd/3J2/Z4Pv+ucBzwN2JDkxESi6zbzopfQfhXDMQ9tkX+/5UwgFXEX40 HRtm774Akb1Ybom7qe/7I3ey/U7giATFIyKylTmsBc6QBzHnXAJZWdhnHyIccSP2x++SHZpI0uSW uDN3ttH3/RDYmJhwRES2ZdLScE47B2f4w5hjToRf/kc46hbCx0djV/+T7PBECl1uiXuN53kNtt/o eV5DolXCREQKjalSHeeK63FuGQn1GmI/+4BwQG/Ct1/BZhX2EgoiyZPbqPL7gKme5/UFZhMl+WOA MUTd5SIihc4c2ATn9nuxn7yHnfIs9pWnsR+/i3NeD8yhRyU7PJGE22WL2/f9N4gS9ERgPbAWeAi4 0/f9SYUTnojIjoyTgtO6fTT72kmd4O8VhGOHkT12GPYPrX8ke7dcn+P2ff8F4AXP86oBoe/7qwsn LBGR3TPlK2DO64k94dRo9rUFcwm/nY85pTPmDA9TpmyyQxQpcPFMeYrv+ysTHYiISF6Z/erj3DA8 mjbVfwL79ivYz2ZizrkU07INxmh5UNl7xLPIiIhIkWeMwRzZCmfYw5hO58H6ddjHRxOOugW79H/J Dk+kwChxi8hexZQujXNmd5xhD8ERx8H/vicccT3hsw+R/e+qZIcnkm+77Sr3PK/edpsskOH7vh6g FJEiy+yzLym9bsV+9zXhpMewH01n+bzZ0Ol8zImnY1JSkh2iSJ7E0+KeBSwBvgHmAz8DyzzP+93z vOMSGJuISL6Zxs1wBo3BnNsDsNjJjxHecR32+2+SHZpInsSTuN8DLvN9v4rv+9UAj2hpz47A/QmM TUSkQJjUVJyTz6T2Y69iTjgVlv1CeN8AwkdGYf/5M9nhieyReBJ3M9/3n9nywvf9V4Ajfd//CiiV sMhERApYSpVqOBdfjdP/XjjAxc6bRTioN+HUydjMTckOTyQu8STuVM/zmm55Eft3iud5ZYC0hEUm IpIgZv+DcG4Zhbm8H5Qtj/3vC4SD+mC/nI21NtnhieQqnue4bwU+8DxvEVGiPwjoDgwFpiQwNhGR hDGOgzm2LbZ5S+wbPva9/xKOHwmNm+Gc2xOz3/bjckWKht22uH3fnwY0IrqfPRJo7Pv+DGC47/sD ExyfiEhCmTLlcLpeijNkHDQ9Er77mnBYX8IXJ2Iz1iU7PJEdxPM4mAP0ADrEjn/H87w7fd9fm+jg REQKi6m1H07fQfDNXMIXJ2Df+y/28w8xZ1+EaXUSxtHjY1I0xNNVfhfQDHiAqIV+JXAP0C+eC3ie 1xIY6ft+W8/zmgCPxnb9APSIre8tIpJ0xhho1gKnyeHY917Hvuljn3kQ++HbOOdfiWl4cLJDFIlr cNppQCff91/zff9VoDNwejyFe553EzABKB3bNAK41ff9EwADdNrzkEVEEsukpeGc3hXnjvGYlm1g 6Y+EI28mfOJ+7Got3SDJFU/idnzf37pKve/7m4B4V63/ETg7x+suvu/P8jyvFFAL+DfuSEVECpmp Wh2nxw04N4+Eug2wn84kHNCLcPqr2M3x/hkUKVjxdJXP9zzvfuDB2Os+RLOo7Zbv+1M8z6uf47WN TaH6HrAa+HoP4xURKXTmoCY4A0ZjP34X+9qz2Jefwn78Ls65PTCHHpns8KSEiSdx9wHGArOJuren A9fk9YK+7/8CNPI87wqikeqX7u6c9PT0fO2X/FMdFw7Vc+Llq47Pv5zsjuew5rlHWTftZcKxQylz 9AlU6Xk9ael1Cy7IvYB+lxNnt4nb9/01bJdcPc87BNjjGz2e570O3OD7/o/AWiA7nvOWLVu2y33p 6em57pf8Ux0XDtVz4hVYHXe+EOfIVoSTJ7Jxzses+PJTzClnYTp0w5Qpm//yizn9Ludfbh984mlx 78ynQKU8nDcSeMrzvE1ABtFjZiIixY6p0wDnhuEwbxbhS09g33oZ++kMTNfLMEe3jkaoiyRAXhN3 3L+Rvu8vBY6L/ftT4Pg8XlNEpEgxxsBRx+Mc2gL79ivR18T7sB+8hXN+T0y9hskOUfZC8Ywq3xlN 5isiEmNKl8bp3B1n2EPQ/Bj48VvC4dcTPvswdu2aZIcne5m8Jm4REdmOqVGLlN79cfoNhVp1sB+9 TTjgP4Qz3sBmxzWkR2S3dtlV7nneWnbesjZAuYRFJCJSzJkmzXEGjcF+8Cb2v5Owkx7DfjQ9mn3N PTTZ4Ukxl9s97qa57BMRkVyY1FTMyZ2xR7fBTnkWO+s9wntvxxx1fDSArXqNZIcoxdQuE3dsUJmI iOSDqVQFc8k12NanEU56FDv3E+w3czCnd8WcejamVOndFyKSg+5xi4gUAtPgIJxb78Zcdh2UKYd9 /QXCQX2wX36KtRrvK/FT4hYRKSTGcXCOa4cz/BHMqWfD6n8Ix99F+MBg7PJfkx2eFBNK3CIihcyU LYfT7TKcwePgkObw7XzCoX0JX3wcm7E+2eFJEafELSKSJKZ2HZxrh+BcPQCq1cC+9zrhgKsIP3kX G4bJDk+KKCVuEZEkMsZgmh2NM/RBzNkXwaaN2KfHEd51E/anINnhSRGkxC0iUgSYtFI4Hbrh3DEe c3Rr+PkHwrtuInxyDPbfVckOT4oQJW4RkSLEVNsHp+eNODfdBXUaYGe/H3WfvzMFuzkr2eFJEaDE LSJSBJlGh+AMHI25oBekpGJfepJwaF/swi+THZokmRK3iEgRZZwUnBNPxxnxCKZtB/hjOeGYIWQ/ OBz75/JkhydJktdlPUVEpJCY8hUx3a/Ctm5POGkCfD2HcNGX0cxrHbphSpdJdohSiNTiFhEpJkyd Bjg3jsBceRNUrIKd9hLhgF6Ecz7S7GsliBK3iEgxYozBaXECzh0PY87wYN0a7IR7Ce+5DfvrkmSH J4VAiVtEpBgypcvgnHUhzrCH4PBj4IdvCe/oR/j8eOy6NckOTxJIiVtEpBgzNWqR0qc/znVDYd90 7AdvEd5+FeHMadgwO9nhSQIocYuI7AXMIc1xBo/FdLscwmzsC48Q3nE9dvHCZIcmBUyJW0RkL2FS U3FOPStafazVSfDbEsJ7+hM+dg925V/JDk8KiBK3iMhexlSuinPptTj974UGjbBffEw4sDfhmz42 KzPZ4Uk+KXGLiOylTINGOLfejbn0WihdBvvac4SD+mDnf6bHx4oxJW4Rkb2YcRycVidF3eenngWr /iZ86E7CB4Zgl/+W7PAkD5S4RURKAFOuPE63y3EGj4MmzeHbrwiHXkPoP47NWJ/s8GQPKHGLiJQg pnYdnOuG4PTpD1X3wb77OuHAXoSz3seGYbLDkzgocYuIlDDGGMzhx+AMewhz1oWwcQP2qTGEI2/G Llmc7PBkN5S4RURKKJNWCucML5o+tcUJsGQx4Z03Ej41BrtmVbLDk11Q4hYRKeFMtRo4V96Ec9Od UGd/7Kz3o8VL3nkNu3lzssOT7Shxi4jI/7V37/FRVHcfxz9nAgSRgBWLsii2YkEx1jv6gHItFhBr 8XKoN3yqUhEsVooFBUFAqrSKCgoq1XoXf2rRB1pRK6DipU9VbEnRAooXSFEUQQSNgZnnj9nwhJhw S3Y3E77vf9yd2Zn55bzU754zs+cA4NoUEoy6GXfOQHAB0WP3EI4dQvSvhbkuTcpRcIuIyBYuL4+g a2+CCXfguvSCj4sJbxnD5tsnEK1elevyBAW3iIhUwjVuQnDupQSjJsEP2sFbfyMcPZjwyQeJSr7O dXm7NQW3iIhUybU6iODK63EDhkHjJkR/tnj61L+/pNnXckTBLSIi2+ScI2jfieC6abjeHtavJbrr 94Q3Xk300fJcl7fbqZfpC3jvjwduMLOu3vsjgcnAJqAE6G9mWrJGRCQBXH5DXN/ziDp2J3zsnnj4 fPwVuM49cT89F7dnQa5L3C1ktMftvb8SmA7kpzfdAgw2s27ATGBEJq8vIiI1zzVvQd7gkQSXj4F9 WxDN/wvhyIGE858mCjfnurw6L9ND5cuAvuXe9zOzRenX9YCvMnx9ERHJEFd4DMGYybizfg6bNxE9 NI1w/FBKivTzsUzKaHCb2UziYfGy9x8DeO87AIOBmzN5fRERySxXrz7ByX3j1cc6dIcVy/lk+ADC 6XV5DM4AABDTSURBVDcSrfk01+XVSS7TTwV67w8EHjGzDun3/YCrgNPM7IMdOIUeWxQRSYiSd4pY e+fv+GbJYlx+Q5r0u5CCvufiGuRv/2CpyFW2MeMPp5XnvT8P+AXQxczW7uhxxcXFVe5LpVLb3C/V pzbODrVz5qmNs6DJ3rS46V5WPvEg0RP3se7+qax7+k8E/iI4oj3OVZpFUkEqlapyX9Z+Dua9D4Bb gcbATO/9XO/9mGxdX0REssMFAUHHH8XD5z86DdasJrx9AuHksUSrVuS6vMTLeI87PRzeIf22Waav JyIitYNrtCeu30VEJ/UgnDEdit4kfPuXuO4/wfXph9ujUa5LTCRNwCIiIhnlUq0IrhhHMOhq2KsZ 0bMzCUcNJHzleaIwzHV5iaPgFhGRjHPO4Y46gWDc7bjTzoWvNxL98VbCG35DtHxprstLFAW3iIhk jWuQT9CnH8G4abhjT4TlSwivH0Z43xSiL3b4meXdmoJbRESyzjX7LsElvyEYNgFSrYgWPBcPn//1 KaJNm7Z/gt2YgltERHLGtT2c4JpbcOdcAi4gevRuwnGXEy1+K9el1VoKbhERySmXl0fQ9ZT452Od e8KqFYQ3j2bz1N8SrV6V6/JqHQW3iIjUCq6gCcF5gwhGTYKD28HC1whHDyZ86iGikpJcl1drKLhF RKRWca1aE/zmetzFv4bGBUSzHyUcfSnR6wvI9DTdSaDgFhGRWsc5R3B8Z4Lx03C9zoQv1hLe+TvC m0YRrXg/1+XllIJbRERqLddwD4LT+xOMvQ2OaA//XkQ47leED99JtGF9rsvLCQW3iIjUeq55irzL RhEMGQPNWxDN+3P887EX5hCFm3NdXlYpuEVEJDHc4ccQXDuZ4MyfQ+kmogenEk74NdGyxVWuPFbX ViTL6rKeIiIiu6q0NGLJkvXMnbuSoqLmtG87lNPdizRZ/BLhxBG8RjvePvSnHP/jdhx0UGPee+/L 9GfXUFi4N926taRNmwLq1092kCu4RUSk1istjZg16yOGDFlA2YPl77+/Nxv79OG5V/MZ2+4N2jdd zGGLljDlyXZ8/+L+3PfQexQVrQFg9uwPmDhxIZMnn8ippx6Q6PDWULmIiNR6S5as3yq0Ac46qzUT Jy7kjc/34dSXT+bKfx7HV5vzGNH2nxw/51qu6F4C/P8BUQRDhixgyZJkP9Sm4BYRkVpv7tyVW4V2 KtWIDz/8csu2CMejK1rT5YVT+MPyNuy/xwZ6LL2bGSe+zPf3/GLLcVEE8+atzHL1NUvBLSIitZpz bsuQd5n99ouDu6IvNjVg3NtH8+MFPVkctqJDkxU8d9Icrm77Fo3rlQJQVPR5oh9YU3CLiEitFkUR hYV7b7Vt1aqNtGrVuMpjln7ZlMdSFzJieTdWfb0HA1u/w/xOf+b01HIKD2ua6BnYFNwiIlLrdevW kvKd5OLiOLir6jg7Bwe0KuDht5vT/cVe3LSkkCb1S7nlyL9xwep7iN5fmp3CM0DBLSIitV6bNgVM nnziVkH92GPvMnz4Ud8Kb+dg4sT/4vHH3wWgJKzHrcsK6fZib1budxSN/rOU8LfDCO+/jeiLtVn8 K2qGfg4mIiK1Xv36jlNPPYC2bfswb95Kioo+p7DwO/TosT9du6aYP794y7auXVty0EGNOfLIZlt9 tmvXlrRoU0Dw7iLCGdOJXnqW6PWXcT85G9elN65eMiLRJWCcPyouLq5yZyqVYlv7pfrUxtmhds48 tXF2ZKOdnXPfuk9d2baqtkebNxO98DTRUw/Bxg2QakXwswG4Q4/IaN07KpVKAVR6I0BD5SIikjiV BXRVHdFKwzwvj6BbH4Lr7sB16gn/+Yhw0jVsnnYD0acf13i9NUnBLSIiuy1X0JTg/EEEIydB60Pg zVcIRw8m/J+HiUpKcl1epRTcIiKy23MHtiYYPhF30VBo1Jho1gzC0YOI3ni51v10TMEtIiJCfC88 OKELwXVTcb3OgHWfE94xkfCmUUQrP8h1eVsouEVERMpxDRsRnH4Bwdjb4IfHwb8XEY67nPCRu4g2 fHu2tmxTcIuIiFTC7Zsi75fXEAwZDfvsRzR3NuGogYQvPkMUbs5ZXQpuERGRbXCHH0tw7RTcGRdA aSnRA7cTThhGtOztnNSj4BYREdkOV78+Qc8z4vvfJ3SFD98lnDic8O5JRGs/y2otCm4REZEd5PZq RnDRFQTDJ0Kr1kSvzSccdSnh008QlZZmpQYFt4iIyE5yBx9KMPJGXP/LoH4Doj/dR3jtL4kWvZ7x ayu4RUREdoEL8ghOOjmefa37qfDpKsLJ49g8eRzRx5mb8jUZM6qLiIjUUm7PxrifDSA66WTCGdNh 0euEi9/C9TgNd8pZuIaNavR6Ge9xe++P997Pq7Btkvf+F5m+toiISLa4lgcSDB1PMHAENP0O0Zwn CEcNInxtXo3OvpbRHrf3/krgfODL9Pt9gPuBHwDvZPLaIiIi2eacg2M6EBQeQ/TMn4jmPEF0981E 858mOPsS3IGtq32NTPe4lwF9y71vDIwBHsjwdUVERHLG5ecT/ORsgvFT4egO8O47hBOGEj5wO9H6 ddU6d0aD28xmApvKvX/fzP5OFWuMioiI1CWuWXPyLh1BMHQ8tDiA6MVn4tnXnp9NtHnXZl9LxMNp 6QXFd3m/VJ/aODvUzpmnNs4OtXMFqRRR5x58+ZfHWffgHUQz7qLeq8+z1yXDaHjEcTt1qmwFd7V6 2MXFVT9Wn0qltrlfqk9tnB1q58xTG2eH2nkbju2Ea3sEzHyA0gXPsfrqS+N74mddiGvWfMvHtvXF J1u/4674OF3tWtxUREQkS1xBU4L+lxGMvAlaHwJvvEI4ehDhrBlE35Rs//jatkB4JSL1uHNLbZwd aufMUxtnh9p5x0VRRPS3+USP3wfr1kCz5gT+Qlr2OROqGK3WzGkiIiI54pwjOKFrvHjJj0+HtWsI p92wzWMS8XCaiIhIXeYaNsKd+d9EJ/Yg+ott87MKbhERkVrC7dcSd+EV2/yMhspFREQSRMEtIiKS IApuERGRBFFwi4iIJIiCW0REJEEU3CIiIgmi4BYREUkQBbeIiEiCKLhFREQSRMEtIiKSIApuERGR BFFwi4iIJIiCW0REJEEU3CIiIgmi4BYREUkQBbeIiEiCKLhFREQSRMEtIiKSIApuERGRBFFwi4iI JIiCW0REJEEU3CIiIgmi4BYREUkQBbeIiEiCKLhFREQSRMEtIiKSIApuERGRBFFwi4iIJIiCW0RE JEEU3CIiIgmi4BYREUmQepm+gPf+eOAGM+vqvW8N3AuEQJGZDc709UVEROqSjPa4vfdXAtOB/PSm ScDVZtYZCLz3p2Xy+iIiInVNpofKlwF9y70/xsxeSr9+GvhRhq8vIiJSp2Q0uM1sJrCp3CZX7vV6 oGkmry8iIlLXZPwedwVhudcFwNodOSiVSlVrv1Sf2jg71M6ZpzbODrVz5mQ7uN/03ncysxeBXsDc HTjGbf8jIiIiu4dsB/cwYLr3vj7wNvB4lq8vIiKSaC6KolzXICIiIjtIE7CIiIgkiIJbREQkQRTc IiIiCZLth9NqRIVpVL9LPDvbXkAe0N/Mlue0wDqgQhsfCUwDSoElZnZxbqtLNu99PeAe4HtAA2AC sBhNB1yjqmjnD4EpxPNLlBD//2J1rmpMusra2MxmpfedA1xmZh1yV2HdlLgedyXTqP4OeNDMugDX AIfkqLQ6o5I2Hg1ca2adgIbe+1NyVlzdcB7wabo9ewK3oemAM6Gydr4FGGxm3YCZwIgc1lcXlG/j XsRtjPf+KODCXBZWlyUuuPn2NKodgf29988B5wDzc1FUHVOxjRcC+3jvHfHEOaU5qaruMOIvmRCP Em0CjtZ0wDWuYjuXAv3MbFF6Wz3gq1wUVoeUb+MAKPXe7w1cB1yes6rquMQFdyXTqH4PWGNmPYCP 0DfoaqukjZcCk4F/Ac3Rl6NqMbONZrbBe18APAaMRNMB17jK2tnMPgHw3ncABgM357LGpKukja8B 7gaGAhvQBFoZkbjgrsRnwKz061nAMTmspa66FehoZu2AB4iHdaUavPcHEM8ceJ+ZzWAXpwOWbavQ zo+mt/UDpgK9zeyzXNZXF5RvY+LRuoOJn4l5BDjUe6//X9SwRD6cVsFLQG/gIaATca9QatZnxL1A gGJAD5tUg/d+X+AZ4nut89KbF+7CdMCyDZW1s/f+POAXQBcz05ejaqri3+XD0/sOBB4xs6G5qq+u qgvBPQz4g/f+UmAd8X1uqVkDgEe996XAN+n3suuuIv4VxDXe+9FARHw/cIqmA65RFds5DzgM+ACY 6b2PgBfMbGwOa0y6yv5d7mVmJbktq27TlKciIiIJUhfucYuIiOw2FNwiIiIJouAWERFJEAW3iIhI gii4RUREEkTBLSIikiB14XfcIonivQ+AXwFnE/+2uAEwGxhtZt/swvn+CCwysx2aocp73x24kfg3 ty3SNaxI776eeEKjHT7fTtbaGbjNzA7fyeNCYB8zW1Nh+6+BQjP7eQ2WKVKrKbhFsu8O4rnIu5nZ eu/9HsDDxCuyXZDpi5vZ88BRAN77MUAzMxtStt973zvDJezK5BHbOkaTUchuRcEtkkXe++8R97T3 M7MNAGb2lff+EqBDOsRXAu3NbFn6mGeJ15Cem/5nR+KVrp40s1EVzn8o8dKVexP3pCeb2b27UGpH 7/0ZwL5AEXB2us6vgaeAHwLnAhuJ57Lf6nre+z2BPxLPWx0Cb5jZJelzF3jvHyFegjcfGGBmL3vv mwC3A0emj5kDXGVmIenFKtLrP08hXj3tY+ATNK+77GZ0j1sku44G/lUW2mXM7BMze9LMvgLuJT2t rPe+NdCGeCh9PJBvZm2Je8wdvfedys7hvc8jXqFpuJkdB3QBrvTet9+FOlNAt/S19wdOT29vADxl ZocC/yCemrWy6/UFGpvZ0UD7dH0Hpc/RErjJzI4C7gKuTW+fQry28+HAscARxFMalzeY+MvAIcDJ QKtd+NtEEk3BLZJdIdv/724acH46iAcA080sAroTL5mImZWaWdf0oiRl2gCtgXu89wuBF4CGpIfF d9KTZlaS7u0WES/nWmbBDlxvAXCY934e8VK7t5jZe+nj3jWz19Ov3yp37p7AbWV/H/EthV7pfWXD 4d2Bh81ss5ltJF5cSGS3oqFykez6X+KlDvcs3+v23rcE7gTOMLOl3vt/Aj8lHo4+Nv2xTZS7n+u9 3594qLpMHvB5updb9pnm7NpQcmm51xFbr6v85fauZ2bfeO8PJu6FdwOe995fRrzSXFXnrviFJgDq V9hWsZZNiOxm1OMWySIzKybuJd7jvS8AKHdvd3W5VZWmAr8HXjOzj9Pb/gpc4L133vt84mHqTuVO /2/ga+/9uenzHkDcW87UGvVVXs97PxC418yeM7OriJd+LEwf5yo9W3p5yPS58omX33y2wjFzgP7e +3zvfUOgXw3/TSK1noJbJPsGES/d+Yr3/k3gVeLAK79c6mygMfGweZmxxL3VfwBvALPN7Mmynenh 5dOAi733/yAOuZFm9upO1lfxKe2ostfbud79QOC9X+y9/ztQQPwQW2XnLzME2Nd7vyj9N74D/LbC MXcS/+1FwDzgvYonEanrtKynSC3kve8A3Lmzv3cWkbpP97hFahnv/b1AZ+D8HJciIrWQetwiIiIJ onvcIiIiCaLgFhERSRAFt4iISIIouEVERBJEwS0iIpIgCm4REZEE+T/ut5NePjo8gAAAAABJRU5E rkJggg== "> | ||
