General
When cells or bacteria are described in the population dynamics notebook, those bacteria were E. coli DH5alpha. Unless stated otherwise, all actions performed for the wetlab construction and testing of the population dynamics subproject were done by Thomas. Where Arabinose and/or Glucose are mentioned, we refer to L-Arabinose and D-Glucose respectively in concentrations of 2 g/L. Where sequencing of DNA is mentioned we refer to GATC lightrun tube sanger sequencing. Where it is mentioned that samples were sent for sequencing - unless stated otherwise - the sequencing results corresponded to the expected sequence.
Plate reader measurements:
The machine used for plate reader experiments is BioTek’s SynergyMx. Gen5 2.01 software was used to acquire the data and export these to microsoft excel files which were further organized with Microsoft Excel 2011. All plate reader measurements were done in black 96-wells plates with a transparent bottom. During measurements the lid was on the plate in all cases to prevent mixing of sample due to shaking during incubation. All reported experiments were performed at 37℃ with fast continuous shaking. Measurements described were always at least 10 minutes apart to allow for proper shaking of the samples and allow for sufficient aeration. GFP activity was measured with fluorescence measurements with an excitation at 485nm and emission at 510nm. mRFP activity was measured for excitation at 584nm and emission at 607nm. Bandwidth for fluorescence was always 9nm. Wells contained 200µl cultures. Absorbance was measured at both 600nm and 660nm to assess bacterial growth. Absorbance data for bacterial cultures were corrected with the absorbance of medium only wells. This caused absorbance to start at 0 for all cultures, the first measurements notwithstanding. Fluorescence values were corrected for the fluorescence of medium only wells. This sometimes caused negative values for the fluorescence of cultures at low OD600 values. This of course it not realistic and was considered an artifact caused by fluctuations in the measurement of low level fluorescence.
Flow Cytometry
The machine used for flow cytometry in Wageningen is the Flow cytometry sorter - BD FACS AriaTM III. This machine is in principle also able to sort cells, but we did not make use of this function. Marcel H. Tempelaars, Specialist Flow cytometry sorter - BD FACS AriaTM III at Wageningen UR operated the controls while Thomas was responsible for sample handling and insertion. Marcel meanwhile explained the functioning of the technique.
During the flow cytometry analysis we found that the choice of mRFP as reporter was a good one: we observed a clear difference in fluorescence between the mRFP producing cells and cells that did not have a mRFP gene. Differentiation between GFP expressing cells and cells unable to produce GFP is known to be more troublesome. Therefore we advise future iGEM team planning to do flow cytometry of FACS to (if at all possible) use mRFP as reporter rather than GFP.
Fluorescence Microscopy
The microscope used for fluorescence microscopy of the subpopulation clones is an Olympus BX41. The laser used to excite fluorophores is Excelitas Technologies X-cite series 120. A lumenera infinity 3 was used to capture the images. Steven Aalvink, technician at Wageningen UR molecular ecology, instructed me in the use of the microscope and other hardware.
May 26 - June 6
General
Heat-shock competent cells were made according to the BacGen protocol. After testing by transforming with PUC19, transformation efficiency turned out to be 10^4.
Moving iGEM Cas9 to another backbone
iGEM Cas9, pSB1K3, pSB6A1 and pSB4K5 were digested with EcoRI-HF and PstI-HF. Fragments were checked on agarose gels. Estimated band size:
iGEM Cas9, 5080 bp
pSB1K3, 2204 bp
pSB6A1, 4022 bp
pSB4K5, 3419 bp
pSB1K3 certainly did not have the correct length, and the other two backbones were unclear, as they should have a different size but they did not. The digested iGEM Cas9 looked fine.
iGEM Cas9, pSB1K3 and pSB4K5 were cut from the gel and purified (Machery-Nagel nucleospin kit). Samples were kept in the freezer.
After a few days, I tried ligating iGEM Cas9 in pSB6A1 and pSB4K5 according to the standard protocol, transformed 2 µL into heat-shock competent cells (the ones mentioned above).
The ligation of Cas9 in pSB4K5 gave 7 colonies, but Colony PCR (primers: VF2 and VR) revealed there was no insert (expected band: 5080).
Another approach was was PCR amplifying Cas9 and backbones with VF2 and VR primers. Only the pSB1K3 backbone and iGEM Cas9 (5380 bp) gave a convincing band, so these PCR products were purified (hyperlink), digested with EcoRI-HF and PstI-HF, ligated and transformed into electrocompetent cells (made by Linea).
