Team:Vanderbilt/Abstract

Every Gene Harbors a Vulnerability

At the foundation of the field of synthetic biology lies a seemingly irreconcilable paradox. By applying our mastery over life’s genetic code, we aim to turn biological systems into devices that we can control and program in predictable ways. Yet the same genetic elements that we incorporate into our designs owe their existence to the unpredictability of evolution operating to mutate and change DNA.

Evolution and mutation work hand in hand to select against the maintenance of synthetic DNA sequences, taking the biological engineer’s best-formulated designs and eroding them to nothing. No matter if it is a complex gene circuit or single-gene expression, a single mutation is enough to render an entire system nonfunctional. As soon as a mutant cell emerges, its mutation frees it from the metabolic burden of sustaining transgenes, allowing it to outcompete all the remaining cells that are functioning as intended [1]. Within days the population ceases to be what it was engineered to be [2]. Nature defeats the engineer’s attempts at harnessing the vast potential for biological machines to be re-purposed as agents for good.


How to Tame Evolution

How is it even possible to combat processes as fundamental as mutation and natural selection? The dogma in biology has been that random mutation will strike any gene sequence and initiate a process of selection as a logical consequence of the variations that mutation introduces. But that basic dogma is wrong. As soon as we realize that subtle mistake, the way is opened to bring mutation itself under the synthetic biologist’s control.

Decades of genomics and biochemistry research has established that mutation is not truly random. Certain DNA sequences are “hotspots” more prone to mutation than others, while others are resistant against mutagenic damage [3]. Our idea is to rationally modulate the sequence composition of synthetic genes to reduce or eliminate motifs with high mutation risk, substituting them out for mutation-resistant sequences. When combined with gene synthetic technologies, our process becomes a simple and reliable optimization that is universally applicable to genes expressed in any organism.



References

Huang, J. et al. Fission yeast HMT1 lowers seed cadmium through phytochelatin-dependent vacuolar sequestration in Arabidopsis. Plant Physiol. 158, 1779–88 (2012).

Krishnaswamy, R. & Wilson, D. B. Construction and characterization of an Escherichia coli strain genetically engineered for Ni(II) bioaccumulation. Appl. Environ. Microbiol. 66, 5383–6 (2000).

Wilson, D. B. Construction and characterization of Escherichia coli genetically engineered for Construction and Characterization of Escherichia coli Genetically Engineered for Bioremediation of Hg 2+ -Contaminated Environments. 2–6 (1997).

Arazi, T., Sunkar, R., Kaplan, B., & Fromm, H. (1999). A tobacco plasma membrane calmodulin-binding transporter confers Ni2 tolerance and Pb2 hypersensitivity in transgenic plants. The Plant Journal, 171-182.