+ | </div> | ||
+ | <div class="clear"></div> | ||
+ | |||
+ | |||
+ | </p><p class="c0"><span><b>pSB1C3 absolute quantification run #3</b>Lysate from 100,000 stationary phase cells harboring K909006-pSB1C3 was compared against a 3-point standard of 105, 106, and 107 copies. Linear regression indicates approximately 30.9 copies of the target sequence for every cell in the reaction, or around 30 plasmid copies per cell.<p class="c0"> | ||
+ | <div class="img-block"> | ||
+ | <!-- fig3 --> | ||
+ | <img src="https://static.igem.org/mediawiki/2016/9/9c/T--genspace--pSB1C3_Absolute_Quantification_3.png" alt=""> | ||
+ | <img src=" AAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xm8TfX+x/HXd51zzLNIJ1HqnpWcktykKBlzZWhcSTTd q1xJt8GtpFBSrlQkQ7q3SdIqSeRqMKRyJdJAWRpcDZpuSnRwOOv7+2NtfocM27H32Wd4Px8PD2ev vfZ3fda3k8/+ftdnfZex1iIiIiLFl5PqAEREROTgKJmLiIgUc0rmIiIixZySuYiISDGnZC4iIlLM KZmLiIgUc0rmIiIixVx6qgMQKUyu654BLAAmBEHQN9/2y4D7giColYRjtgLmA5WCIMiJY//jgZpB ECw4iGNWAW4GLgCOAL4DZgHDgyD4rqDtFiCOQ4D2QRA8E3s9H3g3CIK/u65rgMeAC4EfgCHAyCAI aifguLv0oeu6IdA5CILZB9v2Ho5VEXgQ6AaUAf4NXF+Y/SyikbmUNpcAq4HuruuW3e29ZK6gdCBt zwCOK+iBYgn0HaAV0BdwgStify91XffogrZdAP8Azs33+lxgaOznU4FLY9taAFM5iPPeze59WAd4 LUFt724C0BT4E3AaUBvwk3QskT3SyFxKDdd1yxCNVP8GTATOB6akNKg9Mwf5+QeBX4BWQRDkxbZ9 5bruQmAO8E/gzIM8Rrx2OZcgCH7J97I6YIMgeDXftq1JOu4PCWp3T3KAa4IgWAbguu6DwHTXdU0Q BFpiUwqF0XKuUlq4rnse8CxwKPAUUDYIgnax9y4DRgIPADfGPvIkcFMQBKHrumlESfICoCqwDLgh CIJ3Y58/GriPaDQcAi/E3t8Um2afB1QGagFrgOwgCD7Od+z7giCoFZuGbkU0kn8jCII2ruseCjwE dAQ2AS8DNwZB8OsezrE60ZT6uXuaUnZdtzmwCGgUBMEnruuuIZraHhd7v37++FzXrR3rk/ax8/4K uDsIgsdi+88H3gBOBDoA/wOGBEHwL9d1BwODY4e2QRCk7ZhmB1YSTbETO9ehwFryXepwXfcEYBTQ HFgPjA+C4N7YeycD9wCnEA1KPgD6B0GwZC99uHOa3XXdDGAgcBlwGLA01p9L9nFOQ4Mg+Ofu/bmH /j0MmET0u9V+f/uLJIqm2aU0uQR4OwiC9UTJ9sxY8trhEKJ/vM+M7dsD+HvsvWuBLkBXounb1cBz AK7rVgPeIhpVtiCaNm5JNALekz19g96x7Tzga6Jkc15s23QgjyhxdQYaEE1J70lTouT2nz29GQTB YmAL0XTw3uSP7ymifmkNNCSavh7vum7+2oK/A7OJ+mU6MC72/n1E080ziaa585sK9Iodq05s353H dl23JjCXqC/+CFwF3OK67uWu61aKHe894HiiftlENNsCe+7D/MYCVwJ/JUrYK4HXYl+a9nZOD+92 zr/juu5Y4JtYPNfta1+RRFMyl1LBdd2qQCdgWmzTi0Qj6Mvz7bYd6BEEwYogCF4BhhFdcwY4kigJ fhUEwX+BG4DLYkVcPYn+X7o0CIJPgiB4M9buhXu5Pr3XafQgCH4mStwbgyD4xXXd1kA20CvW9ntE SbCj67oN99DEIbG/N+7tGESj3EP28X7++GYCVwdBsDIIgi+A4URFXln59pkfBMEjsX4ZFHu/cRAE vwGbga1BEPy423luJboUQBAEP+6hMLA7kAv0DiKvECXfTUAFYARwSxAE/w2C4ENgPFE//a4P8zca +z24EvhbEASvBEEQxNr9Cui3v3PaR58BjAFOJhrVz419IREpFErmUlpcRPQP8nSAIAh+IvpH97J8 +3wTBMG3+V4vAw6PVYaPByoRXXt+E7ga+Dh2TbQh8H4QBLn5PvsuUTJqdJBxHwdUBH52XXej67ob gYDoi8ixe9j/p9jfdffRZlViiTQO44HmruuOcV13DvAx0eg5Ld8+n+74IQiCHV8iMuJsf28aAh8G QbA9X9vPBEHwfOz696PANa7rPhqrBXiC+P49y4rttzhfu5bYpYd8+x3wOQVBsDp23bwn0ezIRXHE I5IQKoCT0uKS2N9rXNfdsc0AxnXdtrHXebt9Zkdy2BYEQeC67lHAWURVy/2Bfq7rnkI0Yt8Tw65J D/Y8xb6v/w/Tgf8C7fj9iP77Pey/lGiGoVnsc7twXbcp0ZeDd/cST3q+fQ3wCpBJNC0+j2hKOtjt M7n83sEW8eXurY3YdeklwCqi28CmEtUiTI6j3S17addh1/9WcZ2T67rliGZ8Xg2CYBNAEARbXNf9 gn3PfogklEbmUuK5rluP6Br2YKKp0h1/mhJN214Z27Vu7Pr3DqcBa4Mg2Oy6bk/goiAIZgVBcA3R bV61Y+1+Apy4261uzYgS4ye7hbMjSVTOt233qfj8CfYTomS6KQiCL2JT3XlExXi/ux87NsXsA4Nj hV64rtvCdd0PXdftDNwFLItN1++IZ/dYdhy/CdAG+FMQBHcGQfAiUQU6xJ+sC1phuxrIjhUeEjuP O1zXfRa4mOgLVvsgCO4PguB1onvp4znuZ8A2fl8zcCrRrENBTCGqp9gRZxWiGYAVBWxP5IBpZC6l QU+ia7djdq8Ad133CeAvRCPVdOAZ13VvJkpqtxItvAJQBbjTdd2fiP7R70yU0N4D1gF3AE+6rnsn UBMYB7wWBMGqWGHVjuT3PdH12Rtd172F6EvF5bvFuwloGCu4ei12vGdd172JaHp9LNGU/3/3cr5/ I7qEMN913aHA58DbwEtESS5/InsXuDQ2hV6OKNnvSITfEasjcF33aaIvMKNj7+9+j/7ebAIaua5b PwiCtXF+BuBpokVkxrmuOwo4JnZe1xF9ATnUdd2ziRJma+A2iG4/jF3u2NmH+a/Xx76YPQTc77ru b0SV+9cB9Ymq0A9IbBQ+CbjXdd1viS5z3Btr98UDbU+koDQyl9KgBzB1T7dyESXGMkSV6B8TJbeF RNeK7wuCYBJA7NatsbHtq4iqqy8IguDzIAg2E1XBVyWa/n2OaJW58/Mdx8basUTJuyHRlPV1RF8a 8htN9AVkTmz/rkRJYl7szzqg097uYY7VA5wai2EsUcLrTHSr3QvA1NgoHaIk+A1R9fvjRLMXYayd dbHz7E00Q/Ag8DDwIdGsxt7kj+txotu/VsZuc4tL7Dr1n4jqAt6PHXdoEARPEc08TCK6te2DWHx/ iR13R1w7+3APMd1KdIviY0R1EQ2BM2OzHrvvu6dz2t2NRFP9k4muvW8Gzg6CIIzzdEUOWtLvM/c8 7xTgXt/3W3uedxLRP4ZbgPd939ftGyKFzHXdDkTT1PNTHYuIJEZSR+ae5w0gtoBCbNNEoL/v+62A DZ7n9Ujm8UXk94IgeFWJXKRkSfY0+2fsui5zXd/334n9vIioeEhEREQOQlKTue/704kKaHb43PO8 02M/dyG6RUZEREQOQmFXs18JjPY8Lx14k73fn5ufFo8XEZHSKO71Ggo7mZ8N9PB9/2fP88YQrX28 X+vWrUtoEJmZmQlvs7RTnyae+jTx1KeJpz5NvMzMzAP+TGHfmvYpMM/zvLeADb7vz9nfB0RERGTf kj4y931/LbFFKnzfnwXMSvYxRUREShMtGiMiIlLMKZmLiIgUc0rmIiIixZySuYiISDGnZC4iIlLM 6RGoIiJSLLz//vvceeedHHnkkQD89ttvZGZmMmjQINLS0nbuZ61l/PjxrFmzhtzcXMqXL891113H YYcdtt9j5Obmcvfdd/PLL79QoUIFbrnlFqpWrbrLPs888wzz5s2jYsWKXHTRRZx66qk73/vyyy/p 27cv06dPJyMjg3fffZdJkyZRvnx5Tj75ZHr27JmYztiNRuYiIlJsNGnShPvvv5/777+fiRMnkpaW xttvv73LPkuWLOGnn35i5MiRjB49mi5dujBu3Li42p8xYwYNGjRg9OjRtG/fnqeeemqX99esWcO8 efMYP348//jHP3jsscfIzc0FICcnh/Hjx1OmTBkg+lIxatQo7rzzTkaPHs2XX37JihUrEtALv6dk LiIixdK2bdtYv349lStX3mV7tWrVWL16NfPnz2fDhg20aNGCIUOGAPDGG2/Qu3dvBgwYwJAhQ3jl lVd2+exHH31Es2bNADjllFNYtmzZLu+vXbuWE088kfT0dMqUKUPdunX5/PPPARg1ahS9e/emXLly AGzYsIHKlStTp04dALKzs/noo48S3g+gaXYRESmA8LnHsMveZl1aGnl5eQlp0zRtgXPhFfvcZ/ny 5dxwww2sX78ex3Ho0qULTZo02WUf13W58cYbmTlzJg899BC1a9emb9++NGrUiPHjx/Poo49SsWJF brnllt+1n5OTQ8WK0TPAKlSoQE5Ozi7vN2jQgClTprB582Zyc3NZuXIlXbp04YknnqB58+Y0aNAA a6NHilSrVo2tW7fy1VdfkZmZyTvvvMMxxxxzMF20V0rmIiJSbDRp0oTbb7+dX3/9lQEDBuwc9eb3 xRdfcMQRR3D77bcDsHTpUoYMGcI///lPqlSpQqVKlQBo3Ljx7z5boUIFNm/eDESJfce+O9SrV49z zjmHm2++mdq1a9OwYUOqVq3Ka6+9Ru3atZk9ezbr169nwIABPPjgg9xyyy088MADlClThiOPPPJ3 198TRclcREQOmHPhFXDhFSl70EqVKlUYOHAg119/PY8++ig1atTY+d6yZctYu3YtN954I8YY6tev T/ny5alevTpbtmzhl19+oVq1agRBwGmnnbZLu9nZ2SxevBjXdXnnnXc4/vjjd3l/w4YN5OTkMGbM GH777Tf+/ve/c9RRRzF58uSd+1x88cXcd999ALz77ruMHDmStLQ07rjjDv70pz8lpT+UzEVEpFiq X78+559/Pg899BCDBw/euf28885jwoQJ/OUvf6FSpUoYY7jtttsAuP766xk4cCAVK1Zk69atv2uz W7du3HPPPfTv35+MjAwGDRoEwHPPPUfdunU59dRT+fLLL/nrX/9KRkYGffr0wZhdn1RqjNk51X7I IYfQp08fypYtS7t27ahfv35S+sLsOGARZvUI1KJPfZp46tPEU58mXnHu00mTJlGvXj3OOuusVIey i3yPQI37eeaqZhcRESnmNM0uIiKlUu/evVMdQsJoZC4iIlLMKZmLiIgUc0rmIiIixZySuYiIJIW1 kJOTx/btRf6uqWJPyVxERBIqL8+ycuWv3H33B3Tt+io9esznlVfW8b//5Sb8WNOnTz/oNq655hq+ //77A/7cl19+yfXXX3/Qx08EVbOLiEhCLVz4A5ddNo+8vP8fkb/99ne0b1+Xf/zjFGrXLpuwY02e PJlzzz03Ye0dqN0XjEkVJXMREUmYr7/eTJ8+C3dJ5Du89trXLFp0FOecc0QB2/6aESNGkJ6eThiG nHTSSWzcuJHRo0fTu3dvRo4cyW+//cZPP/1Et27d6Nq1K9dffz3HHHMMa9asIScnhyFDhlC7dm0e ffRRli5dSq1atfj1118B+PHHH3nwwQfJzc1l/fr1XHnllbRo0YIrr7ySunXrkpGRwTXXXMOwYcMA qF69+s7YHn30Ud5//33CMOSMM86ge/fuBTrHglIyFxGRhFm9egObNm3b6/sPPfQR7dplUqlS2gG3 vXTpUho2bMjVV1/NRx99RNWqVZk5cybXXXcdn376KW3btqVly5b89NNPXH/99XTt2hWAhg0bcs01 1/DPf/6TuXPnctJJJ/HRRx8xYcIEcnJy6NWrFxBNm3ueR+PGjVm5ciWPP/44LVq0YPPmzVx22WUc ffTRjBkzhrZt23L22Wczf/58Zs6cCcC8efN44IEHqFGjxu8eq1oYlMxFRCRhNm7ceyIH+P77zWzZ klegZN6pUyeeeeYZ/v73v1OpUiX+/Oc/73yvevXqPP/88yxcuJAKFSqwffv2ne/teOxorVq1+Pnn n/n6669xXReInpJ21FFHAVCzZk2eeuopZs+eDbDLo12POCKaTfjqq6/o3LkzED2UZUcyHzhwII88 8gg///zzzuehFyYVwImISMLUrl1+n++fcEJNKlUq2Djy7bff5oQTTmDUqFG0atWKZ555ZucDTXzf p1GjRgwcOJAzzzyT/M8d2f26dv369Vm1ahUAmzdvZu3atQD861//4qyzzuLWW2+lSZMme2zjyCOP ZMWKFQA729i+fTtvvPEGt99+O/fffz9z5szhhx9+KNA5FpRG5iIikjBZWVWoX78Sa9du2uP7ffs2 oly5go0jXdfl3nvv5amnnsJau7MKffjw4XTq1IkxY8Ywf/58KlasSHp6Otu2bdtjgdoxxxxDs2bN 6NOnDzVr1tx57fvMM89k/PjxTJkyhUMOOWTntfT8bfTs2ZO7776bBQsW7HyWenp6OpUrV6Zv376U K1eOk08+mdq1axfoHAtKT02ThFCfJp76NPHUp4m3pz4Ngo1ccslcvv02Z+c2Y2Dw4D9yySVHU6HC gU+xlyYFeWqaRuYiIpJQrluZWbP+xCef/MKqVT9TvXo5TjyxJg0aVKRMGV3dTQYlcxERSbg6dcpS p86htG59aKpDKRWSnsw9zzsFuNf3/dae550IjAe2Aat93/9Lso8vIiJS0iV1vsPzvAHAJGDHcj93 AEN83z8DKOd53tnJPL6IiEhpkOyLF58B+dfZWw4c4nmeASoTjdBFRETkICQ1mfu+Px3Ynm/Tp8AY YCVQG1iQzOOLiEjqGGtJz8nB2b59/zvLQSnsArjRQAvf91d5ntcXuB/ot78P5SvTT5hktFnaqU8T T32aeOrTxNu9T/Nyc9n6n/+Q9txzpM+bR1ijBtuvvhqnZUvKHHlkgR9Okpuby4wZM7jwwgvj/szS pUupUqUKWVlZBTpmcVHYyfwnYGPs53XAafF8SPeZF33q08RTnyae+jTx9tSnlebPp/Jll2Fiy6Gm ARlvv01u+/b89I9/kFvABVW+++47pkyZQosWLeL+zFNPPUXr1q2pVKlSgY6ZCgX5wlnYybw38Kzn eduA3NhrEREpIcp+/TWV+/TZmcjzK/Paa5RdtIjcc84pUNuTJ09m7dq1PPHEE6xZs2bnCm3XXnst Rx11FCNGjGDdunXk5uZy3nnnUb9+fZYsWcKnn37KUUcdRa1atQ7q3IqypCdz3/fXEhuB+77/NtAy 2ccUEZHUyFi9GrNpz0u5ApR/6CE2t2vH9gKMlHv27MmaNWvIzc3lpJNOomvXrnzzzTeMGDGCESNG 8NFHH/Hwww8DsGzZMrKysmjWrBlt2rQp0YkctGiMiIgkkNm4cZ/vO99/j7NlCxzEtPcXX3zBe++9 x4IFC7DWsnHjRsqXL88111zDqFGjyMnJoV27dgVuvzhSMhcRkYQJ93M9fPsJJ5BXwETuOA5hGFKv Xj3at29PmzZt+OWXX5g9ezbr169n9erV3HnnneTm5tK9e3c6dOiAMYYwDAt0vOJEyVxERBJmW1YW 2+vXJz32WNHdbenbl7xy5QrUdrVq1cjLyyMnJ4cFCxYwc+ZMcnJyuPzyy6lRowbr16+nX79+pKWl cdFFF+E4Dg0bNmTSpEkcdthh1KtX72BOrUjTU9MkIdSniac+TTz1aeLtqU/LBwFVL7kE59tvd26z xpAzeDCbLrmEvAoVCjvMYkVPTRMRkZTb7LrkzZpFmU8+IW3VKmz16mw78US2NmhAWKZMqsMrkZTM RUQk4XLr1CG3Th1o3TrVoZQKerCsiIhIMadkLiIiUswpmYuIiBRzSuYiIiLFnJK5iIhIMadkLiIi UswpmYuIiBRzSuYiIiLFnJK5iIhIMadkLiIiUswpmYuIiBRzxSKZ5z08HPvt16kOQ0REpEgqHg9a eX8x4YdLMC07YLpejKlaPdURiYiIFBnFYmTu9B0ItQ/DLpxDeNvVhDOmYLfkpDosERGRIqFYJHPT pDnOkLGYXn2hXHnsrKmEA68mnD8bu317qsMTERFJqWKRzAFMWhrOGR1x7p6I6dYDcnOxUyYQDu6H XfY21tpUhygiIpISxSaZ72DKlsPp3B1n+ERM67Php+8JJ4wgvGcAdvWKVIcnIiJS6IpdMt/BVKmG 0+NqnKEPY5q2gDWrCUcOJG/sMOy6L1MdnoiISKEpHtXs+2AOzcT0uRn7RUA47XH4YAnhh0sxLdtF le/VaqY6RBERkaQqtiPz3ZkGLs5Nw3H63Q6H1cW++WpU+T79KWzOb6kOT0REJGmK/cg8P2MMND4Z 5/iTsIvmYWc8jZ39HHbhHEzn7phWHTHpGakOU0REJKFKzMg8P+Ok4bRsjzNsIubcXpCXh506ifCO awiXLMSGYapDFBERSZgSmcx3MGXL4nS6EOfuRzBtu8D6/2En3cf3N1yOXfXhnj9jTCFHKSIicnCS Ps3ued4pwL2+77f2PO8Z4FDAAEcC//F9v0eyYzCVq2C698a27YJ9cTLbliyEUYMguynO+ZfhHHo4 5Vavpsy8eaSvWMH27Gxy27RhS1YWNkPT8iIiUrQlNZl7njcA6AVsAvB9/+LY9mrAPOBvyTz+7kyt OpjeN3FIj958P2EkrFhGuPI90jOPptLk6WRszgWg7KxZVBgxgk1jxrCpSxcldBERKdKSPc3+GXDu HrYPBR7yff+HJB9/j8r8oSHODXfhXDcYp+ah5H7zGd+f0Yhf3MMJ09MAMNZSqX9/yq1enYoQRURE 4pbUZO77/nRgl8XTPc+rBbQBHk/msffHGIPJbkrVw7Kp8cEanNztbDy6Dt+emc3Go2pjHYOxljLz 56cyTBERkf1Kxa1pFwBTfN+PezH1zMzMhAeRmZnJ9u3bsStXkvHNesp/+zOb6tfm12Pq8EvDI9hY vzZVV68jfcUKateuTXp6ibqLLymS8d+ptFOfJp76NPHUp6lXWBkqf4l4O+CuA/nwunXrEhpMZmbm zjarZmeTMWsWTmipsuZ7Kn79PzYeXYeN9Wuz/sSjSCuzEbvgFcxxTX7XjjFGD3iJyd+nkhjq08RT nyae+jTxCvLlqLCSef6MlwV8UUjH3a/cNm2oMGIEJpaU07blUW3VN1Ra+yMbsjLJOdzAA4PhuBOj