Moving dCas9 to pET26B
pdCas9 was verified using digestion with SacI-HF & SalI-HF, as well as digestion with SacI-HF and XbaI.
The PCR for pdCas9 was repeated under various conditions; a range of annealing temperatures, addition of 5% DMSO, and varying template concentrations. Nothing worked. So I looked closer at the primers, and they turned out to be suboptimal in terms of stability of the 3’ vs 5’ end.
My supervisor helped me design better primers:
BelCas9-cas9Fw2 (GCCTTAATTAATGACAGCTTATCATCGATAAGCTTTAATG)
BelCas9-cas9Rev2 (GCCACTAGTAATTGCATCAACGCATATAGCGCTAGCAG)
Q5 PCR was performed on pdCas9 using these primers:
Annealing T: gradient ranging from 60-72ºC, elongation time: 1.5 minutes
Expected band size: 5349 bp
And this time it worked.
PCR products of pdCas9 and pET26B were purified (hyperlink), digested with PacI and SpeI, ligated and transformed into electrocompetent cells (made by Linea).
Result of transformation of dCas9 and iGEM Cas9 ligations
Basically all transformations had colonies, also control transformations with only backbone. Only transformations without ligase were clean, indicating there was probably some back-ligation of the backbones.
Colony PCRs with VF2, VR, BelCas9-cas9Fw2 and BelCas9-cas9Rev2 (for iGEM ligations and own ligations, respectively) revealed there were no clones with the correct insert.
I decided to focus on my own Cas9 construct from now on, and drop the iGEM construct.
pT7-gRNA construction
A glycerol stock of E. coli containing pT7-gRNA was streaked on LB agar with ampicillin and allowed to grow overnight. A colony was picked for making a glycerol stock, as well as plasmid isolation (Machery-Nagel nucleospin kit).
June 7 - June 29
No labwork due to moving of the lab.
June 30 - July 31
General
Electrocompetent E. coli cells were made according to the protocol. Transformation efficiency was very high (could not count the colonies, really).
Moving dCas9 to pET26B
New PCR products were made of pdCas9 and pET26B. I proceeded with purification and digestion as usual, but added a step with alkaline phosphatase (CIP, NEB).
Performed a href="https://static.igem.org/mediawiki/2016/7/76/T--Wageningen_UR--Ligation.pdf">ligation and electroporation of ligation. This time cloning was more successful: some colonies on ligation mixture, no colonies on backbone only control.
Colony PCR revealed that some colonies probably contained the correct construct. This was verified by sequencing.
Collection and construction of pEVOL plasmids
We received the biocontainment strains from Harvard, from which pEVOL-BipA was extracted (Machery-Nagel nucleospin kit).
Construction of pT7-gRNA plasmids
The following primers were annealed as inserts:
pBbS5a (RFP) 1766-1785 FWD fwd
5’- TAGGgtggtccgctgccgttcgct-3’
pBbS5a (RFP) 1766-1785 FWD rev
5’- AAACagcgaacggcagcggaccac-3’
pBbS5a (RFP) 1739-1758 REV fwd
5’- TAGGaactttcagtttagcggtct -3’
pBbS5a (RFP) 1739-1758 REV rev
5’- AAACagaccgctaaactgaaagtt -3’
pBbS5a (RFP) 1821-1840 FWD fwd
5’- TAGGcaaagcttacgttaaacacc -3’
pBbS5a (RFP) 1821-1840 FWD rev
5’- AAACggtgtttaacgtaagctttg -3’
pBbS5a (RFP) 1803-1822 REV fwd
5’- TAGGtggaaccgtactggaactgc -3’
pBbS5a (RFP) 1803-1822 REV rev
5’- AAACgcagttccagtacggttcca -3’
We tried at first constructing the pT7-gRNA plasmids using protocol described in Jao et al. (2014), but this gave a lot of false positive colonies (on plates transformed without any insert).
Still, some plasmids were isolated from colonies of plates with insert, and digested with SalI-HF and ScaI-HF. Any positive clones should not be cut by SalI, because this restriction site is only present in the original backbone. Expected bands: 759 bp and 1782 bp. No positive clones were found.
The next strategy was to digest with BsmBI and SalI, isolate the linearized plasmid from gel, and proceed with a href="https://static.igem.org/mediawiki/2016/7/76/T--Wageningen_UR--Ligation.pdf">ligation.
