Difference between revisions of "Team:Lethbridge/HP/Gold"

Line 201: Line 201:
 
       <div class="row">
 
       <div class="row">
 
         <div class="col l8 s12">
 
         <div class="col l8 s12">
           <h5 class="white-text">Ridealongs</h5>
+
           <h4 class="white-text">Ridealongs</h4>
 
           <p class="grey-text text-lighten-4">The prevalence of virulent and multiple antibiotic resistant pathogens in healthcare facilities has resulted in ongoing reassessment of best practices to prevent their transmission. However, whether pathogen reservoirs exist in emergency medical services (EMS) vehicles, remains largely unknown. Our iGEM team developed a custom bacterial two hybrid system to select single-domain antibodies (nanobodies) that recognize human pathogens. Informed by our Nanopore next generation sequencing of DNA samples from ambulance vehicles, antibodies targeting important pathogens were then used to develop a rapid and low cost ELISA-based testing kit that may be employed on-site by EMS workers. Our project provides a framework for rapid detection of emergent pathogens and a practical and rapid solution for monitoring their presence in and outside of the healthcare system.</p>
 
           <p class="grey-text text-lighten-4">The prevalence of virulent and multiple antibiotic resistant pathogens in healthcare facilities has resulted in ongoing reassessment of best practices to prevent their transmission. However, whether pathogen reservoirs exist in emergency medical services (EMS) vehicles, remains largely unknown. Our iGEM team developed a custom bacterial two hybrid system to select single-domain antibodies (nanobodies) that recognize human pathogens. Informed by our Nanopore next generation sequencing of DNA samples from ambulance vehicles, antibodies targeting important pathogens were then used to develop a rapid and low cost ELISA-based testing kit that may be employed on-site by EMS workers. Our project provides a framework for rapid detection of emergent pathogens and a practical and rapid solution for monitoring their presence in and outside of the healthcare system.</p>
 
         </div>
 
         </div>
Line 214: Line 214:
 
       <div class="row">
 
       <div class="row">
 
         <div class="col l8 s12">
 
         <div class="col l8 s12">
           <h3 class="white-text">Protocol Design</h3>
+
           <h4 class="white-text">Protocol Design</h4>
 
           <p class="grey-text text-lighten-4">The prevalence of virulent and multiple antibiotic resistant pathogens in healthcare facilities has resulted in ongoing reassessment of best practices to prevent their transmission. However, whether pathogen reservoirs exist in emergency medical services (EMS) vehicles, remains largely unknown. Our iGEM team developed a custom bacterial two hybrid system to select single-domain antibodies (nanobodies) that recognize human pathogens. Informed by our Nanopore next generation sequencing of DNA samples from ambulance vehicles, antibodies targeting important pathogens were then used to develop a rapid and low cost ELISA-based testing kit that may be employed on-site by EMS workers. Our project provides a framework for rapid detection of emergent pathogens and a practical and rapid solution for monitoring their presence in and outside of the healthcare system.</p>
 
           <p class="grey-text text-lighten-4">The prevalence of virulent and multiple antibiotic resistant pathogens in healthcare facilities has resulted in ongoing reassessment of best practices to prevent their transmission. However, whether pathogen reservoirs exist in emergency medical services (EMS) vehicles, remains largely unknown. Our iGEM team developed a custom bacterial two hybrid system to select single-domain antibodies (nanobodies) that recognize human pathogens. Informed by our Nanopore next generation sequencing of DNA samples from ambulance vehicles, antibodies targeting important pathogens were then used to develop a rapid and low cost ELISA-based testing kit that may be employed on-site by EMS workers. Our project provides a framework for rapid detection of emergent pathogens and a practical and rapid solution for monitoring their presence in and outside of the healthcare system.</p>
 
         </div>
 
         </div>
Line 227: Line 227:
 
       <div class="row">
 
       <div class="row">
 
         <div class="col l8 s12">
 
         <div class="col l8 s12">
           <h3 class="white-text">Ambulance Sampling</h3>
+
           <h4 class="white-text">Ambulance Sampling</h4>
 