yvfD6qnyXUREihRTDEaWNpkjc7NtG5VmzqRS//47EzqANYZNDz3ExsaNyJvxNHy8HICMzAbUfPol MjZv3XXfUl75rm/niac+TTz1aeKpTxMv38g87oVPSv2FYJuRwaYuXdjuupSZP///R9utW7MlKwsy Mki7fij24+UweQLb1n3Bd2ccR6W1P1Ll829J25a3s/J9u+uyuVGjVJ+SiIiUMqU+mUOU0Dc3asTm Ro32eh3cHNeEKnUaYV5bxIasTDY1OJTfjqhJlc+/o9J/f8AJo8p3JXMRESlsSua72dtlB2MMGStX Unbdeip89zOb6tfi16MPY8OxddkUq3xP++gjFcWJiEihK9FrsyeStZbt2dkAmNBSec0PHLZgBZU/ /46wTDrrGx/J+jIbCT9cqmQuIiKFSsn8AOS2aYPN9yAWZ3se1YJvqPPGCip8/RN5W34jHDOUcNQg 7H8/TWGkIiJSmiiZH4AtWVlsGjNml4QOkLZ1O2Wuuom020bB8X+E4CPCu28kfGQk9sfvUhStiIiU FrpmfgDiqnzvfwd21YeEzz+OffdN7Hv/wZz5J8zZF2EqV0n1KYiISAmkZH6A4qp8P/YEnIH3YZe9 jZ3+FHbuTOyiuZizzsO064YpWzYFkYuISEmlafaDsK9CN+M4OCefjnPnw5juvSEtHfviZMJBVxO+ +So2L68QIxURkZJMyTzJTHoGTtsuOHdPxHS6EHI2YZ8cSzi0P/aDd1X5LiIiB03JvJCYChVxzu2F M2wi5vQO8N03hGPvIrxvIPaLINXhiYhIMaZkXshM9Zo4l/bDGTIGGjeD1SsJ7xlA3oR7sd9rfWMR ETlwKoBLEZNZj7R+g7CrVxI+/xgsW0T4/juYM87CdO6OqVIt1SGKiEgxoZF5ipmsRji3jsTpczPU PBQ7fzbhwKsJZ07Fbtmc6vBERKQYUDIvAowxmKYtcIaOxfToA2XKYF+aQjioD+Ebc1T5LiIi+6Rk XoSY9HSc1p1whk/EdO4OWzZjJ48jHHItdvliVb6LiMgeKZkXQaZcBZxuPaLb2Vp1hB/WEY4bTjji Zuxnn6Q6PBERKWKUzIswU7U6Ts++OEPHQpPm8PkqwhE3kzduOPa7r1MdnoiIFBGqZi8GTJ26pPUd iP3sE8Jpj8PyxYQfLMG07IDpejGmavVUhygiIimkkXkxYo5piPP3e3H6DoTah2EXziG87WrCGVOw W3JSHZ6IiKSIknkxY4zBNGmOM2QspmdfKFceO2tqdDvb/NnY7dtTHaKIiBQyJfNiyqSl4bTqGBXJ desBubnYKRMIB/eLntamyncRkVJDybyYM2XL4XTuHt3O1roT/PQ94YQRhPcMwK5ekerwRESkECiZ lxCmSjWcHn1whj6MadoC1qwmHDmQvLHDsOu+THV4IiKSRKpmTyBjTMqnt82hmZg+N2O/CKLK9w+W EH64FNOyXVT5Xq1mSuPbl4L2X1HodxGRVFIyP0jbtllWr97IvHnfsGLFerKza9CmzeFkZVUmI8Ok LC7TwMW5aTh8uJRw2uPYN1/FvrMA064b5qzzMBUqpiy2/Araf0W130VEUsEUgxGNXbcusY8GzczM JBFtbttmmTnzK/r3f4v83WgMjBnTki5djigSicXm5WEXzcW+NAV+WQ+VKkdPZmvVEZOekZBjFKRP C9p/xaXfD1aifk/l/6lPE099mniZmZk7foz7HzJdMz8Iq1dv/F1CAbAW+vd/i9WrN6YmsN2YtDSc 0zvgDJuIObcX5OVhp04ivOMawiULsWGYkrgK2n/Fpd9FRAqLkvlBmDfvm98llB2shfnzvyncgPbD lC2L0+lCnLsfwbTtAuv/h510H+Hwm7CrPiz0eAraf8Wt30VEki3p18w9zzsFuNf3/dae59UCJgHV gDTgUt/31yQ7hmQwxrBixfp97rNixc9FsjjLVK6C6d4b27YL9sXJ2CULCUcNguymOOdfhql7ZPJj KGD/FedSAcQ6AAAgAElEQVR+FxFJlqSOzD3PG0CUvMvGNv0DmOz7/pnA7cCxyTx+Mllryc6usc99 srOrF+mEYmrVwel9E85to+DYE2DFMsI7ryN8bDR2/Y9JPXZB+68k9LuISKIle5r9M+DcfK9bAHU9 z3sN6AEsSPLxk6pNm8MxeylPMAZatz68cAMqIHPkH3BuuAvnusGQWQ+7aC7hoL8SPv84NmdT0o5b 0P4rKf0uIpIoSU3mvu9PB/IvFn4ksN73/fbAV8AtyTx+smVlVWbMmJa/SyzGwEMPnU5WVuXUBFYA xhhMdlOcOx7EXHEdVK6CfeUFwluvInz1Rey2bQk/ZkH7ryT1u4hIIhT2feY/ATNjP88EhhXy8RMq I8PQpcsRuG5n5s//hhUrfiY7uzqtWxff+52Nk4Y5rS32jy2x81/Gvvwc9rl/YefNwpxzCaZZK4yT mO+ABe2/ktjvIiIHo7CT+ZtAJ+Bp4AxgZTwfynfPXcIkss369aFt2yzCMMRxHJwEJbuUu6IfeRf0 YuOzj7Fx5rPYfz5A+oLZVLviWso1af673QvapwXtvxLb7/kk43e/tFOfJp76NPUKO5nfBDzqed5f gQ1E1833q6guGlNqdPJwmrXCzniabe+8wY+D+sFxJ0aV7/WOBtSnyaA+TTz1aeKpTxOvIF+OtAKc HBD75ReE056Aj5cDYJqfiTmnJ4cff6L6NMH0e5p46tPEU58mXkFWgNPa7HJATL0GpF0/FPvx8qja ffEC7NK3+LnLRdhWnTAVVXwmIlLYSt5FRikU5rgmOIMewPz5Bqhag03TnyYceBXhnGnY3K2pDk9E pFRRMpcCM46D0/xMnLvGU+0vfwMMdtoThLf/lfDtudgwL9UhioiUCkrmctBMRgaVz+2Jc88jmI7n w8ZfsY+PJrzzb9iPlmk1NhGRJNtvMvc876TCCESKP1OhEs75l+EMG485rS2s+5JwzFDCUYOw//00 1eGJiJRY8YzMn056FFKimBq1cK64DueO0XD8HyH4iPDuGwkfGYn98btUhyciUuLEU83+oed5PYC3 gJ0Ldfu+v+9HV0mpZ+oeSVr/O7CrPowq3999E/vefzBn/glz9kWYylVSHaKISIkQTzLvBly42zZL 9AhTkf0yx56AM/A+7LK3sdOfws6diV00F3PWeZh23TBly+6/ERER2av9JnPf98sVRiBSshnHwZx8 OrZJc+wbc7Czno2epb5gNqZrD0yLthhH3w9FRApiv8nc8zwHuAHIBq4F+gH/8H1f9x3JATPpGZi2 XbCntsG+8gL29RnYJ8diX5uBc/7lcMIfMXt7vqmIiOxRPAVwI4ETgFNi+3cEHkhmUFLymQoVcc7t hTNsIub0DvDdN4Rj7yK8byD2iyDV4YmIFCvxJPO2wOXAFt/3NwAdgPbJDEpKD1O9Js6l/XCGjIHG zWD1SsJ7BpA34V7s91rvWUQkHvEk822+74c7Xvi+vxXYnryQpDQymfVI6zcIZ8BwOCoLli0iHHwN 4ZQJ2F9/SXV4IiJFWjzV7Cs8z7sGSPM8zyW6fv5+csOS0spkZePcOhLeW0T4wpPY+bOxi+ZjOp6L aX8OpqzqMUVEdhfPyPw64CTgUOBtoBLwt2QGJaWbMQbTtAXO0IcxPfpAmTLYGVMIb7ua8I052DzV XoqI5BfPrWm/An8uhFhEdmHS0zGtO2FPPRP7yovYV6djJ4/Dvv4SznmXwomnqPJdRIT4bk2rDYwm KnrbBswGbvR9XxcypVCYchUw3XpgW3XEzpyKfetVwnHD4ehjcS64AnNMw1SHKCKSUvFMs08CvgCa AacDPwMTkxmUyJ6YajVwevXFGToWmjSHz1cRjriZvHHDsd99nerwRERSJp4CuCN93++W7/VNnud9 lKyARPbH1KlLWt+B2M8+Jnz+cVi+mPCDJZiWHTBdL8ZUrZ7qEEVEClU8I/N1nucdteOF53l1gW+T F5JIfMwxx+HcPAKn70CofRh24ZyoSG7GFOyWnFSHJyJSaPY6Mvc8bybRA1VqAe97nvc6kAe0Bj4s nPBE9s0YA02a45xwMvat17Azn8HOmop949+YLhdjTu+ASY9nAkpEpPja179yz+9l+8vJCETkYJi0 NEyrjtjmZ2JfexE7Zzp2yoRY5XsvOOk0Vb6LSIm112Tu+/4T+V97nlch+eGIHBxTthymc3fsGR2j EfrCVwgnjICjsnAuuByTlZ3qEEVEEi6eW9OuB+4Gdjx02qDnmUsRZ6pUw/Tog23bNXqG+rK3CUcO hMbNcM67FJNZL9UhiogkTDwXE28AmgOfJzkWkYQzh2Zi+tyM/SIgnPY4fLCE8MOlmJbtosr3ajVT HaKIyEGLJ5l/6vu+Ct6kWDMNXJybhsOHSwmnPY5981XsOwsw7bphzjoPU6FiqkMUESmweJL5WM/z ngVeJVoBDgDf959MWlQiSWCMgcYn42SfhF00F/vSFOzs57AL52A6d8e06ohJz0h1mCIiByyeZH4N 0UNW8hfAWUDJXIolk5aGOb0Dtlkr7NyXsHOmYadOws6diTmnJ+aPLTFOPEswiIgUDfEk83q+7/8h 6ZGIFDJTtiym04XY08/CvvwsdsG/sZPuw776YlT5fuwJqQ5RRCQu8Qw//ut5XmbSIxFJEVO5Ck73 3jh3jcM0OwPWfkY4ahB5o4div/5vqsMTEdmveEbmm4EVnue9C2zdsdH3/a7xHMDzvFOAe33fb+15 3onALGB17O3xvu8/d4AxiySFqVUH0/smbPtuhNOegBXLCFe+hzm1DaZbD0yNWqkOUURkj+JJ5tNi fw6Y53kDgF7AptimpsAo3/cfKEh7IoXBHPkHnBvugpXvET7/eFQs9+6bmDadMZ0uwFSolOoQRUR2 sd9kvvtKcAfoM+Bc4KnY66ZAlud55wCfAtf5vv/bQbQvkhTGGMhuinPcidjFC7Aznsa+8gL2zVcx Z3uY1mdjMlT5LiJFQzwrwG0kql7fhe/7Vfb3Wd/3p3ueVz/fpneASb7vL/c8byAwBBgQf7gihcs4 aZjT2mL/2BI7/2Xsy89hn/sXdt4szDmXYJq1UuW7iKRcPNPs+RezLgOcR/T0tIJ40ff9DbGfpwNj 4vlQZmbi6++S0WZpV+L79Ip+5F3Qi43PPsbGmc9i//kA6QtmU+2KaynXpHlSDlni+zQF1KeJpz5N vXim2dfutmmE53nvAPcV4HiveJ7Xz/f9pUBbYFk8H1q3bl0BDrV3mZmZCW+ztCtVfdrJw2nWCjvj aba98wY/DuoHx52Ic/5lmHpHJ+wwpapPC4n6NPHUp4lXkC9HB/ygZ8/zjiVaRKYg/go85HleLvAd cFUB2xFJKXPIoZg/3/D/le8fv0/48fuY5mdGC8/UrJ3qEEWkFDnQa+aGaKr97/EeIDayPy3283Kg 5YGHKVI0mXpHk3b9ndiPl0eV74sXYJe+FRXIne1hKlZOdYgiUgoc6DVzC/zi+/6vSYpHpFgyxzXB GdQYu2Qh9sXJ2NdmYN9+HfOnC6Jb2sqU3X8jIiIFtNcyXM/z6nmeV48oge/4A1Attl1E8jGOg9P8 zGgluQuvBAx22hOEt/+VcNFcbFjQulERkX3b18h8JVECN/m2WaA80ZeAtCTGJVJsmYwymA7nYFu2 w/57Gvb1l7CPjY7WfD//csg+KbqPXUQkQfaazH3f3+Vin+d5BhgI3BT7IyL7YCpUwpx/GbZ1J+yM Kdj/zCMcMxSOPSF6kEv9Y1IdooiUEHFVs3uedzgwGagMnOL7/ur9fEREYkyNWpgrrsO270o47clo zfdhN2BOPh1zbi9MrTqpDlFEirn9Ll3led55wAdE94SfqkQuUjCm7lGkXTcY58ZhUP8Y7LtvEt7e l3DqJOxG1ZSKSMHtdWTueV55YDRwNtDd9/3XCy0qkRLMHHsCzsD7sMvexr7wJHbuTOyiuZizzsO0 64Ypq8p3ETkw+5pmfw+oT5TQT/A874T8b/q+f38yAxMpyYzjYE4+HdukOfaNOdhZz0a3tC2Yjena A9OibapDFJFiZF/J/B1gMVAn9ie/3z14RUQOnEnPwLTtgj21TfRUttdnYJ8ci31tBpuvugF7eANV vovIfhlri3xetlqbvehTnyaG/fkn7MxnsG+9DjaErEY451+OaeCmOrQSQb+niac+Tbx8a7PH/U1e z24UKUJM9Zo4l/bDGTKGcs1Oh9UrCe8ZQN6Ee7Hf6x9MEdkzJXORIshk1qPW4AdwBgyHo7Jg2SLC wdcQTpmA/fWXVIcnIkWMkrlIEWaysnFuHYnT52aoWRs7fzbhwKsJZ03Fbt2S6vBEpIiI56lp7wHj gCm+7+ckPyQRyc8YA01b4DQ+Bfvmq9E19RlTsAv+jelyMaZle0yaVlcWKc3iGZn3A04HPvc8b6zn eY2SHJOI7IFJT8dp3Qln+ERM5+6wOQc7eRzhkGuxyxdTDIpZRSRJ4q5m9zyvGtADuBFYB4zxff+5 JMa2g6rZiwH1aeLtr0/tL+uxM6di33oVwhCOPhbngiswxzQsxCiLF/2eJp76NPGSVs0eS+S9gKuA DYAPXOp53pMHGKOIJIipVgOnV1+coWOhSXP4fBXhiJvJGzcc+93XqQ5PRApRPNfMnwY6AbOAv/q+ /5/Y9vHAD8kNT0T2x9SpS1rfgdjPPiZ8/nFYvpjwgyWYlh0wXS/GVK2e6hBFJMnieWraSuBvvu// mH+j7/vbPc9rkZywRORAmWOOw7l5BLz/DuELT2AXzsG+swDT/hzMWedgylVIdYgikiRxXTP3PK8T cBaQB8z0fX9+sgPLR9fMiwH1aeIdTJ/avDzsW69hZz4DG36GylWjyvfTO2DS43rycYmk39PEU58m XlKumXueNxgYRXStPAeY6Hle/4IEKCKFw6Sl4bTqiHP3REy3HpCbi50ygXBwv+hpbap8FylR4vmK 3gto6vv+BgDP80YBi4AxyQxMRA6eKVsO07k79oyO2FlTsQtfIZwwAo7KwrngckxWdqpDFJEEiKea /SdgY77XvwCbkhOOiCSDqVINp0cfnKEPQ9PTYM1qwpEDyRs7DLvuy1SHJyIHKZ6R+VJghud5E4Ht QE/gS8/zzgPwff+FJMYnIglkDs0krc8t2C8CwmmPwwdLCD9cimnZLqp8r1Yz1SGKSAHEk8yPi/19 427bryV6rrmSuUgxYxq4ODcNhw/fJZz2RLRM7DsLMO26Yc46D1OhYqpDFJEDsN9k7vt+awDP89IB 4/v+tqRHJSJJZ4yBxs1wsptiF83FvjQFO/s57MI5mM7dMa06YtIzUh2miMQhnkVjagNPAG2AdM/z 3gB6+r6vexFESgCTloY5vQO2WSvs6zOwr7yAnToJO3cm5pyemD+2xDh6wKJIURbP/6FjgcXAoUBt 4E1gfDKDEpHCZ8qWxTnbw7n7EUzbLrD+f9hJ9xEOvwm76sNUhyci+xDPNfMs3/e9fK8He563MlkB iUhqmcpVMN17Y9t2wU5/Cvvum4SjBkF2U5zzL8PUPTLVIYrIbuIZmWd4nlduxwvP8yoQFb7FxfO8 UzzPm7/bth6e5y2KP0wRKWymVh2cqwbg3DYK3ONhxTLCO68jfGw0dv2P+29ARApNPCPzqcDrnuc9 Fnt9BfB8PI17njeAaNGZTfm2NQGuPMA4RSRFzJF/wLlxGKx4j3Da41Gx3LtvYtp0xnS6AFOhUqpD FCn19jsy933/LuCfQAegI/A4MDTO9j8Dzt3xwvO8msAw4LoDDVREUscYgzm+Kc4dD2KuuA4qVcG+ 8gLhrVcRvvoidptuchFJpX2OzD3PywDK+r7/GPCY53nHA6t8349rmt33/eme59WPteUAjwI3AFs5 gAXkRaRoME4a5rS22D+2xM6bhZ39PPa5f2HnzYoq35udocp3kRTY61PTPM+rC8wD7vB9f2ps27NA Y6BNvLemxZL5M0B/4DHgR6A80BD4l+/7N+ynCT0RQqSIytu4gY3PPsbGmc/C9m1kHO1S7YprKdek eapDEykJ4h707iuZPwN84Pv+vbttHwQc6/t+z3gOEEvmU33fP3W3bc/4vn9aHE3oEajFgPo08YpT n9r/fY+d8TT2nTfAWjiuSVT5Xq9BqkPbRXHq0+JCfZp4BXkE6r6m2bN93794D9uHAysOIC7Q6Fqk 0BljCu1Rp+aQQzF/vgHbvhvhtCfg4+WEn7yPOaVVNP1es3bS4ivM8xQpqvaVzHP3tNH3/dDzvC3x HsD3/bXAafvbJiIHb9s2y+rVG5k37xtWrFhPdnYN2rQ5nKysymRkJL9MxdQ7mrTr78R+vJzw+cex ixdgl74Vq3y/kO1lKiUkvlSfp0hRs69p9vnAlb7vr9lt+9FEU+TNCiE+0DR7saA+TbwD7dNt2ywz Z35F//5vkf9/a2NgzJiWdOlyRKEmOhuG2CULsS9Ohp9+wJavyMf12nHumAy25P3/OOJA4zuY89Tv aeKpTxMv0dPso4CZnuf1BxYR3cbWHBhNNNUuIkXI6tUbf5fgILqE3b//W7huZxo1qlJo8RjHwTQ/ E9v0NOz82eS99CyNghnMP6MCo1Yfzwvf1CfEOeD4itp5ihQFe72HxPf9WURJ+1HgN2Aj8DAw3Pf9 ZwonPBGJ17x53/wuwe1gLcyf/03hBhRjMsrgdDiHx44ZwLjPG1KzzBbub/wO/275CmfWWgfYA4qv qJ6nSCrt8z5z3/enAFM8z6sBhL7v/1I4YYnIgTDGsGLF+n3us2LFzykrFjPG8N4nm5kVNOaJtcdw Y9YKLjh8DU+evJC3/1eb4atOjCu+on6eIqkS1+oOvu+vVyIXKbqstWRn19jnPtnZ1VOW4PLH9+2W itz04Sl0fKsj8344jBaH/MDLLV/lb5X/TfjDt3G3szepPE+RVNFSTSIlRJs2h2P2Ui5jDLRufXjh BrSb3eNbtbEaly9txUWLW/PBLzX4wy8fEN7el3DqJOzGX+NuJ7+icJ4iqaBkLlJCZGVVZsyYlr9L dMbAQw+dTlZW5dQEFrO3+Bb/fChrLx5KeOVNUL0mdu5MwtuuInzZx27dGnc7ReU8RVJhr7em7eB5 Xr3dNlkgx/f9n5IW1W7H061pRZ/6NPEK0qc77r+eP/8bVqz4mezs6rRuXXTuv95ffHb7Nuwbc7Cz noVNv0K1GpiuPTAt2mKctLjb2Rv9niae+jTxCnJrWjzJ/Csgk6iaPQSqAtuB/wEX+r6f7OeSK5kX A+rTxDvYPi3qRWD7is/m/IZ95QXs6zMgNxcOOwLn/MvhhD9idhuSH8h56vc08dSniVeQZB7PNPvr wBW+71fzfb8G4BE9BrUz8MABxigihaQoJ3LYd3ymQkWcc3vhDJuIOb0DfPcN4di7CO8biP0iiLsd kdIinmTe2Pf9J3e88H1/GtDU9/3lQJmkRSYipZ6pXhPn0n44Q8ZA42aweiXhPQPIm3Av9nuNBkV2 iCeZp3uel73jReznNM/zygEZSYtMRCTGZNYjrd8gnAHD4agsWLaIcPA1hFMmYH/VXbMi+1w0JuYW YIHneSuJkv8fgB7AUGB6EmMTEdmFycrGuXUkvLeI8IUnsfNnYxfNx3Q8F9P+HEzZcqkOUSQl9jsy 931/NpBFdH38XqCh7/vzgGG+79+e5PhERHZhjME0bYEz9GFMj6uhTBnsjCmEt11N+MYcbF5eqkMU KXT7Teae5znAX4C/AbcC13qel+77/sZkBycisjcmPR2n9dk4wydiOneHzTnYyeMIh1yLXb5YhXFS