This did give us some positive clones.
Procedure was repeated for gRNA 3 and 4. Results were later confirmed by sequencing (however, it turned out that gRNA 3 was not correct after all. It took another round of picking colonies/digestion/sequencing before we also got that one right).
Mutagenesis of dCas9-pET26B
The Ala10TAG and Ala840TAG mutations were introduced by mutagenesis PCR, using the following primers:
dCas9 Ala10TAG fwd
5'-ggcaaaaatggataagaaatactcaataggcttatagatcggcacaaatagcgtc-3'
dCas9 Ala10TAG rev
5'-gacgctatttgtgccgatctataagcctattgagtatttcttatccatttttgcc-3'
dCas9 Ala840TAG fwd
5'-taatcgtttaagtgattatgatgtcgattagattgttccacaaagtttccttaaagacg-3'
dCas9 Ala840TAG rev
5'-cgtctttaaggaaactttgtggaacaatctaatcgacatcataatcacttaaacgatta-3'
First PCRs revealed that only the Ala840TAG PCR was successful, as was revealed by gel electrophoresis (expected band size for both: 9077 bp).
The Ala10TAG mutation worked after addition of GC enhancer to the PCR mixture.
Mutations were verified after sequencing of isolated plasmids.
Aug 1 - Aug 31
Expression of Cas9-pET26B in C321ΔA
Cas9-pET26B constructs as well as iGEM-Cas9 and the original pdCas9 were transformed in E. coli C321ΔA as described in Lajoie et. al (2013) protocol1 for electroporation, successfully.
Later, also, pEVOL-BipA, pEVOL-pAzF and pEVOL-pBpF were transformed into C321ΔA, both with and without Cas9-pET26B constructs.
A first expression experiment was done with 50 ml overnight cultures of C321ΔA + Cas9 construct, in LB with the appropriate antibiotic.
Cells were spun down, resuspended in 10 ml lysis buffer (50mM Tris-HCL, 250 mM NaCl, 1mM EDTA) and lysed by sonication (4x15 sec, 25Am).
Protein concentrations were measured with a Bradford assay.
20 ug of each extract was loaded on SDS to check for Cas9 expression. The expected weight of Cas9 is 156 kDa, of dCas9-Ala10TAG is 1 kDa (can’t be seen anyways), and of dCas9-Ala840TAG it is 97 kDa. No such bands could be observed (possible also due to a background band of the same size)
because for the original iGEM construct, the band seemed to be a bit more pronounced, I grew new cultures and repeated the experiment. This time, it was really obvious that expression levels were too low.
in vitro transcription of guide RNAs
By the time of transcription, guide 3 had not been verified by sequencing yet, so only guide 1, 2 and 4 were transcribed and purified, according to the protocol.
I only have a picture of the gel after cutting the RNA bands, but they were present.
After purification, guide 2 and 4 had decent concentrations of ~350 ng/uL. Guide 1 had only 35 ng/uL.
Cloning of Cas9 variants in expresso vector
After discussion with an employee in the departement who has experience expressing Streptococcus pyogenes Cas9, it was decided that expression from pdCas9 is probably too low to visualize on SDS-PAGE, and perhaps not suitable for further in vitro testing.
So it was decided to clone Cas9 in the Expresso c-rham vector system.
First, Cas9 variants and the Expresso vector were amplified by PCR. The following reactions were performed:
Expresso
fwd: CATCATCACCACCATCACTAATAG
Rev: CATATGTATATCTCCTTCTTATAGTTAAAC
Annealing T: 59ºC, elongation time 2.5 minutes.
Expected band size: 2275 bp
iGEM Cas9
Fwd: gtttaactataagaaggagatatacatatgGATAAGAAATACTCAATAGGCTTAGATATC
Rev: gccgctctattagtgatggtggtgatgatgGTCACCTCCTAGCTGACTCAAATC
Annealing T: 64ºC, elongation time 2.5 minutes.
Expected band size: 4088 bp
dCas9 & Ala840TAG:
Fwd: gtttaactataagaaggagatatacatatgGATAAGAAATACTCAATAGGCTTAGCTATC
Rev: gccgctctattagtgatggtggtgatgatgGTCACCTCCTAGCTGACTCAAATC
Annealing T: 66ºC, elongation time 2.5 minutes.
