Difference between revisions of "Team:ShanghaiTechChina B/Hardware"

Line 5: Line 5:
 
                 <div class="col-md-12">
 
                 <div class="col-md-12">
 
                     <div class="bs-docs-section">
 
                     <div class="bs-docs-section">
                         <h1>Hardware</h1>
+
                         <div class="h1" id="Warship">Hardware - Warship</div>
                        <img src="https://static.igem.org/mediawiki/2016/2/2f/ShanghaiTech_B_Hardware1.JPG">
+
                            <p>"Simplicity involves digging through the depth of the complexity" (by Steve Jobs). We aimed to build a simple device (we termed ‘warship’) to increase the competitive power of introduced bacteria against native microbiota and biosafety levels of using engineered bacteria. This was inspired by the feedback from our presentation in a workshop (HUST_Cheering) in July. Other iGEMers were curious about the 'fate' of our engineered bacteria in human's gut. Our Gutrio has to compete with other living microorganisms in a such complicated gut environment. Intestinal environment differs from individuals to individuals and the agents cannot survive if they are not well-prepared. Moreover, it is quite dangerous for armed Gutrios to expand their territory without limitation.</p>
                        <img src="https://static.igem.org/mediawiki/2016/b/b9/ShanghaiTech_B_Hardware2.JPG">
+
                            <p>We achieved this by sandwiching alien bacteria with pieces of semi-permeable membrane, thereby detaining concentrated aliens and yet still allowing exchange of chemicals between aliens and gut. We extensively elucidated that aliens would not leak out and surrounding bacteria could not invade aliens. Importantly, we revealed small molecules can freely diffuse across the semi-membrane. Therefore, in principle, therapeutic agents produced by aliens can diffuse into gut environment. Thus, our simple device allowed us to target two birds (alien competitive power and biosafety) with one stone.</p>
                        <img src="https://static.igem.org/mediawiki/2016/2/2e/ShanghaiTech_B_Hardware3.JPG">
+
                            <div class="row">
                        <img src="https://static.igem.org/mediawiki/2016/4/45/ShanghaiTech_B_Hardware4.JPG">
+
                                <div class="col-md-6">
                        <img src="https://static.igem.org/mediawiki/2016/f/f6/ShanghaiTech_B_Hardware5.JPG">
+
                                    <img class="img-responsive" style="height:300px;margin:30px auto;" src="https://static.igem.org/mediawiki/2016/e/e5/ShanghaiTech_B_Warship1.jpg">
                        <img src="https://static.igem.org/mediawiki/2016/2/2d/ShanghaiTech_B_Hardware6.JPG">
+
                                </div>
                        <img src="https://static.igem.org/mediawiki/2016/5/50/ShanghaiTech_B_Hardware7.JPG">
+
                                <div class="col-md-6">
 
+
                                    <img class="img-responsive" style="height:300px;margin:30px auto;" src="https://static.igem.org/mediawiki/2016/8/88/ShanghaiTech_B_Warship2.png">
 +
                                </div>
 +
                                <div style="font-size:16px;text-align:center;width:80%;display:block;margin:10%;margin-bottom:1em;">
 +
                                    <b>Figure 1.</b> Warship bacteria constraint device. Size may be reduced by 3D printing in the future.
 +
                                </div>
 +
                                Warship bacteria constraint device. Size may be reduced by 3D printing in the future.
 +
                            </div>
 +
                            <div class="p">The biggest diameter of particles that are allowed through the semi-permeable membrane is 0.22 um. We immersed our device in intestinal-pH solution, concentrated hydrochloric acid, sodium bicarbonate solution and common organic solvent, used mechanical compression to test its strength and it was intact after all of the tests.</div>
 +
                            <div class="p">First we tested if our device allows small molecules like IPTG pass through the membrane (Figure 2). We put E.coli with a IPTG-induced green fluorescence protein inside the device.</div>
 +
                            <div class="row">
 +
                                <div class="col-md-6">
 +
                                    <img class="img-responsive" src="https://static.igem.org/mediawiki/2016/1/15/ShanghaiTech_B_Warship3.jpg">
 +
                                </div>
 +
                                <div class="col-md-6">
 +
                                    <img class="img-responsive" src="https://static.igem.org/mediawiki/2016/0/06/ShanghaiTech_B_Warship4.jpg">                               
 +
                                </div>
 +
                                <div style="font-size:16px;text-align:center;width:80%;display:block;margin:10%;margin-bottom:1em;">
 +
                                    <b>Figure 2.</b> We add IPTG to the solution outside the membrane. It promoters the expression of gfp inside the Warship successfully.
 +
                                </div> 
 +
                            </div>             
 +
                            <div class="p">We also tested if the bacteria inside the device can get out (Figure 3).</div>
 +
                            <div class="row">
 +
                                <div class="col-md-6">
 +
                                    <img class="img-responsive" src="https://static.igem.org/mediawiki/2016/d/dc/ShanghaiTech_B_Warship5.jpg">
 +
                                </div>
 +
                                <div class="col-md-6">
 +
                                    <img class="img-responsive" src="https://static.igem.org/mediawiki/2016/0/0b/ShanghaiTech_B_Warship6.jpg">                                  
 +
                                </div>
 +
                                <div class="col-md-6">
 +
                                    <img class="img-responsive" src="https://static.igem.org/mediawiki/2016/2/27/ShanghaiTech_B_Warship7.jpg">
 +
                                </div>
 +
                                <div class="col-md-6">
 +
                                    <img class="img-responsive" src="https://static.igem.org/mediawiki/2016/4/4f/ShanghaiTech_B_Warship8.jpg">                                  
 +
                                </div>
 +
                                <div style="font-size:16px;text-align:center;width:80%;display:block;margin:10%;margin-bottom:1em;">
 +
                                    <b>Figure 3.</b> We put microbes with different antibiotic-resistance outside and inside Warship respectively. They cannot pass through the membrane.
 +
                                </div>
 +
                            </div>
 +
                            <div class="p">This device can ensure that the engineered bacteria will be alive in the intestines and is able to exchange matter with the outside of the device.</div>
 +
                            <div class="p"><b>Click <a href="https://2016.igem.org/Team:ShanghaiTechChina_B/Project#Warship">here</a> for more information</b></div>                         
 