qsRzzfweoA3wIHA/0XPIRyYzKBGReJlyFXC69cC5eyLmjI7wwzrCccMJR9yM/eyTVIcnUijiuWbe Efij7/vbADzPexn4ALg+mYGJiBwIU60GpldfbLuuhNOfhOWLCUfcDE2a45x3KaZO3VSHKJI08YzM nR2JHMD3/a3Atn3sLyKSMuawuqT1HYhz871w9LFRUh/cj/CpceSt/1+qwxNJinhG5u97nvcAMDb2 +hrgw+SFJCJy8Mwxx+HcPALef4fwhSewC+fw7ZI3oF03zFnnYMpVSHWIIgkTz8j8GqA6sAj4D1AL uDaZQYmIJIIxBtOkOc6QsZiefTHlK2BnTSUceDXh/NnY7dtTHaJIQux3ZO77/q/A5fm3eZ7XCFif pJhERBLKpKVhWnWkzjndWffUBOyc6dgpE7Cvv4RzXi846bTfrfkuUpwU9BGo/0loFCIihcApXwGn c/fodrbWneCn7wknjCC8ZwB29YpUhydSYAVN5voKKyLFlqlSDadHH5yhD0PT02DNasKRA8kbOwy7 7stUhydywOIpgNsTrcYgIsWeOTSTtD63YL8ICKc9Dh8sIfxwKaZlO0zXizHVaqY6RJG4FHRkLiJS YpgGLs5Nw3H6DYI6h2PffDVaHnb6U9ic31Idnsh+7XVk7nneRvY8AjeA7ukQkRLFGAONm+FkN8Uu mot9aQp29nPYhXMwnbtjWnXEpOtBkVI07WuaPXsf74mIlEgmLQ1zegdss1bY12dgX3kBO3USdu5M zLm9ME1bYBxNakrRstdk7vv+2sIMRESkKDFly2LO9rBndMS+/Cx2wb+xj4zE1p+Oc8HlmGNPSHWI Ijvp66WIyD6YylVwuvfGuWsc5uTTYe1nhKMGkTd6KPbr/6Y6PBGg4NXscfM87xTgXt/3W3uedxww MfbWp8BffN8Pkx2DiMjBMrXqYK4agO1wDuHzj8OKZYQr38Oc2gbTrQemRq1UhyilWFJH5p7nDQAm AWVjm+4GbvF9/3SiQrouyTy+iEiimSP/gHPjMJz+gyGzHnbRXMJBfyWc9gQ2Z1Oqw5NSKtkj88+A c4GnYq/P833fep5XBqgDbEjy8UVEEs4YA8c3xWl0InbxAuyLT2PnTMO++Sqm04WY1mdjMlT5LoUn qSNz3/enA9vzvbae59UDVgA1iZ6LLiJSLBknDee0tjjDxmPOvwzCEPvcvwhv/yvh4gXYUFcRpXAY a5O7mJvnefWBZ3zfP2237X8GTvd9//L9NKHV5kSkWMjbuIGNzz7GxpnPwvZtZBztUu2KaynXpHmq Q5PiKe6l05NeAJef53kzgBt93/8M2AjkxfO5devWJTSOzMzMhLdZ2qlPE099mniF0qedPJxmrbAz nmbbO2/w46B+cFwTnPMvw9RrkNxjp4B+TxMvMzPzgD9TqMkcuBd43PO8rUAO8JdCPr6ISNKZQw7F /PkGbPtuhNOegI+XE37yPuaUVphzemJq1k51iFLCJH2aPQGsRuZFn/o08dSniZeqPrUfL49uZ/tq DaSnY9p0jgrlKlYu9FgSTb+niZdvZB73NLsWjRERSTJzXBOcQQ9g/nw9VK2BffVFwoFXEc6Zhs3d murwpARQMhcRKQTGcXCat45WkrvwSsBgpz0RVb4vmosN4yohEtkjJXMRkUJkMsrgdDgHZ/gjmLPO g183YB8bTXjn37AfLaMYXPqUIkjJXEQkBUzFSjgXXI5z9wTMaW1h3ZeEY4YS3n87du1nqQ5Pihkl cxGRFDI1auFccR3OHQ9CdlNY9SHhsBsIHxmJ/fG7VIcnxURh35omIiJ7YOoeRdp1g7GffBCt8/7u m9j3/oM580+Ysy/CVK6S6hClCNPIXESkCDENG+MMvA/T+yaoXhM7dybhbVcRvuxjt6ryXfZMyVxE pIgxjoPT7Iyo8r17b0hLw744mXDQ1YRvvqrKd/kdJXMRkSLKpGfgtO2Cc/cjmE4XQs4m7JNjCYf0 x37wrirfZSclcxGRIs5UqIhzbi+cYRMxLdvDd98Qjr2L8L6B2C+CVIcnRYCSuYhIMWGq18S57Fqc wWOgcTNYvZLwngHkTbgX+72WVC3NVM0uIlLMmMPrkdZvEHb1imjN92WLCN9/B3PGWZjO3TFVqqU6 RClkGpmLiBRTJisb59aROH1uhpq1sfNnEw68mnDWVOzWLakOTwqRkrmISDFmjME0bYEz9GFMj6uh TBnsjCmEt11N+MYcbJ4q30sDJXMRkRLApKfjtD4bZ/hETOfusDkHO3kc4ZBrscsXq/K9hFMyFxEp QUy5CjjdeuDcPRFzRkf4YR3huOGEI27GfvZJqsOTJFEyFxEpgUy1Gji9+uIMGQtNmsPnqwhH3Eze uOHY775OdXiSYKpmFxEpwcxhdUnrOxD72cdR5fvyxYQfLMG07IDpejGmavVUhygJoJG5iEgpYI45 DufmETh9B0Ltw7AL50RFcjOmYLfkpDo8OUhK5iIipYQxBtOkOc6QsZiefaFceeysqdHtbPNnY7dv T3WIUkBK5iIipYxJS8Np1RFn2ARMtx6Qm4udMoFwcD/ssrdV+V4MKZmLiJRSplx5nM7do9vZWneC n74nnDCC8N6/Y1evTHV4cgCUzEVESjlTpRpOjz44Qx+GpqfBFwHhyFvJGzsMu+7LVIcncVA1u4j8 X3t3HiZVdeZx/Htu00AiLZsCaQQXIkQFFQloQGQTRlDiwuTggsHEgBqMJAZGRcAQkYQhLqBRwURx iZpXecDIJIhRUIwS1oBAkBAMRBkRZURZxG7unT9u9UynbaSrqYXb/fv8Q9Wtuue89T7089a599Q5 IgC45sUUXHsz0aa3CGfNhFVLCFcvw519bjzzvVHTfIcoB6CRuYiI/At3QjuCUZMIrh8LLVoSLZof z3yf/TjRnt35Dk8qoZG5iIh8jnMOTutC0L4T0esvEf3uSaLfP0P06gu4CwbjepyHq1OY7zAlRSNz ERE5IFdQQNC9H8HE6biLhkBpCdHTDxGOH0G4dBFRGOY7REHFXEREqsDVq0dwvieYNAPXZyDs+IBo xhS23XgV0frV+Q6v1lMxFxGRKnNFDQkuHUZw+/24zt0p+ds6wjvHsn/qBKJ3/pHv8GqtrN8z996f CfzczHp5708HpgGlwD7g22a2PdsxiIhIZrmjW+CGj+aoK4ax7YEpsGY54doVuG/0xl14Oa7J0fkO sQISPlQAABDqSURBVFbJ6sjcez8aeAiolzp0DzDCzHoDs4Gbs9m/iIhkV90TTyb48USCG26D4tZE r79EOPY6wlmPEu3Zle/wao1sX2bfCFxc7vlgM3sz9bgOsDfL/YuISJY553AdOhGMvwd31UhocCTR vFnxmu/z5xCVlOQ7xBovq8XczGYTX1Ive74NwHvfFRgB3J3N/kVEJHdcUEDQrQ/BxAdwg4ZCGBI9 8zDhuOsIFy/UzPcsctleUN97fyzwlJl1TT0fDNwCXGhmm6vQhFb8FxFJoP0ff8TH9gi7njcoLaGw TTsafecH1O94Vr5DSwpX1TfmdNEY7/0QYDjQ08w+qup5W7duzWgcxcXFGW+ztlNOM085zTzlNPMO mtMBgwm69CR67jeULF7I9rHXw8kdCQYNxbU+IXeBJkhxcXHa5+SsmHvvA2AqsBmY7b2PgFfMbEKu YhARkdxzRzXHXX0jUd8LCWc9CutWEv71L7gze+AuGoJr2izfISZe1ot56lJ619RTrdIvIlJLudZt KPjRT4nWrSR8dibR4oVEy17D9b4AN+BbuCOK8h1iYmnRGBERySl3ckeCsXfjrv4RNGxCNH8O4Zjh hPNmEX22L9/hJZKKuYiI5JwLAoKzesUryX3ru4AjmvVoPPP99ZeIwv35DjFRVMxFRCRvXGFdgn4X xWu+/9sl8PFOokemEv70h0RvLifbv7iqKVTMRUQk79wRDQj+/SqCOx7Ede0DW7cQTptAeNc4os0b 8x3eYU/FXEREDhuuydEE3xlJMP4eaN8J1q8mnHgj4YwpRNvfy3d4h62c/s5cRESkKtwxx1Mw8jai v66K13lfuohoxRu4nv1x5w/GFR2Z7xAPKxqZi4jIYcuddBrBmF/gho2Cxk2JXnqe8NbhhP9lRPs0 872MirmIiBzWXBAQdDknnvl+6TAoKCCa8wTh2GsIF83XzHdUzEVEJCFcnUKCPgMJ7piBG/At2LOL 6LH7CH9yA9GqpbV65ruKuYiIJIr78hEEF19JMHE67uy+8N67hPfdTviLMUSb3sp3eHmhYi4iIonk GjclGPoDgtumwWldYMNawp+NJnxwMtG2z2/+4lyVNyFLHM1mFxGRRCtt1opNfUeys/EKvvL6byle /idKl7/BzlN702DwEDZtr8PLL7/LmjU7aN++Cb17t6Rt2yIKC2tOcVcxFxGRxCopiVi48D3Wr/+I yZPfJYq6MaDFO9zUbhXHr/4jJWsXsfTD05j659bs3V+HuXM3M3nySqZNO5uBA1vVmIKuy+wiIpJY GzZ8wubNu5g8eSXx/DfH799rRZ9XBzB2bSd27oErGy1hUY+5XNFqIwUuJIrghhteY8OGT/Idfsao mIuISGItWfI+W7bsouJE9tIo4LHNJ9J94QW8WtSTosJSftZhGfO7z6Nf83eIoogFC97NT9BZoMvs IiKSSM453n9/L1u27Drge3bvL+SJnZ15+IPjOXffq1x6zCZ+1ek1lu44ilfeLMS5k2vET9o0MhcR kUSKoohmzb5E69YNvvB9rVsXsf6/HWPWdKbvov7Me68lnZt8wKjwCUp/eQfRe+/kKOLs0chcREQS q0uXZuzfH+Ecn7vUDuAcFBcfwdatewD4++4jGb6iO50bb+fxS7bw5ZWLCVctwXXvhxt4Ga5h4xx/ gszQyFxERBKrbdsijj22ATfd1JGKPyN3DqZM+QbPPvv3zx0fevsl1B87heD7Y6DZV4hemUd46zWE zz1J9OmeHH6CzNDIXEREEquw0NGzZwtat25Au3aNWLZsO2+//TGnnNKEc89tSZs2RZx6alMWLHiX NWv+h/btG9OrV7nfmXc8i+DUzkSvvUj0/FNEc58meuUP8Si9ez9cnWSUSZeAG//R1q2fX8nnUBQX F5PpNms75TTzlNPMU04z73DLadkqb5XVNufcF052iz7dS/Tic0QvzIZ9e6FZMcElV8IZXXO6elxx cXHZwyp3qsvsIiJSY0RRdMCCfbDBq6v/JYKBlxJMehDXawB8uI3wwcmEP/8Pog1rsxFuxqiYi4iI lOOObExw+bUEE34JnbrCprcIp9zC/vsmEm3dku/wKpWMmwEiIiI55poXU3DtzUSb3iKcNRNWLSFc vQx39rm4b16Ga9Q03yH+H43MRUREvoA7oR3BqEkE14+FFi2JFs2PZ77Pfpxoz+58hwdoZC4iInJQ zjk4rQtB+05Er79E9LsniX7/DNGrL+AuGIzrcR6uTmHe4tPIXEREpIpcQQFB934EE6fjLhoCpSVE Tz9EOH4E4dJFRGGYl7hUzEVERNLk6tUjON8TTJqB6zMQdnxANGMK4aRRROtX5zweFXMREZFqckUN CS4dRnD7/bjO3WHzRsI7x7J/6gSid/6RsziyXsy992d67xdUOHaX9354tvsWERHJBXd0C4Lhowlu vRPadYA1ywl/OpLwkalEO7Znvf+sToDz3o8GrgR2pZ4fBTwGnAisz2bfIiIiueaOO5HgxxNhzQrC WTPjyXJLF+H6DMT1H4T78hfv8FZd2R6ZbwQuLve8AXAb8HiW+xUREckL5xyuQyeC8ffgrhoJDY4k mjeLcMw1hPPnEJWUZLzPrBZzM5sNlJZ7/g8zW0oa682KiIgkkQsKCLr1IZj4AG7QUAhDomceJhx3 HeHihRmd+a4JcCIiIlnk6tYjOG8QwaTpuL4Xws4dRL++i/COG4nWrcxIH7laNOaQRuLldpDJmGy0 Wdspp5mnnGaecpp5ymlVFUPbcZRedjU7H3+APQv+QHj3bdQ/4ywaXvUD6rZpV+2Wc1XMK25Vk9a+ q9oC9fCnnGaecpp5ymnmKafVdPl1BGf3I5z1KJ+uWMynK/+MO7MH7qIhtOxwetrNaT9zyQjlNPOU 08xTTjNPOT100bqVhM/OhH++DXXqUDTwUhp974eg/cxFRESSwZ3ckWDs3birfwQNm/DJ7CfSbkMb rYiIiOSZCwLcWb2IOnWj4Yb0l4PVyFxEROQw4Qrr0qDvN9M+T8VcREQk4VTMRUREEk7FXEREJOFU zEVERBJOxVxERCThVMxFREQSTsVcREQk4VTMRUREEk7FXEREJOFUzEVERBJOxVxERCThVMxFREQS TsVcREQk4VTMRUREEk7FXEREJOFUzEVERBJOxVxERCThVMxFREQSTsVcREQk4VTMRUREEk7FXERE JOFUzEVERBJOxVxERCThVMxFREQSTsVcREQk4VTMRUREEk7FXEREJOHqZLsD7/2ZwM/NrJf3vg0w EwiBNWY2Itv9i4iI1HRZHZl770cDDwH1UofuAsaYWQ8g8N5fmM3+RUREaoNsX2bfCFxc7nknM1uU evwH4Nws9y8iIlLjZbWYm9lsoLTcIVfu8SdAw2z2LyIiUhtk/Z55BWG5x0XAR1U5qbi4OOOBZKPN 2k45zTzlNPOU08xTTvMv18V8hff+HDN7FegPvFyFc9zB3yIiIlJ75bqYjwIe8t4XAn8Fns1x/yIi IjWOi6Io3zGIiIjIIdCiMSIiIgmnYi4iIpJwKuYiIiIJl+sJcHlRYUnZo4lXpWsEFADfNrO38xpg AlXI6enAA0AJsMHMvpff6JLHe18HeBg4DqgL3AGsQ8sfV9sBcroFuJd4/Yt9xH//2/MVY9JUllMz ez712uXA9WbWNX8RJs8B/p8uJs06VeNH5pUsKfufwBNm1hMYB3wtT6ElViU5HQ/8xMzOAep778/P W3DJNQT4IJXD84D70PLHh6qynN4DjDCz3sBs4OY8xpdE5XPanzineO87At/NZ2AJVllO065TNb6Y 8/klZbsBx3jvXwQuBxbmI6iEq5jTlcBR3ntHvBhQSV6iSjYj/qOF+Jt4KXCGlj8+JBVzWgIMNrM3 U8fqAHvzEViClc9pAJR475sAE4GReYsq2SrmtBToCrRKp07V+GJeyZKyxwE7zKwv8E/0zTxtleT0 b8A0YC3QDH1BSpuZ7TGz3d77IuAZ4Fa0/PEhqSynZvY+gPe+KzACuDufMSZNJTkdB/wauBHYjRb5 StsB/vaPBz5Mp07V+GJeiQ+B51OPnwc65TGWmmIq0M3MTgYeJ748LGny3rciXhXxUTN7mmoufyz/ r0JOf5s6Nhi4HxhgZh/mM74kKp9T4qt0XyWeM/MUcJL3Xn//aarkb/8D0qxTtWICXAWLgAHAb4Bz iEeTcmg+JB45AmwlvkQkafDeNwdeIL6fuyB1eGU1lj+WlMpy6r0fAgwHepqZvhyl6QD/TzukXjsW eMrMbsxXfEl0gJy+Rpp1qjYW81HAr7z31wE7ie9HyKEZBvzWe18CfJZ6Lum5hXjm6jjv/XggIr4H ea+WP662ijktAE4BNgOzvfcR8IqZTchjjElT2f/T/ma2L79hJVplOR0K/DqdOqXlXEVERBKuNt4z FxERqVFUzEVERBJOxVxERCThVMxFREQSTsVcREQk4VTMRUREEq42/s5cJK+89wHwQ+Ay4t8+1wXm AuPN7LNqtPcI8KaZVWnlLe99H+AXxL9n/UoqhndSL/+MeLGKKreXZqw9gPvMrEOa54XAUWa2o8Lx HwPtzew7GQxTJHFUzEVy70HiddZ7m9kn3vsvAU8S70Q3NNudm9lLQEcA7/1tQFMzu6Hsde/9gCyH UJ3FLb7oHC2WIbWeirlIDnnvjyMekbcws90AZrbXe38N0DVV2N8FupjZxtQ584n34H459W834h3A 5pjZ2Artn0S8zWcT4hH3NDObWY1Qu3nvBwHNgTXAZak4PwWeA04FrgD2EK/N/y/9ee+PAB4hXrc7 BJab2TWptou8908Rb+tYDxhmZn/y3h8J/BI4PXXOPOAWMwtJbeCR2vv5XuId5LYB76M160V0z1wk x84A1pYV8jJm9r6ZzTGzvcBMUkvieu/bAG2JL8PfDtQzs3bEI+tu3vtzytrw3hcQ77p0k5l1BnoC o733XaoRZzHQO9X3McAlqeN1gefM7CRgFfESs5X1dzHQwMzOALqk4jsh1UZL4E4z6wjMAH6SOn4v 8b7OHYCvA6cRL79c3gjiLwhfA/oBravx2URqHBVzkdwKOfjf3QPAlaniPAx4yMwioA/xdpOYWYmZ 9UptwlKmLdAGeNh7vxJ4BahP6pJ6muaY2b7UqHgN8da2ZV6rQn+vAad47xcQb994j5ltSp33dzNb lnr8l3JtnwfcV/b5iG9H9E+9VnYpvQ/wpJntN7M9xBtRiNR6uswukltLiLeJPKL86Nx73xKYDgwy s79571cDFxFfyv566m2llLs/7L0/hvgyd5kC4H9So+Gy9zSjepehS8o9jvjXfap3Haw/M/vMe/9V 4tF6b+Al7/31xDvsHajtil9yAqCwwrGKsZRW9QOJ1GQamYvkkJltJR5NPuy9LwIod694e7ndp+4H pgCLzWxb6tgfgaHee+e9r0d8ifuccs2/BXzqvb8i1W4r4lH1QfdCrqYD9ue9vxaYaWYvmtktxFs8 tk+d5yptLbUNZKqtesRblc6vcM484Nve+3re+/rA4Ax/JpFEUjEXyb3vE29p+rr3fgXwBnERLL91 7FygAfEl9zITiEe1q4DlwFwzm1P2YurS9IXA97z3q4gL361m9kaa8VWcHR5V9vgg/T0GBN77dd77 pUAR8US5ytovcwPQ3Hv/ZuozrgcmVThnOvFnXwMsADZVbESkNtIWqCKHIe99V2B6ur/HFpHaSffM RQ4z3vuZQA/gyjyHIiIJoZG5iIhIwumeuYiISMKpmIuIiCScirmIiEjCqZiLiIgknIq5iIhIwqmY i4iIJNz/AuSj76YbXbeyAAAAAElFTkSuQmCC "> | ||
+ | </div> | ||
+ | <div class="clear"></div> | ||
+ | |||
+ | |||
+ | </p><p class="c0"><span><b>pSB1C3 absolute quantification run #4</b><p>Lysate from 100,000 stationary phase cells harboring K909006-pSB1C3 was compared against a 2-point standard of 105 and 106 1.1x106 copies. The 1.1x106-copy standard was created using lysate from 105 cells as well as 106 copies of purified plasmid. This point was created to test for variance in amplification efficiency of plasmid vs. genomic template. Linear regression indicates approximately 25.5 copies of the target sequence for every cell in the reaction, or around 24-25 plasmid copies per cell. | ||
+ | |||