Expected band size: 4088 bp
Ala10TAG:
Fwd: gtttaactataagaaggagatatacatatgGATAAGAAATACTCAATAGGCTTATAGATC
Rev: gccgctctattagtgatggtggtgatgatgGTCACCTCCTAGCTGACTCAAATC
Annealing T: 64ºC, elongation time 2.5 minutes.
Expected band size: 4088 bp
Positive control: Some ~2000 bp thing from Thomas with iGEM prefix and suffix primers.
Fragments were checked by gel electrophoresis.
PCR products were cleaned with Zymo kit (hyperlink), eluted in water and assembled by Gibson Assembly. A vector : insert ratio of 1 : 2 was used, with 100 ng vector. 1 uL of Gibson mixtures were transformed in 25uL commercial competent cells (NEB) according to the accompanying protocol and plated on LB plates with kanamycin.
Colonies that came up were verified with Colony PCR.
Primers that were used:
Fwd: TTGAAGGGTAGTCCAGAAG
Rev: CATATGTATATCTCCTTCTTATAGTTAAAC
Annealing T: 46ºC, elongation time 3 minutes.
Expected band size: 2647 bp.
PCRs were verified using gel electrophoresis. It seemed that there were a lot of positive colonies.
Correct clones were confirmed by sequencing.
Collection and construction of pEVOL plasmids
pEVOL-Asp was constructed according to the yeast assembly protocol.
pEVOL-pAzF
Fwd: ACTAGTGCATGCTCGAGCAG
Rev: CCTCCTGTTAGCCCAAAAAAACGGGTATG
Annealing T: 68ºC, elongation time 2 minutes.
Expected band size: ~3320 bp
pYES2
Fwd: gagcaggcttttttactagtACTCTTCCTTTTTCAATGGG
Rev: aaagcaaattcgaccctgagctgctcgagcatgcactagtAAATATTTGCTTATACAATCTTCC
Annealing T: 56ºC, elongation time 2 minutes.
Expected band size: 2667 bp
gBlock1
Fwd: gagcaggcttttttactagtACTCTTCCTTTTTCAATGGG
Rev: ACAGGGTATTGCTTACGTACCAACTC
Annealing T: 66ºC, elongation time 2 minutes.
Expected band size: 1203 bp
gBlock2
Fwd: TTGCTCATGAAATTGAGTTGGTACGTAAG
Rev: CCCATTGAAAAAGGAAGAGTACTAG
Annealing T: 64ºC, elongation time 2minutes.
Expected band size: 1230 bp
PCR products were verified using gel electrophoresis.
PCR products were cleaned up using the Zymo kit (hyperlink).
Then, yeast assembly was performed using the protocol, with competent yeast cells received from a supervisor.
From the resulting colonies, 6 were picked for plasmid isolation. Only 3 of them had some plasmid yield, which were checked for correct assembly using OneTaq PCR.
PCR reactions that were performed:
pEVOL fwd and gBlock 1 rev primers, annealing T: 56ºC, elongation 4 minutes. Expected fragment size: 4469 bp.
gBlock 1 fwd and gBlock 2 rev primers, annealing T: 50ºC, elongation 4 minutes. Expected fragment size: 2318 bp.
gel electrophoresis reveiled fragments of the right size for colony 2 and 3.
Eventually, the plasmid from colony 3 was transformed successfully in E. coli, miniprepped and sent for sequencing. The following mutations were present: Tryp156Cys, Gly321Val and Gly525Cys. Because there was no time to check other clones, I continued with this plasmid anyways.
Expression of Cas9-expresso constructs in C321ΔA
Both the acquired Cas9-expresso constructs as well as pEVOL-Asp were transformed into C321ΔA as described in Lajoie et al. (2013)1.
Sept 1 - Okt 10
Expression of Cas9-expresso constructs in C321ΔA
An expression experiment was performed with 3 ml cultures induced overnight with rhamnose, arabinose and synthetic amino acids when applicable. This yielded no visible Cas9 bands.
The same happened when 5 ml cultures where induced for 4 hours. What worked, was the protocol with bigger volumes followed by Ni-NTA purification (the majority of the actual work with the FPLC was performed by a supervisor)
First, samples were purified as described, but with addition of DNAse. This gave good yields, but DNAse remained in the purified fractions as was later found out during in vitro Cas9 assays. However, without DNAse also a good yield was obtained.
The green line indicates the amount of His buffer B that is passed through the column.
in vitro Cas9 cleaving assays
Assays were performed with all produced guide RNAs, according to the protocol.