                     </div>
 
                     </div>
 
                 </div>
 
                 </div>
 
             </div>
 
             </div>
 
         </div>
 
         </div>
         <footer class='bs-docs-footer'>
+
         <footer class="bs-docs-footer">
             <div class='container'>
+
             <div class="container">
                 <ul class='bs-docs-footer-links'>
+
                 <ul class="bs-docs-footer-links">
 
                     <li>iGEM2016</li>
 
                     <li>iGEM2016</li>
 
                     <li>Copyright © 2016 ShanghaiTechChina_B iGEM Team</li>
 
                     <li>Copyright © 2016 ShanghaiTechChina_B iGEM Team</li>
                </ul>
+
                    </ul>
            </div>
+
                </div>
        </footer>
+
            </footer>
 
</html>
 
</html>

Revision as of 23:13, 19 October 2016

Hardware - Warship

"Simplicity involves digging through the depth of the complexity" (by Steve Jobs). We aimed to build a simple device (we termed ‘warship’) to increase the competitive power of introduced bacteria against native microbiota and biosafety levels of using engineered bacteria. This was inspired by the feedback from our presentation in a workshop (HUST_Cheering) in July. Other iGEMers were curious about the 'fate' of our engineered bacteria in human's gut. Our Gutrio has to compete with other living microorganisms in a such complicated gut environment. Intestinal environment differs from individuals to individuals and the agents cannot survive if they are not well-prepared. Moreover, it is quite dangerous for armed Gutrios to expand their territory without limitation.

We achieved this by sandwiching alien bacteria with pieces of semi-permeable membrane, thereby detaining concentrated aliens and yet still allowing exchange of chemicals between aliens and gut. We extensively elucidated that aliens would not leak out and surrounding bacteria could not invade aliens. Importantly, we revealed small molecules can freely diffuse across the semi-membrane. Therefore, in principle, therapeutic agents produced by aliens can diffuse into gut environment. Thus, our simple device allowed us to target two birds (alien competitive power and biosafety) with one stone.

Figure 1. Warship bacteria constraint device. Size may be reduced by 3D printing in the future.
Warship bacteria constraint device. Size may be reduced by 3D printing in the future.
The biggest diameter of particles that are allowed through the semi-permeable membrane is 0.22 um. We immersed our device in intestinal-pH solution, concentrated hydrochloric acid, sodium bicarbonate solution and common organic solvent, used mechanical compression to test its strength and it was intact after all of the tests.
First we tested if our device allows small molecules like IPTG pass through the membrane (Figure 2). We put E.coli with a IPTG-induced green fluorescence protein inside the device.
Figure 2. We add IPTG to the solution outside the membrane. It promoters the expression of gfp inside the Warship successfully.
We also tested if the bacteria inside the device can get out (Figure 3).
Figure 3. We put microbes with different antibiotic-resistance outside and inside Warship respectively. They cannot pass through the membrane.
This device can ensure that the engineered bacteria will be alive in the intestines and is able to exchange matter with the outside of the device.
Click here for more information