+ | Three qPCR runs using stationary phase cells and one run using mid-log phase cells indicate a PCN of around 12-13 copies during log growth, increasing to around 24 copies per cell during stationary phase. | ||
+ | </p></p> | ||
+ | <div class="img-block"> | ||
+ | <!-- fig4 --> | ||
+ | <img src="https://static.igem.org/mediawiki/2016/f/f4/T--genspace--pSB1C3_Absolute_Quantification_4.png" alt=""> | ||
+ | <img src=" AAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4FVX+x/H3mST0jhQjVTEjEkBQQEBFeldRGewVXVZ2 YdVdRVfXXtBVVyxYsK0FGbAtRSkSihQBASnqxIJYsCMCAlLm/P6YG36hXyA3N5d8Xs/DQ+7cuTPf GUI+OWfOnDHWWkRERCQ1OMkuQEREROKn4BYREUkhCm4REZEUouAWERFJIQpuERGRFKLgFhERSSEK bhERkRSSnuwCRAqT67qnANOAJ4IguCrf8ouBfwdBUC0B+2wH5ADlgiDYEMf6jYGqQRBMO4h9VgCu B84GagPfA+OAu4Mg+P5At3sAdRwGdA6CYGTsdQ4wPwiC61zXNcBzQF/gR+BW4P4gCKoXwH53OIeu 64ZAryAIJhzstvex3y7AO0C9IAi+SuS+pPhSi1uKm/OBXOAc13VL7vReImcj2p9tvwUce6A7ioXl +0A74CrABS6N/b3Add2jDnTbB+A+oE++132A22JftwYuii1rC7zKQRz3TnY+hzWByQW07d1yXbcc 8DSJ/T4SUYtbig/XdUsQtUD/BjwJnAW8ktSids8c5Of/A6wB2gVBsC227GvXdWcQtQafAU49yH3E a4djCYJgTb6XlQEbBMGkfMv+SNB+fyyg7e7NA8AXQK1C2JcUY0ZTnkpx4brumcAooAbwIlAyCIJO sfcuBu4HHgKujX3kv8DfgyAIXddNIwrEs4GKwAfANUEQzI99/ijg30St3BB4Pfb++lhX+VSgPFAN WAFkB0HwUb59/zsIgmqxruR2RK226UEQdHBdtwbwCNANWA+MB64NgmDtbo6xMlG3eJ/ddQu7rnsi MBtoFATBx67rriDqnn489n7d/PW5rls9dk46x477a+CuIAiei62fA0wHjgO6AD8DtwZB8KzrurcA t8R2bYMgSMvrKgeWE3WTEzvW24CV5Ltc4bpuE6IwPBFYDQwPguDe2HstgHuAVkQNkA+BQUEQzNvD OdzeVe66bgZwI3AxcDiwIHY+5+3lmG4LguCZnc9nvvPameiXwXOBOairXBJIXeVSnJwPzAqCYDVR sJ4aC6o8hxH9oD41tu55wHWx9/4K9AZOI+qCzQVGA7iuWwl4j6i12Jao6/ckopbt7uzut+W8ZWcC 3xAFy5mxZW8A24hCqhdwJFG38u4cTxRkc3b3ZhAEc4FNQJs9fH7n+l4kOi/tgYZEXdDDXdfNPxbg OmAC0Xl5A3g89v6/AR8YS9RVnd+rwIWxfdWMrbt9367rVgXeJToXJwBXAkNc170k1iU9AVgINCY6 L+uJghN2fw7zexS4DPgzUTgvBybHfkHa0zE9ttMxbxer56lYjetRV7kkmIJbigXXdSsCPYDXYove JGoZX5Jvta3AeUEQLAuCYCJwJ9E1YoB6RIH3dRAEXwLXABfHBlhdQPR/6aIgCD4OgmBmbLt993A9 eY9d4UEQ/EoU0uuCIFjjum57IBu4MLbthUSB18113Ya72cRhsb/X7WkfRK3Xw/byfv76xgJ/CoJg eRAEXwB3AyWArHzr5ARB8FTsvNwUe79pEAS/AxuBP4Ig+Gmn4/yDqDufIAh+2s2gvXOAzcAVQWQi UdCuB8oAQ4EhQRB8GQTBEmA40Xna5Rzm32js++Ay4G9BEEwMgiCIbfdr4C/7OqY9nK9/A+8GQTBl D++LFCgFtxQX/Yh++L4BEATBL0TdoRfnW+fbIAi+y/f6A+CI2Ajt4UA5omvFM4E/AR8FQWCJWqKL gyDYnO+z84mCp9FB1n0sUBb41XXdda7rrgMCol86jtnN+r/E/t7bddaKxEIzDsOBE13XHea67jvA R0QtyrR863ya90UQBHm/MGTEuf09aQgsCYJga75tjwyCYEzsevUIYKDruiNi1+5fIL6fZ1mx9ebm 264ldvkg33pxHZPrup2IekGuiS062PEJIvukwWlSXJwf+3uF67p5ywxgXNftGHu9bafP5AXBliAI Atd16wNdge7AIOAvruu2ImqJ745hx4CD3Xej7u3/YTrwJdCJXUPhh92sv4Co56Bl7HM7cF33eKJf BObvoZ70fOsaYCKQSdS1PZWoWznY6TOb2dXBBtjmPW3Ddd3DgXnAJ8DbsdqqAS/Fsd1Ne9iuw47/ VvEe03mxfX8b+75yYustd133rrxr8iIFSS1uOeS5rluH6JrzLUTdnXl/jifqer0stmqt2PXqPG2A lUEQbHRd9wKgXxAE44IgGEh0a1X12HY/Bo7b6faylkQh+PFO5eQFQvl8y3buTs8fph8TBef6IAi+ iHVXbyMaKLfL/c6xbmIfuCU2CAvXddu6rrvEdd1ewB3AB7Eu97x6dq4lb//NgA5A9yAIbg+C4E2i keAQfzAf6PXeXCA7NiiQ2HH8y3XdUUQDwLYEQdA5CIIHY13UtePc72fAFna9xt+aqDdhf11H1DuQ 9z11Vmzf3YEnDmB7IvukFrcUBxcQXWsdtvNIbNd1XwD6E7VA04GRruteTxRgNxBNYgJQAbjddd1f iH7A9yIKr4XAKuBfwH9d170dqAo8DkwOguCT2KCnvKD7geh66rWu6w4h+mF/yU71rgcaxgZDTY7t b5Trun8n6iJ/lKjb/ss9HO/fiC4D5LiuexvwOTAL+B9RqOQPrfnARbFu8FJEwZ4Xet8Tu+7vuu7L RL+sPBx7f+d74PdkPdDIdd26QRCsjPMzAC8TTcjyuOu6DwANYsc1mOiXjRqu6/YElhENnPsnRLf8 xS5ZbD+H+a+vx34JewR40HXd34lG0A8G6hLdg71fgiD4mWjUObH9lyb6t/5q5+vrIgVFLW4pDs4D Xt3d7VNEIViCaET4R0RBNoPo2u6/gyB4GiB2u9SjseWfEI0gPjsIgs+DINhINBq9IlEX7mii2dnO yrcfG9uOJQrqhkTdzoOJfkHI72GiXzbeia1/GtG166mxP6uAHrH3dhG7ft86VsOjROHWi+j2tteB V2Otb4gC71uiUejPE/VKhLHtrIod5xVELf//AI8BS4h6K/Ykf13PE91ytTx2a1lcYteVuxNdx18c 2+9tQRC8SNSj8DTR7WQfxurrH9tvXl3bz+FuarqB6LbA54jGMTQETo31Zuy87u6OaV80qlwSKuH3 cXue1wq41/f99p7nVSP6D1eJ6HrSRb7vr0hoASKyg9i0nFuCIMhJdi0isv8S2uL2PO8fREGd1612 H/CS7/unAjez+1GxIpJAQRBMUmiLpK5Ed5V/xo7zFLcFanmeN5mo+3JagvcvIiJySElocPu+/wbR 4JY89YDVvu93JhqgMySR+xcRETnUFPao8l+IZmIi9vedcXxGAz1ERKQ42u1tl4Ud3DOJpp18GTiF aFTtPq1atSqRNRU5mZmZxe6Yd6ZzoHNQ3I8fdA6g+J6DzMzMPb5X2MH9d2CE53l/Bn4jus4tIiIi cUp4cPu+v5LYhA++739FdL+riIiIHABNwCIiIpJCFNwiIiIpRMEtIiKSQhTcIiIiKUTBLSIikkL0 WE8REUkJixcv5vbbb6devXoA/P7772RmZnLTTTeRlrb90e1Yaxk+fDgrVqxg8+bNlC5dmsGDB3P4 4Yfvcx+bN2/mrrvuYs2aNZQpU4YhQ4ZQsWLFHdYZOXIkU6dOpWzZsvTr14/WrVszcuRI5s2bhzGG devW8euvvzJmzBgAtm3bxh133EHPnj1p0aLFQZ8HtbhFRCRlNGvWjAcffJAHH3yQJ598krS0NGbN mrXDOvPmzeOXX37h/vvv5+GHH6Z37948/vjjcW3/rbfe4sgjj+Thhx+mc+fOvPjiizu8v2LFCqZO ncrw4cO57777eO6559i8eTPnnnsuDz30EA8++CDVqlXjhhuip/WuWrWKv/3tbwRBUDAnALW4RUQk RW3ZsoXVq1dTvnz5HZZXqlSJ3NxccnJyaN68OW3btuXEE08EYPr06bz00ktUqlSJsmXL0rp1a7p2 7br9s0uXLuXcc88FoFWrVrsE98qVKznuuONIT4/is1atWnz++ec0bNgQgBkzZlC+fHmOPz56NPym TZv4xz/+wciRIwvsuBXcIiKy38LRz2E/mLXvFfeDOb4tTt9L97rOokWLuOaaa1i9ejWO49C7d2+a NWu2wzqu63LttdcyduxYHnnkEapXr85VV11Fo0aNGD58OCNGjKBs2bIMGbLrc642bNhA2bJlAShT pgwbNmzY4f0jjzySV155hY0bN7J582aWL19O7969t78/cuRIbr755h3WL2gKbhERSRnNmjXj5ptv Zu3atfzjH/+gZs2au6zzxRdfULt27e0BumDBAm699VaeeeYZKlSoQLly5QBo2rTpLp8tU6YMGzdu BKIQz1s3T506dTjjjDO4/vrrqV69Og0bNtx+DXzlypWUK1dur/OMFwQFt4iI7Den76Wwj9ZxIlWo UIEbb7yRq6++mhEjRlClSpXt733wwQesXLmSa6+9FmMMdevWpXTp0lSuXJlNmzaxZs0aKlWqRBAE tGnTZoftZmdnM3fuXFzX5f3336dx48Y7vP/bb7+xYcMGhg0bxu+//851111H/fr1t++3VatWCT92 BbeIiKSkunXrctZZZ/HII49wyy23bF9+5pln8sQTT9C/f3/KlSuHMYZ//vOfAFx99dXceOONlC1b lj/++GOXbZ5++uncc889DBo0iIyMDG666SYARo8eTa1atWjdujVfffUVf/7zn8nIyGDAgAEYEz19 85tvvtl+bTuRjLVF/nHXtrg90q24PsYuP50DnYPifvygcwCJPQdPP/00derU2WFwWlER627f7fO4 dTuYiIhIClFXuYiIFEtXXHFFsks4IGpxi4iIpBAFt4iISApRcIuIiKQQBbeIiCSEtbBhwza2bi3y dy+lFAW3iIgUqG3bLMuXr+Wuuz7ktNMmcd55OUycuIqff95c4Pt64403DnobAwcO5Icfftjvz331 1VdcffXVB73//aVR5SIiUqBmzPiRiy+eyrZt/9/SnjXrezp3rsV997WievWSBbavl156iT59+hTY 9vZX3uQrhUnBLSIiBeabbzYyYMCMHUI7z+TJ3zB7dn3OOKP2AW77G4YOHUp6ejphGNK8eXPWrVvH ww8/zBVXXMH999/P77//zi+//MLpp5/OaaedxtVXX02DBg1YsWIFGzZs4NZbb6V69eqMGDGCBQsW UK1aNdauXQvATz/9xH/+8x82b97M6tWrueyyy2jbti2XXXYZtWrVIiMjg4EDB3LnnXcCULly5e21 jRgxgsWLFxOGIaeccgrnnHPOAR1jPBTcIiJSYHJzf2P9+i17fP+RR5bSqVMm5cql7fe2FyxYQMOG DfnTn/7E0qVLqVixImPHjmXw4MF8+umndOzYkZNOOolffvmFq6++mtNOOw2Ahg0bMnDgQJ555hne ffddmjdvztKlS3niiSfYsGEDF154IRB1fXueR9OmTVm+fDnPP/88bdu2ZePGjVx88cUcddRRDBs2 jI4dO9KzZ09ycnIYO3YsAFOnTuWhhx6iSpUqTJw48QDOXPwU3CIiUmDWrdtzaAP88MNGNm3adkDB 3aNHD0aOHMl1111HuXLluPzyy7e/V7lyZcaMGcOMGTMoU6YMW7du3f5egwYNAKhWrRq//vor33zz Da7rAtHTwPIeElK1alVefPFFJkyYAMC2bdu2b6N27aiX4Ouvv6ZXr15A9ECSvOC+8cYbeeqpp/j1 119p2bLlfh/b/tDgNBERKTDVq5fe6/tNmlSlXLkDazPOmjWLJk2a8MADD9CuXTtGjhxJ3vM2fN+n UaNG3HjjjZx66qnkfw7Hzteh69atyyeffALAxo0bWblyJQDPPvssXbt25YYbbqBZs2a73Ua9evVY tmwZwPZtbN26lenTp3PzzTfz4IMP8s477/Djjz8e0DHGQy1uEREpMFlZFahbtxwrV67f7ftXXdWI UqUOrM3oui733nsvL774Itba7aPB7777bnr06MGwYcPIycmhbNmypKens2XLlt0OHmvQoAEtW7Zk wIABVK1adfu16lNPPZXhw4fzyiuvcNhhh22/9p1/GxdccAF33XUX06ZN2/4s8PT0dMqXL89VV11F qVKlaNGiBdWrVz+gY4yHng5WBOmJQDoHoHNQ3I8fUvccBME6zj//Xb77bsP2ZcbALbecwPnnH0WZ MvF3k6fqOThYe3s6mFrcIiJSoFy3POPGdefjj9fwySe/UrlyKY47ripHHlmWEiV0hfZgKbhFRKTA 1axZkpo1a9C+fY1kl3LI0a8+IiIiKUTBLSIikkIU3CIiIilEwS0iIglhrCV9wwacfJOhyMFTcIuI SIEy27ZRZvlyKt11F1VPO42q551HuYkTKfHzzwe13c2bNzN+/Pj9+sySJUtYsWLFQe23qFFwi4hI gSo7YwYVu3en9PDhpH38MRmzZlHhssuo8Pe/U+IgZhRbvXr19ulI4/X222/z008/HfA+iyLdDiYi IgWm5DffUH7AAEy+eb7zlJg8mZKzZ7P5jDMOaNsvvfQSK1eu5IUXXmDFihXbZzb761//Sv369Rk6 dCirVq1i8+bNnHnmmdStW5d58+bx6aefUr9+fapVq3ZQx1ZUKLhFRKTAZOTmYtbvfrpTgNKPPMLG Tp3YWq7cfm/7ggsuYMWKFWzevJnmzZtz2mmn8e233zJ06FCGDh3K0qVLeeyxxwD44IMPyMrKomXL lnTo0OGQCW1QcIuISAEy69bt9X3nhx9wNm2CAwjuPF988QULFy5k2rRpWGtZt24dpUuXZuDAgTzw wANs2LCBTp06HfD2izoFt4iIFJhwHw/X2NqkCdsOMLQdxyEMQ+rUqUPnzp3p0KEDa9asYcKECaxe vZrc3Fxuv/12Nm/ezDnnnEOXLl0wxhCG4QHtr6hScIuISIHZkpXF1rp1SY89KnNnm666im2lSh3Q titVqsS2bdvYsGED06ZNY+zYsWzYsIFLLrmEKlWqsHr1av7yl7+QlpZGv379cByHhg0b8vTTT3P4 4YdTp06dgzm0IkNPByuCiuvTcPLTOdA5KO7HD6l7DkoHARXPPx/nu++2L7PGsOGWW1h//vlsK1Mm 7m2l6jk4WHo6mIiIFJqNrsu2ceMo8fHHpH3yCbZyZbYcdxx/HHkkYYkSyS4v5Sm4RUSkwG2uWZPN NWtC+/bJLuWQowlYREREUoiCW0REJIUouEVERFKIgltERCSFJHxwmud5rYB7fd9v73neccA4IDf2 9nDf90cnugYREZFDRUKD2/O8fwAXAnkT1x4PPOD7/kOJ3K+IiMihKtEt7s+APsCLsdfHA1me550B fAoM9n3/9wTXICIicshI6DVu3/ffALbmW/Q+8A/f99sBXwC3JnL/IiIih5rCHpz2pu/7i2JfvwEc V8j7FxERSWmFPXPaRM/z/uL7/gKgI/BBPB+KzdlarBTHY96ZzoHOQXE/ftA5AJ2DnRV2cP8ZeMTz vM3A98CV8XyouE0wX1wn1c9P50DnoLgfP+gcQPE9B3v7ZSXhwe37/kqgTezrRcBJid6niIjIoUoT sIiIiKQQBbeIiEgKUXCLiIikEAW3iIhIClFwi4iIpBAFt4iISApRcIuIiKQQBbeIiEgKUXCLiIik EAW3iIhIClFwi4iIpBAFt4iISApRcIuIiKQQBbeIiEgKUXCLiIikEAW3iIhIClFwi4iIpBAFt4iI SApJieAOp7+D3bJlt+8ZYwq5GhERkeRJT3YB8bAvPY4d72O6nok5uTOOcSiVm0uJqVNJX7aMrdnZ bO7QgU1ZWdiMjGSXKyIikjApEdymyxnYaW9jX30KO8GnRGYDKgwbQdrWbQCUHDeOMkOHsn7YMNb3 7q3wFhGRQ1ZKdJU7fS/DuXcEpvvZsGkjmz5ZwPftGrH2qJqE6dEhGGspN2gQpXJzk1ytiIhI4qRE cAOY8hVxzryISg1aU+HTVVjH8Jt7BN+d2pjfGhxOmJ6GsZYSOTnJLlVERCRhUqKrPI8xhhKfBJT8 9DvKr/iB9XWrs65eddZmZbKufg3KrfyRkks/xBiDtTbZ5YqIiBS4lGlxA1hr2ZqdDYCzNaTC599z +LRlVPz4a0wYsq7B4fzMT2zzn8H+9muSqxURESl4KRXcAJs7dMDmuwXM2RZSYcWPHJ6zlEoffY0p Uw476U3CG64gHPkUdvXPSaxWRESkYKVccG/KymL9sGE7hDeAscDf/4Vz11OYC66CCpWwU8cR3ngl 4YuPYX/6PjkFi4iIFKCUusYNYDMyWN+7N1tdlxI5Of9/H3f79mzKyoKMDJx23bBtO2Hfn46dMBo7 YyL2vcmYE9tjevTF1MhM9mGIiIgckJQLbojCe2OjRmxs1GiPA9FMejqmbUfsiadiF7yHHe9jZ7+L nZODaXEypmdfTGadJFQvIiJy4FIyuPPb1+hxk5aGadUO2+JkWDSHcJyPnTcdO38GNG+N07Mfpnb9 QqpWRETk4KR8cMfLOA4c3xaneRtYMp9w3Cj4YDbhB7OhacsowOsfnewyRURE9qrYBHceY0wU1E1a wPJFhONHwYfzCD+cB42a4fTqh2lwbLLLFBER2a1iF9x5jDGQ3RynUTMIlkYt8OWLCJcvArcxTq9+ 4DbW08dERKRIKbbBnccYA8c0Ie2YJtjPPvr/AA+WQoOGOD37QaNmCnARESkSin1w52caHEva327D rsglHO9HXegP3wr1jo5a4E1aKMBFRCSpFNy7YepnkfaXm7BffUE4wYeFcwgfvRNq1cfp5UGz1tFg NxERkUKm4N4LU+dI0gYMwa76Cjt+NHb+TMInhsLhtTE9PUyLkzBOWrLLFBGRYkTNxjiYzDo4V1yL c8fjmDYd4YdvsSMeILx5IOGsd7Fbtya7RBERKSYU3PvB1MjEuXQwzp1PYE7pCr/8iH3+YcKbBhBO fwe7ZUuySxQRkUOcgvsAmGo1cS4ciHP3U5gOvWDtGuxLjxP+80+E747Dbv4j2SWKiMghSsF9EEyV w3DOvRLnnqcxXc6A39dhX30qeiLZpDewf2xKdokiInKIUXAXAFOxMk7fy3DuHYHpfjb8sQk7+jnC If0JJ4zGbtyQ7BJFROQQoeAuQKZ8RZwzL8K59xlM73Mh3IZ940XCIZcT/u8V7O/rk12iiIikOAV3 Apiy5XBOOzcK8D4XgpOGHftqFOCv/xe77rdklygiIilKwZ1ApnQZnB59oy70vpdCiZLYt8dEXeij n8WuWZ3sEkVEJMVoApZCYEqWwnTpgz21B3bmZOw7r2EnvYmdOh5zchdMtzMxVaolu0wREUkBCu5C ZEqUxHTshT2lK3bOu9gJY7A547EzJmLadsR0OwtTrWayyxQRkSJMwZ0EJiMDc0o3bJtO2PenYyeM