Difference between revisions of "Team:IISc Bangalore/Parts"

Line 98: Line 98:
 
       </div>
 
       </div>
 
       </nav>
 
       </nav>
 +
  
  

Revision as of 17:02, 19 October 2016


Team IISc iGem

Basic parts

Name Type Description Designer Length
BBa_R0040 pTet promoter Used as a negative control for all our studies June Rhee, Connie Tao, Ty Thomson, Louis Waldman Group: Antiquity (2003-01-31) 54 bp

Composite parts

Name Type Description Designer Length
BBa_K1352000 Ag43 under pBAD/ara promoter Ana-Maria Cujba, Martyna Sroka Group: iGEM14_Aberdeen_Scotland 4493 bp
BBa_I746908 sfGFP under pBAD/ara promoter Stefan Milde Group: iGEM07_Cambridge 2093 bp
BBa_K1072000 Lux based QS system Yichong wang, Rui chen, Xihao liao and Junjie zhang Group: iGEM13_SCUT 2910 bp

Collection

Name Type Description Designer Length
BBa_R0040 pTet promoter Used as a negative control for all our studies June Rhee, Connie Tao, Ty Thomson, Louis Waldman Group: Antiquity (2003-01-31) 54 bp
BBa_K1352000 Ag43 under pBAD/ara promoter Ana-Maria Cujba, Martyna Sroka Group: iGEM14_Aberdeen_Scotland 4493 bp
BBa_I746908 sfGFP under pBAD/ara promoter Stefan Milde Group: iGEM07_Cambridge 2093 bp
BBa_K1072000 Lux based QS system Yichong wang, Rui chen, Xihao liao and Junjie zhang Group: iGEM13_SCUT 2910 bp
×

Overview

With the advent of rDNA technology in the late 1970s, medicine, agriculture and several other areas underwent a quantum leap and from that point, progress only hastened, from one only one recombinant pharmaceutical approved for human use (insulin) in 1982 to one hundred and fifty-one FDA approved protein based recombinant pharmaceuticals by 2009[1]. Despite being in high demand (due to the fact that most recombinant products produced on an industrial scale are therapies for chronic diseases like cancer and diabetes), recombinant products are expensive due to several factors like long and expensive development time, high failure rate (~80%) of the products developed, manufacturing costs requiring expensive technologies and processes (bioreactors, column chromatography, sterile conditions, etc) and the involvement of skilled labor on both the manufacturing and the healthcare provider’s side[2]. Treatments with these pharmaceuticals can cost from around 10,000 to 100,000 € per year for a single patient[2]. As scientists and engineers, it seems obvious that our contribution can be most easily and effectively be made at the level of manufacturing costs; to try to bring down the cost of these life-saving products.
Read more

×

Basic

basic
Read more

×

Composite

Composite
Read more

×

Collection

Collection
Read more