Difference between revisions of "Team:ShanghaitechChina/Biofilm"

Line 9: Line 9:
 
b.tc{color:#806000}
 
b.tc{color:#806000}
 
</style>
 
</style>
 +
 +
<script type="text/javascript">
 +
$(document).ready(function(){
 +
  $("button#1").click(function(){
 +
    $("p#x1").fadeToggle();
 +
  });
 +
});
 +
$(document).ready(function(){
 +
  $("button#1").click(function(){
 +
    $("p#x1").fadeToggle();
 +
  });
 +
});
 +
$(document).ready(function(){
 +
  $("button#1").click(function(){
 +
    $("p#x1").fadeToggle();
 +
  });
 +
});</script>
 +
</head>
 
<body>
 
<body>
 
</div></div></div></div></div>
 
</div></div></div></div></div>
Line 119: Line 137:
 
   <div class="row">
 
   <div class="row">
 
     <div class="col-lg-12">
 
     <div class="col-lg-12">
        <h1 align="center">Construction and Characterization</h1>
+
        <h1 align="center">Construction and Characterization</h1></b>
 
     </div>
 
     </div>
     <div class="col-lg-12">
+
      
        <div>
+
 
<p></p>
 
<p></p>
 
         <h3 class="bg">Principles of methods of characterization</h3>
 
         <h3 class="bg">Principles of methods of characterization</h3>
         <h4 class="bg"><b>Congo Red</b></h4>
+
         <button type="button" id="1"><h4><b>Congo Red</b></h4></button>
Congo Red dye is a classic method to detect amyloid protein [2]. Amyloid can be visualized and quantified through the staining of Congo Red because Congo Red molecules obtain an oriented arrangement on amyloid fibrils. This property can be ascribed to the hydroxyl groups on the amyloid and hydrogen bonding on the Congo Red [3]. It only takes approximately 20 minutes to dye so it is indeed a good practice in lab to crudely test the expression of biofilms.<p></p>
+
<div class="col-lg-12">
<h4 class="bg"><b>Crystal Violet Assay</b></h4>
+
        <div id="x1" style="display:none">
 +
Congo Red dye is a classic method to detect amyloid protein [2]. Amyloid can be visualized and quantified through the staining of Congo Red because Congo Red molecules obtain an oriented arrangement on amyloid fibrils. This property can be ascribed to the hydroxyl groups on the amyloid and hydrogen bonding on the Congo Red [3]. It only takes approximately 20 minutes to dye so it is indeed a good practice in lab to crudely test the expression of biofilms.<p></p></div>  </div>
 +
<button type="button" id="2"><h4 ><b>Crystal Violet Assay</b></h4></button>
 +
<div class="col-lg-12">
 +
        <div id="x2" style="display:none">
 
Crystal violet is a triarylmethane dye used as a histological stain to classify biomass. This is a simple assay practical and useful for obtaining quantitative data about the relative quantity of cells which adhere to multi-wells cluster dishes. After solubilization, the amount of dye taken up by the monolayer can be quantitated in a plate reader. [4]<p></p>
 
Crystal violet is a triarylmethane dye used as a histological stain to classify biomass. This is a simple assay practical and useful for obtaining quantitative data about the relative quantity of cells which adhere to multi-wells cluster dishes. After solubilization, the amount of dye taken up by the monolayer can be quantitated in a plate reader. [4]<p></p>
 
<center>
 
<center>
Line 133: Line 154:
 
</center>
 
</center>
 
<p style="text-align:center"><b>Fig 1. </b> Crystal violet and Congo Red reagent.</p>
 
<p style="text-align:center"><b>Fig 1. </b> Crystal violet and Congo Red reagent.</p>
 
+
</div>  </div>
        <h4 class="bg"><b>TEM</b></h4>
+
<button type="button" id="3">        <h4><b>TEM</b></h4></button>
 +
<div class="col-lg-12">
 +
        <div id="x3" style="display:none">
 
In order to visualize the formation and different appearance of biofilm nanowire network, we utilize transmission electron microscope to directly look into the microscopic world. TEM can visualize nano-structure with the maximal resolution of 0.2nm which is beyond the range of optical microscope. <p></p>
 
In order to visualize the formation and different appearance of biofilm nanowire network, we utilize transmission electron microscope to directly look into the microscopic world. TEM can visualize nano-structure with the maximal resolution of 0.2nm which is beyond the range of optical microscope. <p></p>
  
Line 141: Line 164:
 
<img src=" https://static.igem.org/mediawiki/parts/2/26/Shanghaitechchina_TEM_device.png" width="50%">
 
<img src=" https://static.igem.org/mediawiki/parts/2/26/Shanghaitechchina_TEM_device.png" width="50%">
 
</center>
 
</center>
<p style="text-align:center"><b>Fig 2. </b> TEM device at the National Center for Protein Science Shanghai.</p>
+
<p style="text-align:center"><b>Fig 2. </b> TEM device at the National Center for Protein Science Shanghai.</p></div>  </div>
        <h4 class="bg"><b>Quantum Dots Binding Assay</b></h4>
+
<button type="button" id="4">        <h4 ><b>Quantum Dots Binding Assay</b></h4></button>
 +
<div class="col-lg-12">
 +
        <div id="x4" style="display:none">
 +
 
 
Mechanisms of Quantum dots binding assay have been introduced in detail in Quantum Dots part. We utilizing Co/Ni-NTA-Metal-Histag coordination chemistry and fluorescence emission traits of Quantum Dots (QDs) to bind with the histidine in Histags on our biofilm and thus characterize its formation. The whole linkage is performed by forming firm coordinate bonds. They could be applied to quick detection of biofilm expression of His-tagged proteins with naked eye under UV light owing to the photoluminescence of QDs, and accurate concentration measurement under fluorescence spectrum (A detailed protocol for repeatable measurements is included in our Wikipage). <p></p>
 
Mechanisms of Quantum dots binding assay have been introduced in detail in Quantum Dots part. We utilizing Co/Ni-NTA-Metal-Histag coordination chemistry and fluorescence emission traits of Quantum Dots (QDs) to bind with the histidine in Histags on our biofilm and thus characterize its formation. The whole linkage is performed by forming firm coordinate bonds. They could be applied to quick detection of biofilm expression of His-tagged proteins with naked eye under UV light owing to the photoluminescence of QDs, and accurate concentration measurement under fluorescence spectrum (A detailed protocol for repeatable measurements is included in our Wikipage). <p></p>
          
+
         </div>
 
+
  </div>
  
 
<p id="p10"></p>
 
<p id="p10"></p>

Revision as of 19:19, 19 October 2016

igem2016:ShanghaiTech