xs6YiH1vMubE9my5ZCAY/dOIiMiuEn6N2/O8Vp7n5ey07DzP82Ynet9FnUlPx2nbEeeOxzD9r4Ua R2Bnv8v3A84mfPoB7Kqvkl2iiIgUMQlt1nme9w/gQmB9vmXNgMsSud9UY5w0TKt22BYnw6I5pE18 gy3zpmPnz4BmrXF6epg6Rya7TBERKQIS3eL+DOiT98LzvKrAncDgBO83JRnHwRzflhqPvIzzl5ug bgNYOJvwjr+x7dE7sSs+TXaJIiKSZAltcfu+/4bneXUBPM9zgBHANcAfgEnkvlOZMQbTtCVOkxaw fBHh+FHw4TzCD+dBo2Y4vfphGhyb7DJFRCQJCnMEVHOgATAcKA009DzvQd/3rynEGlKKMQaym+M0 agbBUsJxo6IgX74I3MY4vfqB2zhaT0REigVjrU3oDmIt7ld932+907KRvu+3iWMTiS2wiAvDkDAM cRwHx3H446PFrH31WTZ9EI3tK3FsUyr0u5xSx7cuEgGeV2+evLpFRGS/7faHemG1uA8qfFetWlVQ daSEzMxMVq78ltzcdUyd+i3Llq0mO7sKHTocQVZWNTIGDMFZ8Snh+FFs/nAeP98yCOodjdPTg6Yt kxLgW7ZYcnPXsXjxz5Qpk0Fu7ho++2wtTZrk1V2ejIz468rMzCx2/+47K+7noLgfP+gcQPE9B5mZ mXt8L+Et7gJgi9s/WqVKVXn22UUMGvQe+f95jIFhw06id+/a20PQfr0iuga+cA5YC7Xq4/TyoFlr TCG1dLdssYwd+zVPPvkRvXrVZejQRfuse1+K63/W/Ir7OSjuxw86B1B8z0EsuHf7A1N9mEXQggXf 7hLaEOXyoEHvkZu7bvsyU7s+aQOG4Nz6CKZlO/h2JeETQwlv/Svh3GnYbdsSXm9u7joGDXqPvn2P 2iW091S3iIgcGAV3ETRx4spdwi+PtZCT8+0uy01mHZwrrsW543FM247w4yrsMw8S/usqwllTsFu3 JqzeqVO/5fDDy/DVV+v3u24REdk/Cu4ixhjDkiU/73WdZct+3e11bGMMTs0jcC4ZjHPnE5hTusEv P2GfH0Z40wDC6e9gt2zZYf2CqHfZstXUrBkF94HULSIi8dOE2EWMtZYmTQ5j3LiVe1wnO7syeWMT tmyxBMFaJk/+luXLV1O/fnlatKhO3brlOPKcP5Pe08NOfB07cxL2pccJx43ix+N68ubPWXz40bp8 g972b/BY/nqzs6uwcOFPNGu29yec5a9bREQOzD5b3J7nNS+MQuT/de1alz01TI2B9u2PAKLQ/t// vqZbt/H8+9+Lefvtr3j88eVcdlkOkyZ9w7Rp37O1fFWcc6/EuedpbKcz2LZuHTWm/Zc+H9xJ5vKJ DLt/Hl27jmPs2K/ZsuXAQrVDhyP47rsN1KlTLq66RUTkwMXTVf5ywquQHZxwwhEMG3bSLiFoDDzy yMlkZZUHokFhgwfvfhDb0KGL+PLL9dsHhJmKlQmyz+aEiT155LNjKe1s5aaGi5ndfixXHbmcG6/J OeDBY1lZ5Rk27CRGj/6c669vts+6RUTkwMXTVb7E87zzgPfI97AQ3/dXJ6yqYq5MmZL07l0b1+1F Ts63LFtRZVXSAAAgAElEQVT2K9nZlWnffscu7alTv93rYLCvv17P/PmGRo0qbF9/9eaS3J/bhKe+ OIZL6+Vyef2A692lDDjyE3JH/oa94TJM2XL7VW9GhonVW4kPP/yZRx45mU8//Y3PP//toLviRURk R/EE9+lA352WWSCt4MuRPBkZUeA2alQBY8wu14bzBoXtzddfr6ds2fTtA8Lyr//b1hL857NsRnzp cnHdT+lfL6DFD1MIh8zCtO+B6XwGpnzFg6p3d3WLiMjB2Wdw+75fqjAKkT3bXfjlDQrb2yC22rXL UaNG6e2f393667dm8Njnx/Lsl1k8d8lG2vw+C/v2a9h3x2HadcN06YOpVOWA6lVoi4gUvH0Gd+yp XtcA2cBfgb8A9/m+n/iZPWSvOnQ4YrcTnkB0Xbl27XK0aFE9rvU3helU6XcuztGXYN+bjH3ndezk t7A5EzAnd8F0OxNTZe+jxkVEJPHiGZx2P9AEaBVbvxvwUCKLkvhkZZXn4Yd3P4htyJDm1KtXfocB YXmDyPY2eMyUKInToRfOXU9iLrwKKlbG5ownvPFPhC8+hv3p+0I4MhER2ZN4rnF3JHok5we+7//m eV4XYHFiy5J4ZGQYTjutNq7bkylTovu469WrwAknVKNevXIceWS5HQaE/f8gsr0PegMwGRmYU7ph 23TCvj8dO2E0dsZE7HuTMSe2x3Q/G1NTt3eJiBS2eIJ7i+/7oed5APi+/4fneYmbP1P2S0aGITu7 ItnZFbcPQtvbteV9DXrbmUlPx7TtiG19Knb+e9jxPnb2u9g5OZgWJ2F6eJgj6hToMYmIyJ7FE9zL PM8bCKR5nucSXe9Wi7sI2t/BYPuzvnHSMK3aYVucDIvmEo4bhZ03AztvBjRvg9PTw9Q5cn9LFhGR /RRPcA8muqZdA5gFTAQGJbIoKbqM48DxbXCat4Yl8wnHjYKFswkXzoamLaMAr5+V7DJFRA5Z8dwO tha4vBBqkRRijImCukkLWL4oeib4h/MIP5wHxzbD6dUPc/SxyS5TROSQE8/tYNWBh4HOwBZgAnCt 7/trElybpABjDGQ3x2nUDHKXRS3wjxYRfrQI3MY4PT04pomeCiYiUkDi6Sp/GlgGtCS6HWwA8CTQ L4F1SYoxxoDbmDS3Mfazj6MW+LKFhMFSOOoYnF79oFFzBbiIyEGKJ7jr+b5/er7Xf/c8b2miCpLU Zxo0JG3wrdgVn/5/F/rDt0HdBlGAN22pABcROUDxTMCyyvO8+nkvPM+rBXyXuJLkUGHqH03aX27C +dfDcHwb+OpzwsfuIrx9MHbBe9gwTHaJIiIpZ48tbs/zxhI9TKQasNjzvCnANqA9sKRwypNDgald n7QBQ7Crvoomcpk3k/DJ++Dw2pgefTEtTsak6Zk1IiLx2FtX+Zg9LB+fiELk0Gcy62D6X4vtfS72 7dHYudOwzzyIHTsyCvBWp2LS47l6IyJSfO3xp6Tv+y/kf+15XpnElyPFgamRiblkMLbXOdGTyGZP wT4/DDv2VUy3szBtOyW7RBGRIiue28GuBu4CSsYWGfQ8bikA5rAamAuvwvb0sBNfx86chH15OHa8 z7p+l2KbtMKUKLnvDYmIFCPx9EteA5wIfJ7gWqSYMlUOw5x7JbZHX+ykN7HTJrDmyX9DhUrR88Db dcOUKp3sMkVEioR4gvtT3/c1GE0SzlSsjOl7KbbbWZSd+y7r/vcqdsxz2HfGYDqdjmnfE1OmbLLL FBFJqniC+1HP80YBk4hmTgPA9/3/JqwqKdZM+QpUunggv7fpjH13LPbd/2HffAk76Q1Mh96YTr0x Zcvve0MiIoegeIJ7INEDRvIPTrOAglsSypQthzntXGzn07HTJkTd6ONexU55C9O+B6bzGZjyFZNd pohIoYonuOv4vn90wisR2QNTugym+9nYDr2w09/BTnojGo3+7rjo+neXPphKVZJdpohIoYhn5rQv Pc/LTHglIvtgSpbC6XIGzt1PYc69EsqWx05+i/CGKwhfeRK7+qdklygiknDxtLg3Ass8z5sP/JG3 0Pf90xJWlchemBIlMR16YU/uip3zLnbCGGzOeOyMiZg2HTDdz8ZUq5nsMkVEEiKe4H4t9kekSDEZ GZhTumHbdMLOm44dPzq6F3zWlGgWth59MTWPSHaZIiIFap/BvfMMaiJFjUlPx7TpiD3xVOz897Dj feycqdi50zAtTsL08DBH1El2mSIiBSKemdPWEY0i34Hv+xUSUpHIATJOGqZVO2yLk2HRXMLxo7Dz ZmDnzYDmrXF6epg6RyW7TBGRgxJPV3l2vq9LAGcSPSVMpEgyjgPHt8Fp3hqWLIieCb5wDuHCOdCk BU6vfpj6WckuU0TkgMTTVb5yp0VDPc97H/h3YkoSKRjGGGjaAqfJCfDRYsJxo2DJfMIl8+HYZlGA H31ssssUEdkv+/0MRc/zjiGakEUkJRhjoFEznGOPg9xlUYB/tIjwo0XgNsbp6cExTaL1RESKuP29 xm2IusuvS2RRIolgjAG3MWluY+xnH0dd6MsWEgZL4ahjcHr2g+zmCnARKdL29xq3Bdb4vr82QfWI FArToCFpg2/FrviUcIIPi98nHHYb1G2A08uDpq0U4CJSJO0xuD3Py7t/ZucR5ZU8z6vk+/5XiStL pHCY+keTNvCf2K9XRLeRLZxN+NjdUKte1IXevE002E1EpIjYW4t7OVFo5292WKA00VSpaQmsS6RQ mdr1MQOux676CjthNHbeTMIn74PDa2N6nI1pcQomTd/yIpJ8ewxu3/d3eG6i53kGuBH4e+yPyCHH ZNbB9L8W2/tc7NujsXOnYZ95CDv21Wgq1RPbY9L3e0yniEiBiasP0PO8I4CpQB+gle/7zyS0KpEk MzUycS4ZjHPnE5hTusHqn7AvPEJ40wDCaW9jt2zZ90ZERBJgn8Hted6ZwIfAB0Br3/dzE16VSBFh DquBc+FVOHc9henYG9auwb48nPDGKwnfHYvd/Me+NyIiUoD2NjitNPAw0BM4x/f9KYVWlUgRY6oc hjnnCmz3s7GT3sROfxv76tPYCaOj54G364YpVTrZZYpIMbC3i3ULgbpE4d3E87wm+d/0ff/BRBYm UhSZipUxfS/FdjsLO+Ut7NRx2DHPYd8Zg+l0OqZ9T0yZsskuU0QOYXsL7veBuUDN2J/8dnnoiEhx YspXwPS5ENulD/bdsdh3/4d98yXspDcwHXpjOvXGlC2/7w2JiOynvY0qv6QQ6xBJSaZsOcxp52I7 n46dNiHqRh/3KnbyW5gOPTCdz8CUr5jsMkXkEJLw+1o8z2sF3Ov7fnvP844Fnoy99SnQ3/f9MNE1 iCSaKV0G0/1sbIde2OnvYCe9gX37Ney746Lr3136YCpVSXaZInIISOiUUJ7n/QN4GigZW3QXMMT3 /ZOJJnbpncj9ixQ2U7IUTpczcO5+CnPulVC2PHbyW4Q3XEH4yhPY1T8lu0QRSXGJbnF/RnTv94ux 12f6vm89zytBdN38twTvXyQpTImSmA69sCd3xc6Zin17DDZnAnbGJEybDtFkLtV2HjoiIrJv8dzH vdDzvP6e55XZ3437vv8GsDXfaxubA30ZUJXo/nCRQ5bJyMA5pSvOHcMxlw6Gw2pgZ06KJnJ59j/Y 779JdokikmKMtXsfIO55XhvgT0AX4DVguO/7y+Pdged5dYGRvu+32Wn55cDJcQyC0wh2OWTYbdvY MHMya0c9y9avvgDHocxJnSjf7zJK1GuQ7PJEpGjZ7SMK99lV7vv+bGC253mVgPOA/3metwoY5vv+ 6P2pwPO8t4Brfd//DFgHbIvnc6tWrdqf3aS8zMzMYnfMOzukz0FWE+w/H8RZNJdw/Cg2zJjEhhmT oHlrnJ4eps5RwCF+DuJQ3I8fdA6g+J6DzMzMPb4X1zXuWGhfCFxOdF3aBy7yPK+37/sX7Uct9wLP e573B7AB6L8fnxU5ZBjHgePb4DRvDUsWEI4fBQvnEC6cA01a4PTqB3v5jysixdc+g9vzvJeBHsA4 4M++78+JLR8O/Livz/u+vxJoE/t6DnDSwRQscigxxkDTFjhNToCPFhOOGwVL5hMumc9PzU/EdjoD c/SxyS5TRIqQeFrcy4G/+b6/w30svu9v9TyvbWLKEilejDHQqBnOscdB7jLCcaPYtHAuLJwLWdlR C/yYJtF6IlKs7XNwGoDneT2ArkTXpMf6vp+T6MLyscXt+kZxvaaTn84BVF3zEz++8Dgs+yBacNQx OD37QXbzYhHg+h7QOYDiew5i17h3+x89ntvBbgEeILq2vQF40vO8QQVZoIjsquSxTUkbfAvOPx+A 41rB558QDruN8K5rsYvnYkNNOihSHMXTVX4hcLzv+78BeJ73ADAbGJbIwkQkYuodTdrAf2K/XoEd 72MXziZ87G6oVQ/Tw8Mc3xrjpCW7TBEpJPEE9y9Et27lWQOsT0w5IrInpnZ9zIDrsau+wk4YjZ03 E/vUfdiatTA9+2JanIJJU4CLHOriCe4FwFue5z1JNAvaBcBXnuedCeD7/usJrE9EdmIy62D6X4vt fW40lercHOwzD2HHvhpNpXpie0x6wp8fJCJJEs//7rx7Ua7daflfiWY1U3CLJIGpkYm5ZBC2Vz/s O69hZ03BvvAIdtwoTLezMG07YTIykl2miBSweGZOaw/geV46YHzf35LwqkQkbuawGpgLrsL28KLH ic6YiH15OHb8KEzXMzEnd8WULLnvDYlISohnVHl1z/PeBn4HNnmeN9XzPE3pJFLEmCqH4ZxzBc49 T2O69IGNG7CjRhDe0J9w4uvYTRuTXaKIFIB4nsf9KDAXqAFUB2YCwxNZlIgcOFOxMk7fS3HuGYHp 0Re2bMaOeT4K8PE+dsPvyS5RRA5CPNe4s3zf9/K9vsXzvLifDiYiyWHKV8D0uRDbpQ926jjslP9h 33wJO/ENTMfemE69MWXLJ7tMEdlP8bS4MzzPK5X3IvZcbj1qUyRFmLLlcHqfg3PvCMyZF0FaGnbc q4TX9yd8/QXs2jXJLlFE9kM8Le5XgSme5z0Xe30pMCZxJYlIIpjSZTDdz8Z26IWd/k40kO3t17Dv jsWc0h3TtQ+mUpVklyki+7DPFrfv+3cAzwBdgG7A88BtiS1LRBLFlCyF0+WMaBDbeX+CchWwU94i vOEKwleewK7+ad8bEZGk2WuL2/O8DKCk7/vPAc95ntcY+MT3fXWVi6Q4k1EC074n9uQu2NlTo8lc ciZgZ0zCtOkQTeZSrWayyxSRneyxxe15Xi2iR3r2yrf4JmCpbgcTOXSY9AycU7ri3DEcc+lgOKwG duYkwpsGED77EPb7b5Jdoojks7eu8vuBZ33ffzVvge/7/YCXgPsSXZiIFC6Tno7TpiPO7Y9i+l8L NWth5+QQ/msg4VP3Y79dmewSRYS9d5Vn+75/7m6W3w0sS1A9IpJkxknDtGqHbXEyLJ5LOG4Udv5M 7PyZ0Lw1Tk8PU+eoZJcpUmztLbg3726h7/uh53mbElSPiBQRxnGgeRucZq1hyQLC8aNg4RzChXOg SYsowI90k12mSLGzt+Be63lefd/3V+Rf6HneUURPCRORYsAYA01b4DQ5AT5aTDhuFCyZT7hkPhx7 HE7PfpisRskuU6TY2FtwPwCM9TxvEDCb6Hr4icDDRN3lIlKMGGOgUTPSGjXDBssIx70aBflHiyEr G6dXPzimSbSeiCTMHoPb9/1xnudVAEYAdWOLc4Hbfd8fWRjFiUjRZNxs0tw7sZ99TDjeh2UfED64 DI46BqenB9nHK8BFEmSv93H7vv8K8IrneVWA0Pd9zY0oItuZBg1JG3wL9stPowBf/D7hsNuhboMo wJu2jK6Vi0iBiWfKU3zfX53oQkQkdZl6R5M28J/Yb1Zgx/nYhbMJH78bjqiL6dkPc3xrjJOW7DJF DglxBbeISDxMrfqYAddjv/saO2E09v0Z2Kfuw9ashenZF9PiFEyaAlzkYKgPS0QKnDm8Ns7l1+Dc +TimbSf46TvsMw8R3vxnwvcmY7duSXaJIilrny1uz/Pq7LTIAht83/8lMSWJyKHCVM/EXDII26sf 9p3XsLOmYF94BDv2VUz3szBtO2MyMpJdpkhKiafFPQtYASwBFgNfAqs8z/vW87w2CaxNRA4R5rAa OBdchXPXU5iOvWHdb9iXnyC88QrCKf/D/vFHsksUSRnxBPcU4FLf9yv5vl8F8Ige7dkLeCiBtYnI IcZUOQznnCuiR4p27QMbN2BHjSC8oT/hxNexmzYmu0SRIi+e4G7q+/5/8174vv8acLzv+4uAEgmr TEQOWaZiZZyzL8W5ZwSmhwdbt2DHPE84pH80N/qG35NdokiRFU9wp3uel533IvZ1mud5pQBdnBKR A2bKV8DpcwHOvSMwp50H1mLfeplwSH9+e/EJ7O/rkl2iSJETz+1gQ4BpnuctJwr6o4HzgNuANxJY m4gUE6ZMOUzvc7CdTsNOexs7+U3WvjoC3ngZ074HpvPpmAqVkl2mSJGwzxa37/sTgCyi69n3Ag19 358K3On7/s0Jrk9EihFTugxO97Nw7nmaSv2vhlKlsO+8Fl0DH/UMdo3mghKJ53YwB+gP9IitP8nz vLt931cflogkhClZivJ9zmdt87bY9yZHt5JNeQs7bQLmpM6YbmdhqlZLdpkiSRFPV/k9QFPgP0Qt 9CuB+4GrE1iXiAgmowSmfU/syV2ws6di3x6DnTYBO3MSpk0HTPezMdVqJrtMkUIVT3B3A07wfX8L gOd544EPUXCLSCEx6RmYU7pi23TEzpuOnTAGO3MSdtYUTKt2mB59MTVrJbtMkUIRz6hyJy+0AXzf /wPQfIUiUuhMejpOm444tz+KueLvULMWdk4O4b8GEj51P/bblckuUSTh4mlxL/Y87yHg0djrgUSz qImIJIVx0jAtT8GecBIsnks43sfOn4mdPxOanYjTqx+mzlHJLlMkIeIJ7oHAMGA2YICJwF8TWZSI SDyM40DzNjjNWsOSBYTjR8GiuYSL5kLjE6IAP9JNdpkiBWqfwe37/lrgkvzLPM9rBOi+DBEpEowx 0LQFTpMT4KPFhONGwdIFhEsXwLHH4fTsh8lqlOwyRQrEgT6Pew5QoSALERE5WMYYaNSMtEbNsMGy qAX+0WLCjxZDViOcnv2gYdNoPZEUdaDBre96ESnSjJtNmpuN/fyTqAW+7APC3H/BkS5Or36QfbwC XFLSgQa3LdAqREQSxBx1DGmDb8F++Snh+NHRYLZht0PdBjg9PWjaMrpWLpIiDjS4RURSiql3NGkD b8R+swI7fjT2g1mEj98NR9TF9OyHOb41xklLdpki+7TH4PY8bx27b1kboEzCKhIRSSBTqz7mT9dh v/saO2E09v0Z2Kfuw9asFU3k0vIUTJoCXIquvbW4s/fynohISjOH18Zcfg229znRTGxzc7DPPoQd OzKaSrV1e0y6nlwsRc8eg9v3fU1BJCKHPFM9E3PJIGyvftHDTGZNwf73Uey4UZjuZ2HadsJklEh2 mSLbaUSGiAhgDquBc8FVOHc/jenYG9b9hn35CcIbrySc8hb2jz+SXaIIUAiD0zzPawXc6/t+e8/z jiOahW0r8Adwke/7PyW6BhGReJnKVTHnXIHtcTZ20pvYaW9jRz2DnTAG0+UMzKndMaU0zEeSJ6Et bs/z/gE8DZSMLfoPMND3/Q7AG8CQRO5fRORAmQqVcc6+FOeeEZgeHmzdgn3tBcIhVxCOG4Xd8Huy S5RiKtFd5Z8BffK97uf7/tLY1+nAxgTvX0TkoJjyFXD6XIBz7wjMaeeBtdi3XiYc0p/wrZexv69L dolSzCQ0uH3ff4OoWzzv9Q8Anue1IXp4yUOJ3L+ISEExZcrh9D4nCvAzL4b0dOy4UYTX9yd87QXs 2jXJLlGKCWNtYidB8zyvLjDS9/02sdf9gBuA0+Mcua5Z2kSkyAk3beT3t19n7esvEq7+GVOyJGW7 nUmFsy4irWq1ZJcnh4bdzslbqDOneZ53AXAlcKrv+3H/erpq1arEFVUEZWZmFrtj3pnOgc5BShx/ q/bQvC3mvcnYd15j/VsjWT9+DOakzphuZ2EOMsBT4hwkWHE9B5mZmXt8r9CC2/M8B3gYWAm84Xme