           <p class="grey-text text-lighten-4">The prevalence of virulent and multiple antibiotic resistant pathogens in healthcare facilities has resulted in ongoing reassessment of best practices to prevent their transmission. However, whether pathogen reservoirs exist in emergency medical services (EMS) vehicles, remains largely unknown. Our iGEM team developed a custom bacterial two hybrid system to select single-domain antibodies (nanobodies) that recognize human pathogens. Informed by our Nanopore next generation sequencing of DNA samples from ambulance vehicles, antibodies targeting important pathogens were then used to develop a rapid and low cost ELISA-based testing kit that may be employed on-site by EMS workers. Our project provides a framework for rapid detection of emergent pathogens and a practical and rapid solution for monitoring their presence in and outside of the healthcare system.</p>
 
           <p class="grey-text text-lighten-4">The prevalence of virulent and multiple antibiotic resistant pathogens in healthcare facilities has resulted in ongoing reassessment of best practices to prevent their transmission. However, whether pathogen reservoirs exist in emergency medical services (EMS) vehicles, remains largely unknown. Our iGEM team developed a custom bacterial two hybrid system to select single-domain antibodies (nanobodies) that recognize human pathogens. Informed by our Nanopore next generation sequencing of DNA samples from ambulance vehicles, antibodies targeting important pathogens were then used to develop a rapid and low cost ELISA-based testing kit that may be employed on-site by EMS workers. Our project provides a framework for rapid detection of emergent pathogens and a practical and rapid solution for monitoring their presence in and outside of the healthcare system.</p>
 
         </div>
 
         </div>

Revision as of 21:32, 16 October 2016

Lethbridge iGEM 2016

Human Practices (Gold)

Ridealongs, Protocol Design, Ambulance Sampling

Ridealongs

The prevalence of virulent and multiple antibiotic resistant pathogens in healthcare facilities has resulted in ongoing reassessment of best practices to prevent their transmission. However, whether pathogen reservoirs exist in emergency medical services (EMS) vehicles, remains largely unknown. Our iGEM team developed a custom bacterial two hybrid system to select single-domain antibodies (nanobodies) that recognize human pathogens. Informed by our Nanopore next generation sequencing of DNA samples from ambulance vehicles, antibodies targeting important pathogens were then used to develop a rapid and low cost ELISA-based testing kit that may be employed on-site by EMS workers. Our project provides a framework for rapid detection of emergent pathogens and a practical and rapid solution for monitoring their presence in and outside of the healthcare system.

Protocol Design

The prevalence of virulent and multiple antibiotic resistant pathogens in healthcare facilities has resulted in ongoing reassessment of best practices to prevent their transmission. However, whether pathogen reservoirs exist in emergency medical services (EMS) vehicles, remains largely unknown. Our iGEM team developed a custom bacterial two hybrid system to select single-domain antibodies (nanobodies) that recognize human pathogens. Informed by our Nanopore next generation sequencing of DNA samples from ambulance vehicles, antibodies targeting important pathogens were then used to develop a rapid and low cost ELISA-based testing kit that may be employed on-site by EMS workers. Our project provides a framework for rapid detection of emergent pathogens and a practical and rapid solution for monitoring their presence in and outside of the healthcare system.

Ambulance Sampling

The prevalence of virulent and multiple antibiotic resistant pathogens in healthcare facilities has resulted in ongoing reassessment of best practices to prevent their transmission. However, whether pathogen reservoirs exist in emergency medical services (EMS) vehicles, remains largely unknown. Our iGEM team developed a custom bacterial two hybrid system to select single-domain antibodies (nanobodies) that recognize human pathogens. Informed by our Nanopore next generation sequencing of DNA samples from ambulance vehicles, antibodies targeting important pathogens were then used to develop a rapid and low cost ELISA-based testing kit that may be employed on-site by EMS workers. Our project provides a framework for rapid detection of emergent pathogens and a practical and rapid solution for monitoring their presence in and outside of the healthcare system.