Results
Microbiome Analysis
Our group’s initial goal was to characterize the microbiome of emergency medical vehicles utilizing a next-generation sequencing approach with cutting-edge hardware and software from Oxford Nanopore Technologies. In order to execute this, we developed our own sampling pipeline as well as created a new method for amplifying and preparing DNA for sequencing from environmental samples. Our sample preparation pipeline was successful and we were able to successfully amplify and isolate ribosomal RNA from both prokaryotes and eukaryotes using universal gene primers.
While speaking to first responders, we learned about what products they currently use to clean the ambulances. They mainly use cleaning wipes, called Caviwipes, to wipe down the ambulance after each call. These wipes are also used during monthly deep cleanings of the ambulances. Deep cleanings involve removing some equipment from the ambulance to get at areas that cannot be cleaned easily during daily cleaning. We also found out that the deep cleans occur when the ambulances are still on call.
During the calls, we looked for potential spots that could be reservoirs for pathogens based on what we saw paramedics and patients touch. Our findings were taken into consideration when narrowing down what locations we would actually sample.
The first hand experiences were also beneficial in understanding what paramedics go through each day. The calls we went on were diverse in their nature. The calls were transferring a patient to another facility, a drug overdose, and a domestic dispute.
Overall, the ride alongs helped us understand what locations would be the best to sample for potential pathogens.
Section Two
The prevalence of virulent and multiple antibiotic resistant pathogens in healthcare facilities has resulted in ongoing reassessment of best practices to prevent their transmission. However, whether pathogen reservoirs exist in emergency medical services (EMS) vehicles, remains largely unknown. Our iGEM team developed a custom bacterial two hybrid system to select single-domain antibodies (nanobodies) that recognize human pathogens. Informed by our Nanopore next generation sequencing of DNA samples from ambulance vehicles, antibodies targeting important pathogens were then used to develop a rapid and low cost ELISA-based testing kit that may be employed on-site by EMS workers. Our project provides a framework for rapid detection of emergent pathogens and a practical and rapid solution for monitoring their presence in and outside of the healthcare system.
Section 3
The prevalence of virulent and multiple antibiotic resistant pathogens in healthcare facilities has resulted in ongoing reassessment of best practices to prevent their transmission. However, whether pathogen reservoirs exist in emergency medical services (EMS) vehicles, remains largely unknown. Our iGEM team developed a custom bacterial two hybrid system to select single-domain antibodies (nanobodies) that recognize human pathogens. Informed by our Nanopore next generation sequencing of DNA samples from ambulance vehicles, antibodies targeting important pathogens were then used to develop a rapid and low cost ELISA-based testing kit that may be employed on-site by EMS workers. Our project provides a framework for rapid detection of emergent pathogens and a practical and rapid solution for monitoring their presence in and outside of the healthcare system.