Bab7vn9bYdUgIlLQTEYJTPue2JO7YOfkYN8eg502ATtzEqZNhyjAqx+e7DLlEJLw4I51h7eJvaya 6P2JiCSDSc/AnNwF26Yj9v3p0XSqMydhZ03BtGyH6dkXU7NWssuUQ4AeMiIiUoBMWhqmTQfsie2w C2Zhx/vRdKrvT8OccBKmp4c5om6yy5QUpuAWEUkA46RhWp6CPeGk6FGi433s/JnY+TOh2Yk4Pfth 6h6V7DIlBSm4RUQSyDgONG+D06w1LF1AOG4ULJpLuGguND4Bp6eHOeqYZJcpKUTBLSJSCIwx0KQF TuMT4OPFUYAvXUC4dAE0bIrTqx8mSw9llH1TcIuIFCJjDBzbjLRjm2GDZYTjR8HHHxJ+/CFkNcLp 2Q8aNo3WE9kNBbeISJIYN5s0Nxv7+SeE4/2oBZ77LzjSxenVD3t472SXKEWQHuspIpJk5qhjSBv0 L5ybHoTjToQvAsJht/PD3y7CLpqLDcNklyhFiFrcIiJFhKnbgLSBN2K/WYEdP5otH8yCx++GI+pG t5Ed3wbjpCW7TEkyBbeISBFjatXH/Ok6qm39gx9eeAz7/gzsU/dja9bC9OiLaXkKJk0BXlypq1xE pIjKqFMf5/JrcO58HHNSZ/jpO+yzDxHe/GfCmZOwW7cku0RJAgW3iEgRZ6pn4lz8V5y7nsSc2h1+ /Rn730cJ/zmAMGcCdsvmZJcohUjBLSKSIkzV6jjn/xnn7qcxHXvDut+wrzxBeOOVhFPewv7xR7JL lEKg4BYRSTGmclWcc67AufdpTNc+sHEDdtQzhDf0J3znNeymDckuURJIwS0ikqJMhco4Z1+Kc88I TA8Ptm7BvvYC4ZArCMeNwm74PdklSgIouEVEUpwpXwGnzwU4947AnH4eWIt962XCIf0J33wJu35t skuUAqTgFhE5RJgy5XB6nYMzdATmzIshPR073o9a4GOex65dk+wSpQAouEVEDjGmVBmc7mfh3PM0 xrscSpXGTnw9ugY+agR2zS/JLlEOgiZgERE5RJmSpTCdT8ee2h373hTsO2OwU/6HnTYBc1JnTLez MFWrJ7tM2U8KbhGRQ4jjOIQ7zW1uMkpg2vfAntwZOycH+/YY7LS3sTMnYVp3wHQ/G1P98CRVvCtj DNbaZJdRZCm4RURS3MaNIUuXriEn51tyc9eQlVWJ9u2PoHHjSpQu/f9XRE16BubkLtg2HbHvT8dO GI19bzJ29ruYlu2i6VQPr5WUY9iyxZKbu46pU79l2bLVZGdXoUOHI6hUqWpS6inKTAr8VmNXrVqV 7BoKVWZmJsXtmHemc6BzUNyPH+I7Bxs3hrz22pcMGTKX/D/OjYF77z2Rs86qt0N452fDbdgFs7Dj fVj1FRiDOeGkKMBr1SvAI9m7LVssY8d+zaBB7+1yDI891o4ePTLJyChezyfPzMwE2O1Ba3CaiEgK W7p0zS6hDWAtDBkyl6VL9zyS3DhpOC1PwbllGM6fb4Da9bHzZxLeNohtj92NXfl5gquP5Oau2yW0 ITqGgQOnk5u7rlDqSBXqKhcRSWE5Od/uEnh5rIWcnFW0bFllr9swjgPNW+M0OxGWLiAcNwoWzyVc PBcan4DT08McdUwCqo9MnbqvY/iWRo0qJGz/qUbBLSKSohzHITd37/dm5+au2e2Atd0xxkCTFjiN T4CPF0cBvnQB4dIF0LApTq9+mKzsgip/+z6XLVu913WWLftVA9byUXCLiKSoMAzJyqrEO+98vcd1 srIqxRXa+Rlj4NhmpB3bDBssIxw/Cj7+kPDjDyGrEU7PftCwabTeQbLWkp1dhXHjVu5xnezsygrt fHSNW0QkhbVvfwR7yk9joH37zIPavnGzSbvmDpwh90HjEyB3OeFD/yK89zrskvkFEqgdOuzrGI44 6H0cShTcIiIprHHjStx774m7BJ8xMHRoaxo3rlQg+zFHHUPaoH/h3PQgHHcifBEQPnIH4Z3XYBfO we5nqz6/rKzyDBt20m6P4fHHTyUrq/xBVn9o0e1gRZBug9E5AJ2D4n78EP85yLuPe9q0VQRB3n3c mbvcx12Q7DcrsONHYz+YFY0gO6IupqeHOb4Nxknb7+3l3cedk/Mty5b9SnZ2Zdq3P4K2beuzphhO 0bq328F0jVtEJMWVLu3QsmUVWrasEvdAtINlatXH/Ok67HffRBO5zJuOfep+bM0jMN37Ylq1+7/2 7jzcquq84/h37csURFJDHpQrERIQGRUElUGQQawMFhR9cQxpFI1DTDWxFY1SH2v0aa3aBoMGB7SK 8koCVBBlENGrYgIRAinWYKLRaOJQolIUwbP6xz70uV4vcEHO2Xff+/s8j4/nnmGvdy/P8XfW3vus Raioe4A3bRro0aM1PXq0/syFaC1bNucvWhvlM3SoXESkASlHaFcX2rUnOfcykuunE44dCe/8iXjv bRSuuZDCM4uJ27ft8TZzcCQ4UwpuERH5wkLbdiSTvktyw52EoaNg07vE+6dRuPo7FJY/Rtz2SdYl NhgKbhER2WdCm7YkZ11I8qMZhBEnwYfvE2fdQWHK+RSWzidu3Zp1ibmn4BYRkX0uHNCG5PTJJDfN IPz1KfDxFuLsu9M1wR//GfHjLVmXmFsKbhERKZnQ+gCSU79FctNdhDEG27cRf3YfhSsnU1jwMHHL 5qxLzB0Ft4iIlFxo1Zpk/NlpgI87E4A4fxaFK8+jMO8B4uYPMq4wPxTcIiJSNqFlK5Kxp6eH0E+Z BE2aEhd6OgKfM5P4waasS6z3FNwiIlJ2oUVLklETSG6cQbBzocWXiE/8nMKUyRQenkHc1PgmXakr TTY61ygAAA44SURBVMAiIiKZCc1bEEaOIw4dRaxaSnx8DnHZo8QViwjHjmT7pIuyLrHeUXCLiEjm QtNmhGGjiYNHEp9fTlw0h/jUIt56ZjFhwHDCqFMJbdtlXWa9oOAWEZF6IzRpShh8AnHgCOILK6hY MpftVUuIzy0jHH0cYfRphHbtsy4zUwpuERGpd0JFBWHgcA46+Qz+uGAOcaETVy4nvvAUoe+gdEGT 9h2zLjMTCm4REam3QkUFyVGDiX0HwZoXKCycTVxVRVxVBb37k4w1QofOWZdZVgpuERGp90KSwJED SPr0h3WrKCyYDWtWUlizEnr1IxljhE5dsy6zLBTcIiKSGyEEOPwokl79YMOaNMDXraKwbhV0O4Jk zETCYT2zLrOkFNwiIpI7IQTo3oeK7n2IL69PA3zDWgob1sKh3UnGToRuvdPnNTAKbhERybXQpScV l/ckvvIShYWejsBvnQpf75IGeK9+DSrAFdwiItIghE5dqbj0WuJrG9MAf3ElhR9fD4d0Ihlj0PuY 9Fx5zim4RUSkQQkdOlNx0VXEN15Nf0a2+lkK02+EgzukvwPvN4iQVGRd5l4r+VcPMzvGzJbXuO8W Mzu/1G2LiEjjFdp3JLng70muu53Qfxi89Tpxxs0Upl5C4bkniZ9+mnWJe6WkI24zuwI4B9hc/Pur wP3AocBLpWxbREQEILRrTzj3MuJJp6dTqT7/JPHe24gLHk6nUh0wjNCkadZl1lmpR9wbgZOr/d0K mAr8R4nbFRER+YzQth3JpO+S3HAnYego2PQu8f5pFK6+gMLyx4jbPsm6xDopaXC7+1xge7W/X3X3 XwIN5/I+ERHJldCmLclZF6ZLih7/N7D5A+KsOyhMOZ/CkvnErVuzLnGXcnFxWmVlZdYllF1j3Oea 1Afqg8a+/6A+gBL2QWUldO/Fp9+6mA/nPsjmhY8Q/W7CEz+n1cln0WrMaSQt9ytN219AuYL7C42w 33zzzX1VRy5UVlY2un2uSX2gPmjs+w/qAyhjH5x4KuHYE2Dpf1J4cgHvz5zG+4/cRzj+JMLwsYSW rUpfQzW7+rJSrh+0xd38LSIikqnQqjXJ+LNJbrqLMO5MAOL8WRSuPI/C3AeImz/IuMJUiLHeZ2hs bN849S1bfQDqg8a+/6A+gGz7IH68hfjUIuLiefDh+9C8BWHoKMIJ4wmtDyhp28URd61Hq/M/hYyI iEgJhBYtSU6cQHLjXYSJ50KLlsQn5lKYMpnCwzOIm97LpK5cXJwmIiKSldC8OeH4ccTjRhGrlhIf n0Nc9ihxxSLCsSMJJ04gtGlbtnoU3CIiInUQmjYjDBtNHDyS+PzydDKXpxYRn1lMGDCcMGoCoW3p fwWg4BYREdkDoUlTwuATiANHEH/xNPExJ1YtIT67jHDMEMJoI7RrX7L2FdwiIiJ7IVRUEAYMIx4z hLj6uXRBk5VPEV9YQeg7iDDGCO077vN2FdwiIiJfQEgqCEcNJvYdBGteoLBwNnFVFXFVFfTuTzLW CB0677P2FNwiIiL7QEgSOHIASZ/+sG4VhQWzYc1KCmtWQs++JGMnEjp1/cLtKLhFRET2oRACHH4U Sa9+sGEthYWzYf1qCutXQ7cjSMZMJBzWc6+3r+AWEREpgRACdO9NRffexJfXpyPwDWspbFgLh3Yn GTsRuvVOn7cHFNwiIiIlFrr0pOLynsRXXqKw0NND6bdOha93IRkzEQ7vV+cAV3CLiIiUSejUlYpL ryW+tjEN8BdXUph2PRzyDZIxBr37p+fKd0HBLSIiUmahQ2cqLrqK+MarxMceIa6qojD9Jji4A2H0 aTD+9J2+VnOVi4iIZCS070hy/hUk191O6D8M3nqdOOPmXb5GI24REZGMhXbtCedeRjzpdOKKRbt8 roJbRESknght2xFO+/Yun6ND5SIiIjmi4BYREckRBbeIiEiOKLhFRERyRMEtIiKSIwpuERGRHFFw i4iI5IiCW0REJEcU3CIiIjmi4BYREckRBbeIiEiOKLhFRERyRMEtIiKSIwpuERGRHFFwi4iI5IiC W0REJEcU3CIiIjmi4BYREckRBbeIiEiOKLhFRERyRMEtIiKSIwpuERGRHFFwi4iI5IiCW0REJEcU 3CIiIjmi4BYREckRBbeIiEiOKLhFRERyRMEtIiKSIwpuERGRHFFwi4iI5IiCW0REJEealLoBMzsG uMndh5lZJ2AmUADWu/vFpW5fRESkISnpiNvMrgBmAM2Ld90CXOXuxwGJmY0rZfsiIiINTakPlW8E Tq72d193f6Z4exFwfInbFxERaVBKGtzuPhfYXu2uUO32h8CXS9m+iIhIQ1Pui9MK1W7vD/ylzO2L iIjkWskvTqvhV2Y2xN2fBkYBT9blRZWVlaWtqh5qjPtck/pAfdDY9x/UB6A+qKncwf0DYIaZNQU2 AHPq8Jqw+6eIiIg0DiHGmHUNIiIiUkeagEVERCRHFNwiIiI5ouAWERHJEQW3iIhIjpT7qnKpxsya APcAHYFmwA3u/mjxsVuAl9z9p9lVWHq19QHwB+DHpJP3bAW+6e7vZFVjqe2kDzYCO/7b/xY4z90L tW6gAdjNZ+FM4BJ3H5hdhaW3k/fB68AC4OXi06a7+yOZFFgGO+mDlaRTZ/8VUEH6/4PfZ1VjfaAR d7bOBt519yGkv2ufZmZtzOwx4KRsSyub6n1wIjANuA242N2HA3OBKzOsrxxq64MbgCvdfTDpTyIb +vvhc58FADPrA3w7y8LKqLY+OBL4V3cfXvynwYZ2UW198M/AA+4+FLgG6JpdefWDRtzZcmDHBzEB tgGtgKmkb9rGoHofVJD2wUR3f7t4XxPgoywKK6PP9YG7nwJgZs2Ag4D3M6qtXD73WTCzrwD/BHyP dMTV0NX2/4O+QFczG0965OV77v6/GdVXDjX7YDswEPi1mS0Bfk/6fmjUFNwZcvctAGa2P+mb9Wp3 fw14zcxGZ1pcmeykD94u3jcQuBgYkl2FpVdbHxT/PgRYSjo18NrMCiyDWvrgGuBu4HLS0yUNfiKm Wvrgh6QrK97l7i+a2VXAPwJXZFZkie3ks3A/8J67jzSza0iPwE3Nrsrs6VB5xszsa6RTv97n7rOz ricLtfWBmU0EfgKMdvf3sqyvHGrrA3f/g7t3Ae4Ebs2yvnKo3gek5/g7A9OBh4Buxes+GrQa74OH gXnu/mLx4blA78yKK5Na+uBd4NHiw4+SHoVo1DTizpCZHQg8QXo+d3nW9WShtj4ws7OB84Gh7t7g F6LZSR/MB77v7htJV9L7NMMSS24nn4Vexcc6AA+5++VZ1VcOO+mDJ8zsEndfBYwAVmdWYBnspA+q gNHAg6RH336TUXn1hoI7W1NIr5S8xsyuBSIwyt23Fm83BjX7oALoAbwGzDWzCKxw9+syrLHUansf XA3MNLOtwBbgvAzrK4ddfRYai9r64DLgNjP7BPgT6Rfahqy2PpgE3G1mF5Je63FmhvXVC5qrXERE JEd0jltERCRHFNwiIiI5ouAWERHJEQW3iIhIjii4RUREckTBLSIikiP6HbdImZlZAvwdcAbp79ab ka4Ada27f7IX27sXWOfudZpZzMxGADeT/ka2XbGGN4oP30g62UWdt7eHtR4HTHP3Xnv4ugLwVXf/ nxr3fx/o6e5/uw/LFKnXFNwi5XcH8GVguLt/aGZfAmaRLqQxqdSNu/syoA+AmU0F2rj7pTseL8M8 +XszecSuXqPJKKRRUXCLlJGZdSQdaR+0Y5Und//IzC4ABhZD/I/A0cXpTjGzxaTrkz9Z/Pcg0pWj 5rn7D2tsvxvpsqhfIR1J/7u7z9yLUgeZ2QTgQGA9cEaxzo+B+cDhwFmks7r9W832zGw/4F7S+cYL wGp3v6C47f3N7CHS5RmbA5Pd/Vkzaw3cTjofdwF4HJhSXIc8FPevSbEPjgf+DLxNugiLSKOhc9wi 5XUk8JuaSzO6+9vuPs/dPwJmApMBzKwT0IX0UPr1QHN3P4x0xDzIzP5/5TQzqyBdUekf3P0oYChw hZkdvRd1VgLDi223B04p3t8MmO/u3UhXLJuzk/ZOBlq5+5HA0cX6vlHcxsGka0z3AX5KuuIVpIH8 bvEwej/gCOAHNeq6mPTLQFfgBOCQvdg3kVxTcIuUV4Hdf+6mA+cUg3gyMMPdI+kiE3cDuPs2dx/m 7k9Xe10XoBNwj5m9CKwAWlA8LL6H5rn71uJodz3QttpjVXVorwroYWbLSZdhvM3df1d83SvFRTMA 1lTb9onAtB37R3pKYce69DsOh48AZrn7p8UlIB/ci30TyTUdKhcpr1+QLlG5X/VRt5kdTLp85wR3 /62Z/RoYT3o4ul/xadupdj7XzNqTHqreoQLYVBzl7nhOW/buUPK2arcjn10Pe/Pu2nP3T8ysM+ko fDiwzMwuAd7bxbZrfqFJgKY17qtZy/a67pBIQ6ERt0gZufubpKPEe8xsf4Bq53bfqbYa1k+AfwFW uvufi/ctBSaZWTCz5qSHqYdU2/x/Ax+b2VnF7X6NdLRcqvWLd9qemX0HmOnuS9x9CulSjT2Lrwu1 bq24nGNxW81JV8JaXOM1jwPfNLPmZtYCmLiP90mk3lNwi5TfRcAG4Dkz+xXwPGngTa72nAVAK9LD 5jtcRzpaXUu6LvMCd5+348Hi4eVxwHlmtpY05K529+f3sL6aV2nH2m7vpr37gcTM/svMfgnsT3oR W23b3+FS4EAzW1fcx5eAH9V4zZ2k+74eWA78ruZGRBo6LespUg+Z2UDgzj39vbOINHw6xy1Sz5jZ TOA44JyMSxGRekgjbhERkRzROW4REZEcUXCLiIjkiIJbREQkRxTcIiIiOaLgFhERyREFt4iISI78 H30JlNx5+4x7AAAAAElFTkSuQmCC "> | ||
+ | </div> | ||
+ | <div class="clear"></div> | ||
+ | |||
+ | Please refer to the <a href="https://github.com/genspace/iGEM-qPCR-Copy-Number-Analysis/blob/master/qpcr_pSB1C3_Absolute_Quantification.ipynb">Jupyter Notebook</a> for qPCR copy number analysis. | ||
+ | |||
+ | </div> | ||
+ | <div class="sub-content"> | ||
+ | <h3>Gel Electrophoresis of Cell Lysate</h3> | ||
+ | Because qPCR consistently gave results significantly lower than the expected copy number, an alternate means of direct copy number analysis was attempted. | ||
+ | |||
+ | 1 billion cells were pelleted and resuspended in 100uL of CL Buffer. At a size of 5339bp, 20 billion copies of K909006-pSB1C3 should weigh 115ng at a concentration of 1.15ng/uL. 10uL of lysate from E. coli was run on a 0.6% agarose gel with purified K909006-pSB1C3 at known concentrations for comparison of band brightness. | ||
+ | |||
+ | <img src="https://lh6.googleusercontent.com/U5GY40AdpKof5nyc_WtHxOSJ9biuVXqS5O0ygKNiJCIcNJjGNF0038wYy0UW20C4O0NtnmaNYxgQqdLvvsbKmEker5D7i-sHwPhWxI1RkVMBI2qAVxjgccLvQlNTRQNsAd4TCFzp" alt=""> | ||
+ | |||
+ | Lanes were loaded in the following order (left to right) | ||
+ | E. coli Top 10 with no plasmids | ||
+ | 10ng purified K909006-pSB1C3 | ||
+ | E. coli Top 10 harboring K909006-pSB1C3 | ||
+ | 50ng purified K909006-pSB1C3 | ||
+ | |||
+ | The band for the plasmid in E. coli lysate was much closer in brightness to the 10ng band than the 50ng one, indicating that close to 20 copies were harbored in each lysed cell. | ||
+ | </div> | ||
+ | |||
+ | <h5 class="c0"><span class="c8">Conclusions</span></h5> | ||
+ | |||
+ | <p class="c0"><span>Due to time constraints, only a few qPCR runs could be completed prior to the Wiki freeze, so this data is still preliminary. Additional sets should be run to determine the reproducibility of these results. Furthermore, the range of copy numbers detected for stationary phase cultures suggests that the copy number may take some time to stabilize after cell division halts.</span></p> | ||
+ | </div> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
</div> | </div> | ||
</html> | </html> |
Latest revision as of 03:54, 20 October 2016
Results
Part 1. Desiccation Tolerance
Desiccation Test Results for HDLEA1 (K2128204) and MAHS (K2128200)
The desiccation protection part of our iGEM project involved determining how proteins in extremophile species such as tardigrades could assist bacteria to survive in desiccation circumstances. To this end it was necessary to identify which proteins to pursue, to successfully synthesize and assemble those proteins into functional genetic circuits, to identify a protocol for quantitative evaluation of desiccation survival, and to execute that protocol. These efforts would have benefits in the routine sharing of strains of bacteria between members of the research community. They would also potentially open up new avenues of investigation and applications involving bacteria under limited-hydration environments.
As a result of literature surveys, several proteins were identified for investigation, especially those belonging to a class of Late Embryonic Abundant (LEA) proteins. Sequences for these candidates were successfully codon-optimized for use in E. coli, synthesized, placed into plasmid backbones and confirmed through sequencing. These parts were further assembled into functional genetic circuits to both support expression of the proteins of interest and also to identify reference controls against which we could compare performance. These composite parts were successfully sequenced in order to ensure evaluation of known entities. A protocol was determined and tested to quantify results in a manner that balanced time, effort and cost. Finally, this protocol was used to evaluate a test LEA protein (HDLEA1).
Part K2128204 (and the underlying Coding Sequence in part K2128004) was validated using a desiccation protocol that demonstrated the part worked as expected (i.e., improved survivability when the HDLEA1 coding sequence was expressed compared to when it was not expressed). The K2128204 part consists of the Biobrick part K880005 (i.e., a strong constitutive promoter J23100 and strong ribosome binding site B0034) followed by the HDLEA1 coding sequence from K2128004. When placed on the high-copy-number plasmid backbone pSB1C3, maximal expression of HDLEA1 is expected. The comparative reference was K880005, also on pSB1C3 backbone (i.e., the plasmid under test minus the HDLEA1 coding sequence).
The desiccation protocol was initially run to identify serial dilution values for each hour of desiccation that would result in a number of colony forming units per plate (CFU/plate) on the order of 30-300. The OD600 of the initial overnight culture was taken (using a 1:10 dilution proxy) in order to obtain the expected number of CFUs in 20uL using the formula (0.02mL)*(8x108 CFU/mL/OD600)*OD600. Excellent agreement (within ±25%) with the observed average CFU/plate was found for both the reference and test plasmid systems after correcting for the dilution factor for H=0 hours of desiccation (i.e., no desiccation).
For each hour (H=0, 4, 7.5 and 22.5) and each plasmid system under test (i.e., the K880005 reference and the HDLEA1-based K2128204), data were collected in triplicate and used to obtain an average and standard deviation for CFU/plate. Plates with evidence of contamination or pipetting error were removed (a total of two plates out of 24). The dilution factor was corrected for in order to obtain the CFU in the desiccated 20uL aliquot and normalized by the measured CFU in a non-desiccated 20uL aliquot to obtain a survival rate versus time (i.e., fraction of surviving colonies). The numerical results are contained in Tables 1 and 2 for K880005 (REF) and K2128204 (TEST_HDLEA1), respectively.
Table 1: Reference (REF) data (raw, adjusted for dilution, and normalized)
Table 2: HDLEA1-related (TEST_HDLEA1) data (raw, adjusted for dilution, and normalized)
The combined graphical results for the normalized data are shown in Figure 1 below. Figure 1: Survival Rate vs. Desiccation (HDLEA1)
As expected, the fraction of surviving cells decays monotonically with increasing desiccation time for both the reference (“REF”) and HDLEA1-based systems (“TEST_HDLEA1”). Beyond four hours, the plasmid expressing HDLEA1 shows an improved ability to survive desiccation in a manner that is statistically significant based on measured standard deviations. In particular, the amount improvement is estimated to be 3.2-fold (±1.5) for H=7 hours of desiccation and 2.5-fold (±1.3) for H=22.5 hours of desiccation. This approximately three-fold improvement in survivability validates that the HDLEA1-related part (K2128204) works as expected.
In contrast, the preliminary testing for the corresponding MAHS LEA protein (expressed using the part K2128200) does not show an improvement in desiccation survivability as shown in Table 3 and Figure 2. Table 3: MAHS-related (TEST_MAHS) data (raw, adjusted for dilution, and normalized)
Data beyond H=7 hours of desiccation had failed positive controls that invalidated those results. (Positive controls for hours H=0, 4 and 7 were successful.) While those control issues could not be resolved in time for iGEM deadlines, it was desired to supply this preliminary information as a guide to other teams that may wish consider use of this part. Figure 2: Survival Rate vs. Desiccation (MAHS)
Based on this data, there is no evidence that the MAHS-related system (K2128200) provides any survivability benefit over the reference system (K880005).
Part 2. Using Tardigrades as a Developmental Model
While we were able to successfully microinject the Cas9 protein along with the guide RNAs targeting different developmental genes. The microinjections proved fatal to the injected tardigrades and thus the only information we were able to gain is that future microinjectors of the Cas9 protein would need to place a premium on preventing the lethality of such injections. Things to consider would be:
- Microinjection technique and pressure used to inject
- Concentration of the Cas9 Protein
- Whether injections to the tardigrades’ body parts other than the gonads prove lethal
Unfortunately due to time we were not able to alter these different aspects of our protocol.
Part 3. Plasmid Copy Measurement
A preliminary experiment was run using lysate from 1 million cells per reaction. Eight replicates were run for each sample type (with or without the reporter). After excluding outliers caused by edge effects, average CT values for six replicates for each sample were compared:
Test: 17.02
Control: 21.48
pSB1C3 absolute quantification run #1 Lysate from 1 million stationary phase cells harboring K909006-pSB1C3 was run against a 3-point standard of 106, 107, and 108 copies. Linear regression indicates approximately 18.2 copies of the target sequence for every cell in the reaction, or around 17 plasmid copies per cell.
pSB1C3 absolute quantification run #2 Lysate from 100,000 mid-log phase cells harboring K909006-pSB1C3 was compared against a 3-point standard of 105, 106, and 107 copies. Due to the reduced amplification efficiency of the 108-copy standard in run 1, cell numbers were reduced 10-fold in all subsequent experiments. Linear regression indicates approximately 13.4 copies of the target sequence for every cell in the reaction, or around 12-13 plasmid copies per cell. Note: The K909006-pSB1C3 harboring cells used for this run were lysed in mid-log phase, which may account for the reduced PCN.
pSB1C3 absolute quantification run #3Lysate from 100,000 stationary phase cells harboring K909006-pSB1C3 was compared against a 3-point standard of 105, 106, and 107 copies. Linear regression indicates approximately 30.9 copies of the target sequence for every cell in the reaction, or around 30 plasmid copies per cell.
pSB1C3 absolute quantification run #4 Lysate from 100,000 stationary phase cells harboring K909006-pSB1C3 was compared against a 2-point standard of 105 and 106 1.1x106 copies. The 1.1x106-copy standard was created using lysate from 105 cells as well as 106 copies of purified plasmid. This point was created to test for variance in amplification efficiency of plasmid vs. genomic template. Linear regression indicates approximately 25.5 copies of the target sequence for every cell in the reaction, or around 24-25 plasmid copies per cell.
Three qPCR runs using stationary phase cells and one run using mid-log phase cells indicate a PCN of around 12-13 copies during log growth, increasing to around 24 copies per cell during stationary phase.
Gel Electrophoresis of Cell Lysate
Because qPCR consistently gave results significantly lower than the expected copy number, an alternate means of direct copy number analysis was attempted. 1 billion cells were pelleted and resuspended in 100uL of CL Buffer. At a size of 5339bp, 20 billion copies of K909006-pSB1C3 should weigh 115ng at a concentration of 1.15ng/uL. 10uL of lysate from E. coli was run on a 0.6% agarose gel with purified K909006-pSB1C3 at known concentrations for comparison of band brightness. Lanes were loaded in the following order (left to right) E. coli Top 10 with no plasmids 10ng purified K909006-pSB1C3 E. coli Top 10 harboring K909006-pSB1C3 50ng purified K909006-pSB1C3 The band for the plasmid in E. coli lysate was much closer in brightness to the 10ng band than the 50ng one, indicating that close to 20 copies were harbored in each lysed cell.Conclusions
Due to time constraints, only a few qPCR runs could be completed prior to the Wiki freeze, so this data is still preliminary. Additional sets should be run to determine the reproducibility of these results. Furthermore, the range of copy numbers detected for stationary phase cultures suggests that the copy number may take some time to stabilize after cell division halts.